Antifreeze & Washer Fluid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Avionics Thermal Management of Airborne Electronic Equipment, 50 Years Later
FALL 2017 electronics-cooling.com THERMAL LIVE 2017 TECHNICAL PROGRAM Avionics Thermal Management of Advances in Vapor Compression Airborne Electronic Electronics Cooling Equipment, 50 Years Later Thermal Management Considerations in High Power Coaxial Attenuators and Terminations Thermal Management of Onboard Charger in E-Vehicles Reliability of Nano-sintered Silver Die Attach Materials ESTIMATING INTERNAL AIR ThermalRESEARCH Energy Harvesting ROUNDUP: with COOLING TEMPERATURE OCTOBERNext Generation 2017 CoolingEDITION for REDUCTION IN A CLOSED BOX Automotive Electronics UTILIZING THERMOELECTRICALLY ENHANCED HEAT REJECTION Application of Metallic TIMs for Harsh Environments and Non-flat Surfaces ONLINE EVENT October 24 - 25, 2017 The Largest Single Thermal Management Event of The Year - Anywhere. Thermal Live™ is a new concept in education and networking in thermal management - a FREE 2-day online event for electronics and mechanical engineers to learn the latest in thermal management techniques and topics. Produced by Electronics Cooling® magazine, and launched in October 2015 for the first time, Thermal Live™ features webinars, roundtables, whitepapers, and videos... and there is no cost to attend. For more information about Technical Programs, Thermal Management Resources, Sponsors & Presenters please visit: thermal.live Presented by CONTENTS www.electronics-cooling.com 2 EDITORIAL PUBLISHED BY In the End, Entropy Always Wins… But Not Yet! ITEM Media 1000 Germantown Pike, F-2 Jean-Jacques (JJ) DeLisle Plymouth Meeting, PA 19462 USA -
ENGINE COOLING and VEHICLE AIR CONDITIONING AGRICULTURAL and CONSTRUCTION VEHICLES What Is Thermal Management?
ENGINE COOLING AND VEHICLE AIR CONDITIONING AGRICULTURAL AND CONSTRUCTION VEHICLES What is thermal management? Modern thermal management encompasses the areas of engine cooling and vehicle air conditioning. In addition to ensuring an optimum engine temperature in all operating states, the main tasks include heating and cooling of the vehicle cabin. However, these two areas should not be considered in isolation. One unit is often formed from components of these two assemblies which influence one another reciprocally. All components used must therefore be as compatible as possible to ensure effective and efficient thermal management. In this brochure, we would like to present you with an overview of our modern air-conditioning systems and also the technology behind them. We not only present the principle of operation, we also examine causes of failure, diagnosis options and special features. Disclaimer/Picture credits The publisher has compiled the information provided in this training document based on the information published by the automobile manufacturers and importers. Great care has been taken to ensure the accuracy of the information. However, the publisher cannot be held liable for mistakes and any consequences thereof. This applies both to the use of data and information which prove to be wrong or have been presented in an incorrect manner and to errors which have occurred unintentionally during the compilation of data. Without prejudice to the above, the publisher assumes no liability for any kind of loss with regard to profits, goodwill or any other loss, including economic loss. The publisher cannot be held liable for any damage or interruption of operations resulting from the non-observance of the training document and the special safety notes. -
Using Radiators with Wetback Fires the Joy of Fire with the Comfort of Central Heating
using radiators with wetback fires The joy of fire with the comfort of central heating. Heating Radiators with Fire Log burners are commonly available with a wetback system that heats • Heat more of your home with a hot water cylinder. It’s possible to extend the functionality of the your fire wetback by using radiators to spread the heat to other parts of the house. • Radiators available in a This means you can get the pleasure of watching a fire burn in your living variety of styles and endless room while the rest of the home is brought to a comfortable temperature colour options by the radiators. • Using a cheap and reliable People often try to move the hot air from a fire into other parts of the source of firewood means no house with duct work. Moving heat with water is so much more effective additional fuel costs as water transports energy four times better than air. The number of radiators you can heat depends on the heat output of the wetback and the rating of the radiators. A typical wetback only provides 2 to 4kW of heat as this is all that is needed to heat a hot water cylinder if the fire is on for five to ten hours per day. In order to heat a central heating system, a wetback with a higher output is often required. There are fires that have larger wetbacks (up to 15kW) and put out more heat to the wetback, enabling more radiators to be connected. How It Works While the fire is burning, the heat from the combustion process heats water jackets installed within the firebox. -
Comparison of a Novel Polymeric Hollow Fiber Heat Exchanger and a Commercially Available Metal Automotive Radiator
polymers Article Comparison of a Novel Polymeric Hollow Fiber Heat Exchanger and a Commercially Available Metal Automotive Radiator Tereza Kroulíková 1,* , Tereza K ˚udelová 1 , Erik Bartuli 1 , Jan Vanˇcura 2 and Ilya Astrouski 1 1 Heat Transfer and Fluid Flow Laboratory, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno, Czech Republic; [email protected] (T.K.); [email protected] (E.B.); [email protected] (I.A.) 2 Institute of Automotive Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno, Czech Republic; [email protected] * Correspondence: [email protected] Abstract: A novel heat exchanger for automotive applications developed by the Heat Transfer and Fluid Flow Laboratory at the Brno University of Technology, Czech Republic, is compared with a conventional commercially available metal radiator. The heat transfer surface of this heat exchanger is composed of polymeric hollow fibers made from polyamide 612 by DuPont (Zytel LC6159). The cross-section of the polymeric radiator is identical to the aluminum radiator (louvered fins on flat tubes) in a Skoda Octavia and measures 720 × 480 mm. The goal of the study is to compare the functionality and performance parameters of both radiators based on the results of tests in a calibrated air wind tunnel. During testing, both heat exchangers were tested in conventional conditions used for car radiators with different air flow and coolant (50% ethylene glycol) rates. The polymeric hollow fiber heat exchanger demonstrated about 20% higher thermal performance for the same air flow. The Citation: Kroulíková, T.; K ˚udelová, T.; Bartuli, E.; Vanˇcura,J.; Astrouski, I. -
Sector N: Scrap and Waste Recycling
Industrial Stormwater Fact Sheet Series Sector N: Scrap Recycling and Waste Recycling Facilities U.S. EPA Office of Water EPA-833-F-06-029 February 2021 What is the NPDES stormwater program for industrial activity? Activities, such as material handling and storage, equipment maintenance and cleaning, industrial processing or other operations that occur at industrial facilities are often exposed to stormwater. The runoff from these areas may discharge pollutants directly into nearby waterbodies or indirectly via storm sewer systems, thereby degrading water quality. In 1990, the U.S. Environmental Protection Agency (EPA) developed permitting regulations under the National Pollutant Discharge Elimination System (NPDES) to control stormwater discharges associated with eleven categories of industrial activity. As a result, NPDES permitting authorities, which may be either EPA or a state environmental agency, issue stormwater permits to control runoff from these industrial facilities. What types of industrial facilities are required to obtain permit coverage? This fact sheet specifically discusses stormwater discharges various industries including scrap recycling and waste recycling facilities as defined by Standard Industrial Classification (SIC) Major Group Code 50 (5093). Facilities and products in this group fall under the following categories, all of which require coverage under an industrial stormwater permit: ◆ Scrap and waste recycling facilities (non-source separated, non-liquid recyclable materials) engaged in processing, reclaiming, and wholesale distribution of scrap and waste materials such as ferrous and nonferrous metals, paper, plastic, cardboard, glass, and animal hides. ◆ Waste recycling facilities (liquid recyclable materials) engaged in reclaiming and recycling liquid wastes such as used oil, antifreeze, mineral spirits, and industrial solvents. -
Modeling and Optimization of a Thermosiphon for Passive Thermal Management Systems
MODELING AND OPTIMIZATION OF A THERMOSIPHON FOR PASSIVE THERMAL MANAGEMENT SYSTEMS A Thesis Presented to The Academic Faculty by Benjamin Haile Loeffler In Partial Fulfillment of the Requirements for the Degree Master of Science in the G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology December 2012 MODELING AND OPTIMIZATION OF A THERMOSIPHON FOR PASSIVE THERMAL MANAGEMENT SYSTEMS Approved by: Dr. J. Rhett Mayor, Advisor Dr. Sheldon Jeter G. W. Woodruff School of Mechanical G. W. Woodruff School of Mechanical Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Srinivas Garimella G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Date Approved: 11/12/2012 ACKNOWLEDGEMENTS I would like to first thank my committee members, Dr. Jeter and Dr. Garimella, for their time and consideration in evaluating this work. Their edits and feedback are much appreciated. I would also like to acknowledge my lab mates for the free exchange and discussion of ideas that has challenged all of us to solve problems in new and better ways. In particular, I am grateful to Sam Glauber, Chad Bednar, and David Judah for their hard work on the pragmatic tasks essential to this project. Andrew Semidey has been a patient and insightful mentor since my final terms as an undergrad. I thank him for his tutelage and advice over the years. Without him I would have remained a mediocre heat transfer student at best. Andrew was truly indispensable to my graduate education. I must also thank Dr. Mayor for his guidance, insight, and enthusiasm over the course of this work. -
Consumer Guide: Balancing the Central Heating System
Consumer Guide: Balancing the central heating system System Balancing Keep your home heating system in good working order. Balancing the heating system Balancing of a heating system is a simple process which can improve operating efficiency, comfort and reduce energy usage in wet central heating systems. Many homeowners are unaware of the merits of system balancing -an intuitive, common sense principle that heating engineers use to make new and existing systems operate more efficiently. Why balance? Balancing of the heating system is the process of optimising the distribution of water through the radiators by adjusting the lockshield valve which equalizes the system pressure so it provides the intended indoor climate at optimum energy efficiency and minimal operating cost. To provide the correct heat output each radiator requires a certain flow known as the design flow. If the flow of water through the radiators is not balanced, the result can be that some radiators can take the bulk of the hot water flow from the boiler, leaving other radiators with little flow. This can affect the boiler efficiency and home comfort conditions as some rooms may be too hot or remain cold. There are also other potential problems. Thermostatic radiator valves with too much flow may not operate properly and can be noisy with water “streaming” noises through the valves, particularly as they start to close when the room temperature increases. What causes an unbalanced system? One cause is radiators removed for decorating and then refitted. This can affect the balance of the whole system. Consequently, to overcome poor circulation and cure “cold radiators” the system pump may be put onto a higher speed or the boiler thermostat put onto a higher temperature setting. -
Dodge Cummins Coolant Bypass
FPE-2018-06 SUBJECT: DODGE CUMMINS COOLANT BYPASS KIT November, 2020 Page 1 of 6 FITMENT: 2003–2007 Dodge Cummins Manual Transmission Only 2007.5-2018 Dodge Cummins Manual and Automatic Transmissions KIT P/N: FPE-CLNTBYPS-CUMMINS-MAN, FPE-CLNTBYPS-CUMMINS-6.7 ESTIMATED INSTALLATION TIME: 2-3 Hours TOOLS REQUIRED: 16mm ratcheting wrench, 10mm socket, 8mm socket, 6mm Allen, 1” wrench, hammer, 5-gallon clean drain pan, 36” pry bar, Scotch-Brite TM pad (included in kit). KIT CONTENTS: Item Description Qty 1 Coolant bypass hose 1 2 Coolant bypass thermostat housing 1 and O-ring 3 Thermostat riser block and O-ring 1 3 4 4 Coolant bypass hose riser bracket 2 2 5 M8 x 1.25, 20mm socket head cap 2 screw 7 6 6 M6 x 1.00 x 60mm flange head bolt 3 5 7 M12 x 1.75, 40mm flange head bolt 2 8 Scotch-Brite TM pad (not pictured) 1 1 WARNINGS: • Use of this product may void or nullify the vehicle’s factory warranty. • User assumes sole responsibility for the safe & proper use of the vehicle at all times. • The purchaser and end user releases, indemnifies, discharges, and holds harmless Fleece Performance Engineering, Inc. from any and all claims, damages, causes of action, injuries, or expenses resulting from or relating to the use or installation of this product that is in violation of the terms and conditions on this page, the product disclaimer, and/or the product installation instructions. Fleece Performance Engineering, Inc. will not be liable for any direct, indirect, consequential, exemplary, punitive, statutory, or incidental damages or fines cause by the use or installation of this product. -
Optimization of the Design of a Polymer Flat Plate Solar Collector A
Optimization of the design of a polymer flat plate solar collector A. C. Mintsa Do Ango, Marc Médale, Chérifa Abid To cite this version: A. C. Mintsa Do Ango, Marc Médale, Chérifa Abid. Optimization of the design of a polymer flat plate solar collector. Solar Energy, Elsevier, 2013, 87, pp.64-75. 10.1016/j.solener.2012.10.006. hal- 01459491 HAL Id: hal-01459491 https://hal.archives-ouvertes.fr/hal-01459491 Submitted on 15 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Optimization of the design of a polymer flat plate solar collector A.C. Mintsa Do Ango ⇑, M. Medale, C. Abid Aix-Marseille Universite´, CNRS, IUSTI UMR 7343, 13453 Marseille, France This work presents numerical simulations aimed at optimizing the design of polymer flat plate solar collectors. Solar collectors’ absorbers are usually made of copper or aluminum and, although they offer good performance, they are consequently expensive. In com-parison, using polymer can improve solar collectors economic competitiveness. In this paper, we propose a numerical study of a new design for a solar collector to assess the influence of the design parameters (air gap thickness, collector’s length) and of the operating conditions (mass flow rate, incident solar radiation, inlet temperature) on efficiency. -
A Heat Pump for Space Applications
45th International Conference on Environmental Systems ICES-2015-35 12-16 July 2015, Bellevue, Washington A Heat Pump for Space Applications H.J. van Gerner 1, G. van Donk2, A. Pauw3, and J. van Es4 National Aerospace Laboratory NLR, Amsterdam, The Netherlands and S. Lapensée5 European Space Agency, ESA/ESTEC, Noordwijk ZH, The Netherlands In commercial communication satellites, waste heat (5-10kW) has to be radiated into space by radiators. These radiators determine the size of the spacecraft, and a further increase in radiator size (and therefore spacecraft size) to increase the heat rejection capacity is not practical. A heat pump can be used to raise the radiator temperature above the temperature of the equipment, which results in a higher heat rejecting capacity without increasing the size of the radiators. A heat pump also provides the opportunity to use East/West radiators, which become almost as effective as North/South radiators when the temperature is elevated to 100°C. The heat pump works with the vapour compression cycle and requires a compressor. However, commercially available compressors have a high mass (40 kg for 10kW cooling capacity), cause excessive vibrations, and are intended for much lower temperatures (maximum 65°C) than what is required for the space heat pump application (100°C). Dedicated aerospace compressors have been developed with a lower mass (19 kg) and for higher temperatures, but these compressors have a lower efficiency. For this reason, an electrically-driven, high-speed (200,000 RPM), centrifugal compressor system has been developed in a project funded by the European Space Agency (ESA). -
Boiler System Antifreeze -100°F Safety Data Sheet According to Federal Register / Vol
Boiler System Antifreeze -100°F Safety Data Sheet According To Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations And According To The Hazardous Products Regulation (February 11, 2015). Date of Issue: 08/24/2020 Version: 1.0 SECTION 1: IDENTIFICATION Product Identifier Product Form: Mixture Product Name: Boiler System Antifreeze -100°F Product Code: 327XX, 32700 Intended Use of the Product Antifreeze Coolant Name, Address, and Telephone of the Responsible Party Company Star brite® Inc. 4041 SW 47th Avenue Fort Lauderdale, FL 33314 (800) 327-8583 www.starbrite.com Emergency Telephone Number Emergency Number : US: (800) 424-9300; International: (703) 527-3887 (CHEMTREC) SECTION 2: HAZARDS IDENTIFICATION Classification of the Substance or Mixture GHS-US/CA Classification Not classified Label Elements GHS-US/CA Labeling No labeling applicable according to 29 CFR 1910.1200 and the Hazardous Products Regulations (HPR) SOR/2015-17. Other Hazards Exposure may aggravate pre-existing eye, skin, or respiratory conditions. Unknown Acute Toxicity (GHS-US/CA) No data available SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS Mixture Name Synonyms Product Identifier % * GHS Ingredient Classification 1,2-Propanediol** 1,2-Propylene glycol / 1,2- (CAS-No.) 57-55-6 45 - 70 Not classified Dihydroxypropane / Propane- 1,2-diol / Propylene glycol / PROPYLENE GLYCOL Full text of H-phrases: see section 16 *Percentages are listed in weight by weight percentage (w/w%) for liquid and solid ingredients. Gas ingredients are listed in volume by volume percentage (v/v%). ** The actual concentration of ingredient(s) is withheld as a trade secret in accordance with the Hazardous Products Regulations (HPR) SOR/2015-17 and 29 CFR 1910.1200. -
COOLANT CATALOG We Are Committed to Keeping Trucks on the Road and Moving Forward by Providing Quality Parts to All Who Repair Heavy-Duty Vehicles
COOLANT CATALOG We are committed to keeping trucks on the road and moving forward by providing quality parts to all who repair heavy-duty vehicles. CONFIDENCE. COVERAGE. COMMITMENT. TABLE OF CONTENTS EXTENDED LIFE COOLANTS . 4 CONVENTIONAL COOLANTS . 6 Parts that keep you moving. Quality that keeps you coming back. EXTENDED LIFE COOLANTS ROAD CHOICE® NOAT EXTENDED LIFE ANTIFREEZE & COOLANT Road Choice NOAT Extended Life Antifreeze & Coolant is formulated for heavy-duty diesel, gasoline and natural gas engine cooling systems . Road Choice NOAT Antifreeze & Coolant uses nitrite with organic additive inhibitors to provide long-term wet sleeve liner cavitation and corrosion protection for 750,000 miles of on-road or 15,000 hours of off-road use . PRODUCT HIGHLIGHTS: • Eliminates the need for SCAs and chemically charged filters • Improves heat transfer capability • Offers outstanding protection against corrosion and cavitation • Nonabrasive formula can improve water pump seal life • Eliminates drop-out and gel, and reduces scale • Provides exceptional long-term elastomer compatibility • Can be mixed with other coolants (to maintain corrosion protection, contamination levels should be kept below 25 percent) MEETS OR EXCEEDS THE NOAT EXTENDED LIFE FOLLOWING SPECIFICATIONS: ASTM D3306 ASTM D6210 TMC RP329 ASTM D4340 TMC RP351 (COLOR) RECOMMENDED FOR USE IN HEAVY-DUTY VEHICLES AND STATIONARY EQUIPMENT, REGARDLESS OF FUEL TYPE, INCLUDING: Caterpillar EC-1 Komatsu Cummins CES 14603 International John Deere H24A1, H24C1 GM Navistar Waukesha PACCAR