Radiation of Southern African Daisies: Biogeographic Inferences for Subtribe Arctotidinae (Asteraceae, Arctotideae)

Total Page:16

File Type:pdf, Size:1020Kb

Radiation of Southern African Daisies: Biogeographic Inferences for Subtribe Arctotidinae (Asteraceae, Arctotideae) Molecular Phylogenetics and Evolution 49 (2008) 1–16 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Radiation of southern African daisies: Biogeographic inferences for subtribe Arctotidinae (Asteraceae, Arctotideae) Robert J. McKenzie *, Nigel P. Barker Molecular Ecology and Systematics Group, Department of Botany, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa article info abstract Article history: The majority of the approximately 80–90 species in subtribe Arctotidinae occur in southern Africa with Received 18 April 2007 the centre of diversity in the winter-rainfall region. Three species are restricted to afromontane eastern Revised 29 June 2008 Africa and three species are endemic to Australia. To investigate biogeographic and phylogenetic relation- Accepted 9 July 2008 ships within Arctotidinae, sequence data from four cpDNA regions (psbA-trnH, trnT-trnL and trnL-trnF Available online 18 July 2008 spacers and trnL intron) and the ITS nrDNA region for 59 Arctotidinae species were analyzed with parsi- mony and Bayesian-inference approaches. Eight well-supported major lineages were resolved. The earli- Keywords: est-diverging extant lineages are afromontane or inhabit mesic habitats, whereas almost all sampled taxa Arctotideae from the winter-rainfall and semi-arid areas have diverged more recently. Molecular dating estimated Arctotidineae Asteraceae that the major clades diverged during the Miocene and Pliocene, which is coincident with the trend of Biogeography increasing rainfall seasonality, aridification and vegetation changes in southwestern Africa. Trans-oceanic Cape floral region dispersal to Australia was estimated to have occurred during the Pliocene. Compositae Ó 2008 Elsevier Inc. All rights reserved. Dispersal–vicariance analysis Molecular phylogeny Molecular dating 1. Introduction ular (McKenzie et al., 2006a) and morphological (Karis 2006) phy- logenetic investigations. However, the sampling in previous Southern Africa is an important centre of floristic biodiversity. studies was not comprehensive and here we present the first Approximately 24,000 species of vascular plants are recorded from well-sampled phylogenetic and biogeographic investigation of the region, of which approximately 80% are endemic to southern the predominantly southern African subtribe Arctotidinae to help Africa (Cowling and Hilton-Taylor, 1997). Almost 10% of this plant to fill this gap in our knowledge. diversity is contributed by the Asteraceae (the daisy family), with Arctotideae is a small tribe containing about 215 species in 17 approximately 250 genera and 2250 species recorded from the re- genera with an almost exclusively African distribution (Karis, gion (Koekemoer, 1996). Over 80% of these species are endemic to 2007). Two subtribes are recognized with some authors placing southern Africa (Cowling and Hilton-Taylor, 1997). The family has other lineages in the tribe (for a brief review of the taxonomy radiated in all of the recognized southern African biomes and is one and relationships of the tribe, see Funk et al., 2004). The subtribe of the more species-rich families in most, if not all, of these biomes. Arctotidinae contains approximately 80–90 species currently clas- The diversity and endemism of Asteraceae in southern Africa is sified into five genera (Karis, 2007). One species, Haplocarpha scap- focused in eight putative centres (Koekemoer, 1996). These centres osa, has a wide distribution in montane and temperate are generally consistent with centres of endemism indicated by the southeastern Africa (e.g. Hilliard, 1977; Pope, 1992). Three species southern African flora as a whole (e.g. see van Wyk and Smith, are indigenous to the high-altitude East African mountains (Mesfin 2001). Despite being a major component of the flora, the evolution Tadesse, 2004) and three species are endemic to Australia (Holland and biogeography of southern African Asteraceae is poorly investi- and Funk, 2006). The remaining species occur in southern Africa, gated and well-resolved phylogenetic reconstructions are required with the centre of diversity in the Cape and Succulent Karoo Cen- to elucidate the origins and radiation of the Asteraceae lineages in tres of Floristic Endemism (see van Wyk and Smith, 2001). Both the region (Galley and Linder, 2006). The only major southern Afri- areas occur in the winter-rainfall zone (Cowling, 1992; Dean and can lineage of Asteraceae that has been investigated to any extent Milton, 1999; see Fig. 1) and are combined into a ‘Greater Capensis’ is the tribe Arctotideae, which has been the subject of both molec- floristic region by some workers (Born et al., 2007). Because more than 50% of the species occur in the Cape Floristic Region (CFR), the * Corresponding author. Fax: +27 46 6229550. Arctotidinae, and especially Arctotis s.str., might represent a true E-mail address: [email protected] (R.J. McKenzie). ‘Cape clade’ sensu Linder (2003, 2005). 1055-7903/$ - see front matter Ó 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2008.07.007 2 R.J. McKenzie, N.P. Barker / Molecular Phylogenetics and Evolution 49 (2008) 1–16 Fig. 1. A topographical map of southern Africa with the approximate boundaries of different rainfall regimes indicated (based on Chase and Meadows, 2007). Understanding the factors responsible for the unusually high Gondwana, transoceanic dispersal has been important in a diver- levels of floristic richness and endemism in the winter-rainfall re- sity of animals (e.g. Vences et al., 2003; Schwarz et al., 2006) and gion of southern Africa (and the CFR in particular) has attracted plant groups (e.g. Baum et al., 1998; Mummenhoff et al., 2004; considerable interest (for reviews for the CFR, see Linder, 2003, Cook and Crisp, 2005; Linder and Barker, 2005; Barker et al., 2005). Molecular dating has indicated that plant lineages have 2007). Vicariance appears to have been much stronger in animals been recruited into the Cape flora since at least the Cretaceous than plant groups (Sanmartín and Ronquist, 2004). Of particular and the onset of radiations in these lineages is indicated to range significance to the present study, plant taxa with a disjunct south- from the Oligocene to the Pliocene (Linder, 2005), so the extant ern African–Australian distribution, such as the Arctotidinae, are diversity cannot be explained solely by vicariance or explosive spe- rare (Good, 1964; Thorne, 1972; Goldblatt, 1978), and as yet few ciation in response to one or more concurrent triggers. Further- of these taxa have been investigated in a phylogenetic context. more, the southern African flora as a whole is indicated to have A previous molecular phylogenetic study of Arctotidinae exam- evolved from disparate sources, including descendants of Gondwa- ined sequence variation in five cpDNA regions (ndhF, psbA-trnH, nan ancestors (Goldblatt, 1978; Anderson et al., 1999), temperate rps16, trnS-trnfM, and trnT-trnF) and the ITS nrDNA region for 18 southern African progenitors (Goldblatt, 1978), groups of Eurasian species representing the major morphological variation in the sub- or tropical African origin (e.g. Meerow et al., 2003; Hurka et al., tribe (McKenzie et al., 2006a). Strong incongruence between the 2005; Mummenhoff et al., 2005), and Australasian ancestors (e.g. prevailing taxonomy and evolutionary relationships were indi- Linder et al., 2003). Therefore a thorough understanding of diversi- cated. A clade comprising two Haplocarpha species (H. nervosa fication processes in the southern African flora is likely to be best and H. rueppellii, both formerly segregated in Landtia) from the achieved by a taxon-focused, rather than a broad floristic, approach southern and East African mountain chain was sister to the rest because of the individuality of taxon histories within a flora (Ver- of the subtribe, and the widely distributed H. scaposa was indicated boom et al., 2003). to be an early divergence. The placement of the Australian Cymbon- The above evidence indicates that transcontinental and trans- otus lawsonianus and East African H. schimperi in a well-supported oceanic dispersal has been important in the compilation of the clade along with south-eastern African Arctotis species provided present-day southern African flora. Indeed, there is increasing evi- evidence for dispersal from southern Africa to Australia and migra- dence for the importance of long-distance dispersal in determining tion to East Africa, respectively. However, comprehensive sampling extant plant biogeographic patterns worldwide (e.g. Price and Cla- of extant lineages is required for confident phylogenetic recon- gue, 2002; de Queiroz, 2005). Phylogenetic reconstructions based structions and to allow more accurate biogeographic inferences on molecular data, in combination with molecular calibrations to to be made. The primary objective of the present study was to estimate the date of divergence events, have provided strong evi- reconstruct a species-level phylogenetic hypothesis for a compre- dence that in the Southern Hemisphere, following the breakup of hensive sample of Arctotidinae based on sequence data from four R.J. McKenzie, N.P. Barker / Molecular Phylogenetics and Evolution 49 (2008) 1–16 3 cpDNA regions (the psbA-trnH, trnT-trnL and trnL-trnF intergenic (Bioline, London), 1 ll 0.1 lM solution of each forward and reverse spacers and trnL intron) and the ITS nrDNA region. The specific primer, 0.2 ll BioTaqÒ DNA polymerase (5 U/ll, Bioline,
Recommended publications
  • South African Association of Botanists-Annual Meeting 2006
    South African Journal of Botany 72 (2006) 313–347 www.elsevier.com/locate/sajb Abstracts South African Association of Botanists-Annual Meeting 2006 Abstracts of papers and posters presented at the 32nd suppressing both the growth of cancer cell lines, and the ability of normal cell Annual Congress of the South African Association of lines to resist oxidative damage that might result in malignancy. Botanists held at the Nelson Mandela Metropolitan Botanists and those investigating the chemistry and biological activity of – medicinal plants need to develop, maintain and deepen their dialogue so that the University, Port Elizabeth, 16 19 January 2006 scientist can be assured of using the correct material, a skill which perhaps is retained by traditional healers but which is under threat of being lost for ever. The presenter of multi-authored papers is underlined Conservation cowboys: Perils and promise of privately ★ Awards made to students owned protected areas JA Langholz Plenary Lectures Graduate School of International Policy Studies, Monterey Institute of International Studies, Monterey CA 93940, United States of America Botany and pharmacy — the child is father of the man Although governments have traditionally assumed the leading role in PJ Houghton establishing national parks and other protected areas, a powerful new trend has Pharmacognosy Research Laboratories, Research Division of Pharmaceutical emerged in the last decade — the dramatic rise of privately owned protected Sciences, King's College London, 150 Stamford Street, London SE1 9NH, U.K. areas. Many of these areas conserve as much land as nearby national parks, if not more. On one hand, private sector willingness to create protected natural areas The interplay between the medicinal uses of plants and the need to classify comes as welcome relief, as most of the world's land and biodiversity remain them botanically is probably found in some form in every human culture.
    [Show full text]
  • Literature Cited
    Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes.
    [Show full text]
  • Seedimages Species Database List
    Seedimages.com Scientific List (possibly A. cylindrica) Agropyron trachycaulum Ambrosia artemisifolia (R) not Abelmoschus esculentus Agrostemma githago a synonym of A. trifida Abies concolor Agrostis alba Ambrosia confertiflora Abronia villosa Agrostis canina Ambrosia dumosa Abronia villosum Agrostis capillaris Ambrosia grayi Abutilon theophrasti Agrostis exarata Ambrosia psilostachya Acacia mearnsii Agrostis gigantea Ambrosia tomentosa Acaena anserinifolia Agrostis palustris Ambrosia trifida (L) Acaena novae-zelandiae Agrostis stolonifera Ammi majus Acaena sanguisorbae Agrostis tenuis Ammobium alatum Acalypha virginica Aira caryophyllea Amorpha canescens Acamptopappus sphaerocephalus Alcea ficifolia Amsinckia intermedia Acanthospermum hispidum Alcea nigra Amsinckia tessellata Acer rubrum Alcea rosea Anagallis arvensis Achillea millifolium Alchemilla mollis Anagallis monellii Achnatherum brachychaetum Alectra arvensis Anaphalis margaritacea Achnatherum hymenoides Alectra aspera Andropogon bicornis Acmella oleracea Alectra fluminensis Andropogon flexuosus Acroptilon repens Alectra melampyroides Andropogon gerardii Actaea racemosa Alhagi camelorum Andropogon gerardii var. Adenostoma fasciculatum Alhagi maurorum paucipilus Aegilops cylindrica Alhagi pseudalhagi Andropogon hallii Aegilops geniculata subsp. Allium canadense Andropogon ternarius geniculata Allium canadense (bulb) Andropogon virginicus Aegilops ovata Allium cepa Anemone canadensis Aegilops triuncialis Allium cernuum Anemone cylindrica Aeginetia indica Allium fistulosum Anemone
    [Show full text]
  • ISTA List of Stabilised Plant Names 7Th Edition
    ISTA List of Stabilised Plant Names 7th Edition ISTA Nomenclature Committee Chair Dr. M. Schori Published by All rights reserved. No part of this publication may be The International Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted in Richtiarkade 18, CH- 8304 Wallisellen, Switzerland any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2021 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 Valid from: 16.06.2021 ISTA List of Stabilised Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 7th Edition 2 ISTA List of Stabilised Plant Names Table of Contents A .............................................................................................................................................................. 7 B ............................................................................................................................................................ 21 C ...........................................................................................................................................................
    [Show full text]
  • 01 Innerfrontcover40 2.Indd 1 8/27/2010 2:27:58 PM BOTHALIA
    ISSN 0006 8241 = Bothalia Bothalia A JOURNAL OF BOTANICAL RESEARCH Vol. 40,2 Oct. 2010 TECHNICAL PUBLICATIONS OF THE SOUTH AFRICAN NATIONAL BIODIVERSITY INSTITUTE PRETORIA Obtainable from the South African National Biodiversity Institute (SANBI), Private Bag X101, Pretoria 0001, Republic of South Africa. A catalogue of all available publications will be issued on request. BOTHALIA Bothalia is named in honour of General Louis Botha, first Premier and Minister of Agriculture of the Union of South Africa. This house journal of the South African National Biodiversity Institute, Pretoria, is devoted to the furtherance of botanical science. The main fields covered are taxonomy, ecology, anatomy and cytology. Two parts of the journal and an index to contents, authors and subjects are published annually. Three booklets of the contents (a) to Vols 1–20, (b) to Vols 21–25, (c) to Vols 26–30, and (d) to Vols 31–37 (2001– 2007) are available. STRELITZIA A series of occasional publications on southern African flora and vegetation, replacing Memoirs of the Botanical Survey of South Africa and Annals of Kirstenbosch Botanic Gardens. MEMOIRS OF THE BOTANICAL SURVEY OF SOUTH AFRICA The memoirs are individual treatises usually of an ecological nature, but sometimes dealing with taxonomy or economic botany. Published: Nos 1–63 (many out of print). Discontinued after No. 63. ANNALS OF KIRSTENBOSCH BOTANIC GARDENS A series devoted to the publication of monographs and major works on southern African flora.Published: Vols 14–19 (earlier volumes published as supplementary volumes to the Journal of South African Botany). Discontinued after Vol. 19. FLOWERING PLANTS OF AFRICA (FPA) This serial presents colour plates of African plants with accompanying text.
    [Show full text]
  • Vegetation Survey of Mount Gorongosa
    VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe Vegetation Survey of Mt Gorongosa, page 2 SUMMARY Mount Gorongosa is a large inselberg almost 700 sq. km in extent in central Mozambique. With a vertical relief of between 900 and 1400 m above the surrounding plain, the highest point is at 1863 m. The mountain consists of a Lower Zone (mainly below 1100 m altitude) containing settlements and over which the natural vegetation cover has been strongly modified by people, and an Upper Zone in which much of the natural vegetation is still well preserved. Both zones are very important to the hydrology of surrounding areas. Immediately adjacent to the mountain lies Gorongosa National Park, one of Mozambique's main conservation areas. A key issue in recent years has been whether and how to incorporate the upper parts of Mount Gorongosa above 700 m altitude into the existing National Park, which is primarily lowland. [These areas were eventually incorporated into the National Park in 2010.] In recent years the unique biodiversity and scenic beauty of Mount Gorongosa have come under severe threat from the destruction of natural vegetation. This is particularly acute as regards moist evergreen forest, the loss of which has accelerated to alarming proportions.
    [Show full text]
  • Arctotheca Prostrata (Asteraceae: Arctotideae), a South African Species Now Present in Mexico
    Botanical Sciences 93 (4): 877-880, 2015 TAXONOMY AND FLORISTICS DOI: 10.17129/botsci.223 ARCTOTHECA PROSTRATA (ASTERACEAE: ARCTOTIDEAE), A SOUTH AFRICAN SPECIES NOW PRESENT IN MEXICO OSCAR HINOJOSA-ESPINOSA1,2,3 Y JOSÉ LUIS VILLASEÑOR1 1Instituto de Biología, Departamento de Botánica, Universidad Nacional Autónoma de México, México, D. F. 2Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, México D.F. 3Corresponding author: [email protected] Abstract: Arctotheca prostrata is a South African species that has been introduced in other parts of the world, such as California and Australia. Here we report the presence of A. prostrata for the fi rst time in Mexico. To date we have detected the species in nine sites south of Mexico City. The species shows weedy tendencies at each site. It is possible that A. prostrata arrived to Mexico through horticulture and later escaped from cultivation. This species needs to be included in the list of Mexican prohibited weeds, thus permitting the implementation of preventive strategies to avoid its spreading in the country. Key words: Arctotidinae, escaped from cultivation, introduced weeds, South African weeds. Resumen: Arctotheca prostrata es una especie sudafricana que se encuentra introducida en otras partes del mundo, tales como California y Australia. En este artículo se da a conocer por primera vez la presencia de A. prostrata en México. Hasta el momento la especie se ha detectado en nueve sitios al sur de la Ciudad de México. En cada localidad, la especie se comporta como maleza. Es posible que A. prostrata haya llegado a México a través de la horticultura y posteriormente escapara de cultivo.
    [Show full text]
  • Heterolepis: an Unplaced Genus
    Chapter 31 Heterolepis: an unplaced genus Vicki A. Funk and Per Ola Karis HISTORICAL OVERVIEW AND MORPHOLOGY Heterolepis the anthers are caudate with barely branched tails (somewhat similar to those of the Berkheya clade of The three species of Heterolepis Cass. are found in south- Gorteriinae). The anther apical appendages of Heterolepis ern South Africa and especially in parts of the Succulent are soft but longer and quite unlike the shorter but like- Karoo and almost throughout the Cape Floristic Region wise soft ones of Arctotidinae. Also Heterolepis has an- (CFR; Linder 2003). One of the species, H. aliena (L. f.) thers with a polarized endothecium, or many cells have Druce, forms a small shrub covered with large yel- a plate but no polarized pattern, which is similar to the low heads and is often cultivated. The genus has been endothecium in some species of the Berkheya clade of moved from tribe to tribe. Cassini (1816, 1821) described Gorteriinae. In contrast, Arctotidinae have a consistently Heterolepis and placed it in the tribe Arctotideae. Lessing radial endothecium. (1832) treated the whole tribe Arctotideae along with Bremer's (1994) morphological cladistic analysis Calenduleae and some Senecioneae, as part of a large placed Heterolepis as the sister group to the Platycarpha- Cynaroideae. Bentham (1873) reestablished Arctotideae Arctotidinae clade or in a trichotomy with the two main but he placed Heterolepis in Inuleae; Hoffmann (1890— subtribes depending on the outgroup used. Based on this 1894) followed Bentham. Robinson and Brettell (1973a) analysis Bremer decided to list Heterolepis as belonging returned Heterolepis to Arctotideae, and Norlindh (1977) to Arctotideae but unassigned to subtribe, and the same placed it in the subtribe Gorteriinae.
    [Show full text]
  • Genetic Diversity and Evolution in Lactuca L. (Asteraceae)
    Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis committee Promotor Prof. Dr M.E. Schranz Professor of Biosystematics Wageningen University Other members Prof. Dr P.C. Struik, Wageningen University Dr N. Kilian, Free University of Berlin, Germany Dr R. van Treuren, Wageningen University Dr M.J.W. Jeuken, Wageningen University This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 25 January 2016 at 1.30 p.m. in the Aula. Zhen Wei Genetic diversity and evolution in Lactuca L. (Asteraceae) - from phylogeny to molecular breeding, 210 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in Dutch and English ISBN 978-94-6257-614-8 Contents Chapter 1 General introduction 7 Chapter 2 Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons* 31 Chapter 3 Phylogenetic analysis of Lactuca L. and closely related genera (Asteraceae), using complete chloroplast genomes and nuclear rDNA sequences 99 Chapter 4 A mixed model QTL analysis for salt tolerance in
    [Show full text]
  • 2016 Census of the Vascular Plants of Tasmania
    A CENSUS OF THE VASCULAR PLANTS OF TASMANIA, INCLUDING MACQUARIE ISLAND MF de Salas & ML Baker 2016 edition Tasmanian Herbarium, Tasmanian Museum and Art Gallery Department of State Growth Tasmanian Vascular Plant Census 2016 A Census of the Vascular Plants of Tasmania, Including Macquarie Island. 2016 edition MF de Salas and ML Baker Postal address: Street address: Tasmanian Herbarium College Road PO Box 5058 Sandy Bay, Tasmania 7005 UTAS LPO Australia Sandy Bay, Tasmania 7005 Australia © Tasmanian Herbarium, Tasmanian Museum and Art Gallery Published by the Tasmanian Herbarium, Tasmanian Museum and Art Gallery GPO Box 1164 Hobart, Tasmania 7001 Australia www.tmag.tas.gov.au Cite as: de Salas, M.F. and Baker, M.L. (2016) A Census of the Vascular Plants of Tasmania, Including Macquarie Island. (Tasmanian Herbarium, Tasmanian Museum and Art Gallery. Hobart) www.tmag.tas.gov.au ISBN 978-1-921599-83-5 (PDF) 2 Tasmanian Vascular Plant Census 2016 Introduction The classification systems used in this Census largely follow Cronquist (1981) for flowering plants (Angiosperms) and McCarthy (1998) for conifers, ferns and their allies. The same classification systems are used to arrange the botanical collections of the Tasmanian Herbarium and by the Flora of Australia series published by the Australian Biological Resources Study (ABRS). For a more up-to-date classification of the flora refer to The Flora of Tasmania Online (Duretto 2009+) which currently follows APG II (2003). This census also serves as an index to The Student’s Flora of Tasmania (Curtis 1963, 1967, 1979; Curtis & Morris 1975, 1994). Species accounts can be found in The Student’s Flora of Tasmania by referring to the volume and page number reference that is given in the rightmost column (e.g.
    [Show full text]
  • Taxonomic Reassessment and Typification of Species Names in Arctotis L
    adansonia 2019 ● 41 ● 14 DIRECTEUR DE LA PUBLICATION : Bruno David Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Thierry Deroin RÉDACTEURS / EDITORS : Porter P. Lowry II ; Zachary S. Rogers ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Emmanuel Côtez ([email protected]) MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : P. Baas (Nationaal Herbarium Nederland, Wageningen) F. Blasco (CNRS, Toulouse) M. W. Callmander (Conservatoire et Jardin botaniques de la Ville de Genève) J. A. Doyle (University of California, Davis) P. K. Endress (Institute of Systematic Botany, Zürich) P. Feldmann (Cirad, Montpellier) L. Gautier (Conservatoire et Jardins botaniques de la Ville de Genève) F. Ghahremaninejad (Kharazmi University, Téhéran) K. Iwatsuki (Museum of Nature and Human Activities, Hyogo) K. Kubitzki (Institut für Allgemeine Botanik, Hamburg) J.-Y. Lesouef (Conservatoire botanique de Brest) P. Morat (Muséum national d’Histoire naturelle, Paris) J. Munzinger (Institut de Recherche pour le Développement, Montpellier) S. E. Rakotoarisoa (Millenium Seed Bank, Royal Botanic Gardens Kew, Madagascar Conservation Centre, Antananarivo) É. A. Rakotobe (Centre d’Applications des Recherches pharmaceutiques, Antananarivo) P. H. Raven (Missouri Botanical Garden, St. Louis) G. Tohmé (Conseil national de la Recherche scientifique Liban, Beyrouth) J. G. West (Australian National Herbarium, Canberra) J. R. Wood (Oxford) COUVERTURE / COVER : Lectotype of Calendula graminifolia L. (Commelin
    [Show full text]
  • Chapter Meetings Are Free and Open to the Public
    November 2011 Chapter meetings are free and open to the public. CHAPTER MEETING They are held the 3rd Tuesday of each month, except Tuesday, November 15; 7 p.m. August, in the Casa del Prado Room 104, just west of the San Diego Natural History Museum in Balboa Room 104, Casa del Prado Park. Balboa Park 6:30 Natives for Novices: Pre-meeting presentation on Irrigating Native Landscapes by Greg Rubin. Adventures with the Popcorn Flowers: 7:00 p.m. – refreshments, book browsing, Cryptantha (Boraginaceae) socializing. by Dr. Michael Simpson 7:30 p.m. – presentation. Dr. Simpson will present the results of recent studies summarizing aspects of taxonomy and phylogenetic PREZ SEZ relationships of the genus Cryptantha and close relatives. The methodology, evidence, and rationale My deep, wide, and heartfelt thanks to all the volunteers for splitting the genus into five separate genera, all whose combined efforts made our annual plant sale a huge named by previous workers decades ago, will be success, both financially and educationally. I am especially explained. Current studies and some preliminary grateful to Carolyn Martus, whose leadership of the Fall results with regard to species and intraspecies Plant Sale Committee is so level-headed and dependable. definition, including some recent discoveries, will be Our chapter will once again have funds to support activities presented. we hope to carry out in the upcoming year to increase understanding, appreciation, and conservation of our native flora. Michael Simpson, PhD (Duke University), is a ~ Kay Stewart Professor of Biology at San Diego State University. His expertise is plant systematics, including phylogenetic relationships of flowering plants, taxonomy related to species and infraspecies BOARD OF DIRECTORS delimitation, and floristic studies.
    [Show full text]