The Surface Area of a Scalene Cone As Solved by Varignon, Leibniz, and Euler
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polar Coordinates, Arc Length and the Lemniscate Curve
Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Calculus Mathematics via Primary Historical Sources (TRIUMPHS) Summer 2018 Gaussian Guesswork: Polar Coordinates, Arc Length and the Lemniscate Curve Janet Heine Barnett Colorado State University-Pueblo, [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_calculus Click here to let us know how access to this document benefits ou.y Recommended Citation Barnett, Janet Heine, "Gaussian Guesswork: Polar Coordinates, Arc Length and the Lemniscate Curve" (2018). Calculus. 3. https://digitalcommons.ursinus.edu/triumphs_calculus/3 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Calculus by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. Gaussian Guesswork: Polar Coordinates, Arc Length and the Lemniscate Curve Janet Heine Barnett∗ October 26, 2020 Just prior to his 19th birthday, the mathematical genius Carl Freidrich Gauss (1777{1855) began a \mathematical diary" in which he recorded his mathematical discoveries for nearly 20 years. Among these discoveries is the existence of a beautiful relationship between three particular numbers: • the ratio of the circumference of a circle to its diameter, or π; Z 1 dx • a specific value of a certain (elliptic1) integral, which Gauss denoted2 by $ = 2 p ; and 4 0 1 − x p p • a number called \the arithmetic-geometric mean" of 1 and 2, which he denoted as M( 2; 1). Like many of his discoveries, Gauss uncovered this particular relationship through a combination of the use of analogy and the examination of computational data, a practice that historian Adrian Rice called \Gaussian Guesswork" in his Math Horizons article subtitled \Why 1:19814023473559220744 ::: is such a beautiful number" [Rice, November 2009]. -
The Osculating Circumference Problem
THE OSCULATING CIRCUMFERENCE PROBLEM School I.S.I.S.S. M. Casagrande Pieve di Soligo, Treviso Italy Students Silvia Micheletto (I) Azzurra Soa Pizzolotto (IV) Luca Barisan (II) Simona Sota (IV) Gaia Barella (IV) Paolo Barisan (V) Marco Casagrande (IV) Anna De Biasi (V) Chiara De Rosso (IV) Silvia Giovani (V) Maddalena Favaro (IV) Klara Metaliu (V) Teachers Fabio Breda Francesco Maria Cardano Davide Palma Francesco Zampieri Researcher Alberto Zanardo, University of Padova Italy Year 2019/2020 The osculating circumference problem ISISS M. Casagrande, Pieve di Soligo, Treviso Italy Abstract The aim of the article is to study the osculating circumference i.e. the circumference which best approximates the graph of a curve at one of its points. We will dene this circumference and we will describe several methods to nd it. Finally we will introduce the notions of round points and crossing points, points of the curve where the circumference has interesting properties. ??? Contents Introduction 3 1 The osculating circumference 5 1.1 Particular cases: the formulas cannot be applied . 9 1.2 Curvature . 14 2 Round points 15 3 Beyond round points 22 3.1 Crossing points . 23 4 Osculating circumference of a conic section 25 4.1 The rst method . 25 4.2 The second method . 26 References 31 2 The osculating circumference problem ISISS M. Casagrande, Pieve di Soligo, Treviso Italy Introduction Our research was born from an analytic geometry problem studied during the third year of high school. The problem. Let P : y = x2 be a parabola and A and B two points of the curve symmetrical about the axis of the parabola. -
Plotting Graphs of Parametric Equations
Parametric Curve Plotter This Java Applet plots the graph of various primary curves described by parametric equations, and the graphs of some of the auxiliary curves associ- ated with the primary curves, such as the evolute, involute, parallel, pedal, and reciprocal curves. It has been tested on Netscape 3.0, 4.04, and 4.05, Internet Explorer 4.04, and on the Hot Java browser. It has not yet been run through the official Java compilers from Sun, but this is imminent. It seems to work best on Netscape 4.04. There are problems with Netscape 4.05 and it should be avoided until fixed. The applet was developed on a 200 MHz Pentium MMX system at 1024×768 resolution. (Cost: $4000 in March, 1997. Replacement cost: $695 in June, 1998, if you can find one this slow on sale!) For various reasons, it runs extremely slowly on Macintoshes, and slowly on Sun Sparc stations. The curves should move as quickly as Roadrunner cartoons: for a benchmark, check out the circular trigonometric diagrams on my Java page. This applet was mainly done as an exercise in Java programming leading up to more serious interactive animations in three-dimensional graphics, so no attempt was made to be comprehensive. Those who wish to see much more comprehensive sets of curves should look at: http : ==www − groups:dcs:st − and:ac:uk= ∼ history=Java= http : ==www:best:com= ∼ xah=SpecialP laneCurve dir=specialP laneCurves:html http : ==www:astro:virginia:edu= ∼ eww6n=math=math0:html Disclaimer: Like all computer graphics systems used to illustrate mathematical con- cepts, it cannot be error-free. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
NOTES Reconsidering Leibniz's Analytic Solution of the Catenary
NOTES Reconsidering Leibniz's Analytic Solution of the Catenary Problem: The Letter to Rudolph von Bodenhausen of August 1691 Mike Raugh January 23, 2017 Leibniz published his solution of the catenary problem as a classical ruler-and-compass con- struction in the June 1691 issue of Acta Eruditorum, without comment about the analysis used to derive it.1 However, in a private letter to Rudolph Christian von Bodenhausen later in the same year he explained his analysis.2 Here I take up Leibniz's argument at a crucial point in the letter to show that a simple observation leads easily and much more quickly to the solution than the path followed by Leibniz. The argument up to the crucial point affords a showcase in the techniques of Leibniz's calculus, so I take advantage of the opportunity to discuss it in the Appendix. Leibniz begins by deriving a differential equation for the catenary, which in our modern orientation of an x − y coordinate system would be written as, dy n Z p = (n = dx2 + dy2); (1) dx a where (x; z) represents cartesian coordinates for a point on the catenary, n is the arc length from that point to the lowest point, the fraction on the left is a ratio of differentials, and a is a constant representing unity used throughout the derivation to maintain homogeneity.3 The equation characterizes the catenary, but to solve it n must be eliminated. 1Leibniz, Gottfried Wilhelm, \De linea in quam flexile se pondere curvat" in Die Mathematischen Zeitschriftenartikel, Chap 15, pp 115{124, (German translation and comments by Hess und Babin), Georg Olms Verlag, 2011. -
The Arc Length of a Random Lemniscate
The arc length of a random lemniscate Erik Lundberg, Florida Atlantic University joint work with Koushik Ramachandran [email protected] SEAM 2017 Random lemniscates Topic of my talk last year at SEAM: Random rational lemniscates on the sphere. Topic of my talk today: Random polynomial lemniscates in the plane. Polynomial lemniscates: three guises I Complex Analysis: pre-image of unit circle under polynomial map jp(z)j = 1 I Potential Theory: level set of logarithmic potential log jp(z)j = 0 I Algebraic Geometry: special real-algebraic curve p(x + iy)p(x + iy) − 1 = 0 Polynomial lemniscates: three guises I Complex Analysis: pre-image of unit circle under polynomial map jp(z)j = 1 I Potential Theory: level set of logarithmic potential log jp(z)j = 0 I Algebraic Geometry: special real-algebraic curve p(x + iy)p(x + iy) − 1 = 0 Polynomial lemniscates: three guises I Complex Analysis: pre-image of unit circle under polynomial map jp(z)j = 1 I Potential Theory: level set of logarithmic potential log jp(z)j = 0 I Algebraic Geometry: special real-algebraic curve p(x + iy)p(x + iy) − 1 = 0 Prevalence of lemniscates I Approximation theory: Hilbert's lemniscate theorem I Conformal mapping: Bell representation of n-connected domains I Holomorphic dynamics: Mandelbrot and Julia lemniscates I Numerical analysis: Arnoldi lemniscates I 2-D shapes: proper lemniscates and conformal welding I Harmonic mapping: critical sets of complex harmonic polynomials I Gravitational lensing: critical sets of lensing maps Prevalence of lemniscates I Approximation theory: -
Gottfried Wilhelm Leibnitz (Or Leibniz) Was Born at Leipzig on June 21 (O.S.), 1646, and Died in Hanover on November 14, 1716. H
Gottfried Wilhelm Leibnitz (or Leibniz) was born at Leipzig on June 21 (O.S.), 1646, and died in Hanover on November 14, 1716. His father died before he was six, and the teaching at the school to which he was then sent was inefficient, but his industry triumphed over all difficulties; by the time he was twelve he had taught himself to read Latin easily, and had begun Greek; and before he was twenty he had mastered the ordinary text-books on mathematics, philosophy, theology and law. Refused the degree of doctor of laws at Leipzig by those who were jealous of his youth and learning, he moved to Nuremberg. An essay which there wrote on the study of law was dedicated to the Elector of Mainz, and led to his appointment by the elector on a commission for the revision of some statutes, from which he was subsequently promoted to the diplomatic service. In the latter capacity he supported (unsuccessfully) the claims of the German candidate for the crown of Poland. The violent seizure of various small places in Alsace in 1670 excited universal alarm in Germany as to the designs of Louis XIV.; and Leibnitz drew up a scheme by which it was proposed to offer German co-operation, if France liked to take Egypt, and use the possessions of that country as a basis for attack against Holland in Asia, provided France would agree to leave Germany undisturbed. This bears a curious resemblance to the similar plan by which Napoleon I. proposed to attack England. In 1672 Leibnitz went to Paris on the invitation of the French government to explain the details of the scheme, but nothing came of it. -
Discrete and Smooth Curves Differential Geometry for Computer Science (Spring 2013), Stanford University Due Monday, April 15, in Class
Homework 1: Discrete and Smooth Curves Differential Geometry for Computer Science (Spring 2013), Stanford University Due Monday, April 15, in class This is the first homework assignment for CS 468. We will have assignments approximately every two weeks. Check the course website for assignment materials and the late policy. Although you may discuss problems with your peers in CS 468, your homework is expected to be your own work. Problem 1 (20 points). Consider the parametrized curve g(s) := a cos(s/L), a sin(s/L), bs/L for s 2 R, where the numbers a, b, L 2 R satisfy a2 + b2 = L2. (a) Show that the parameter s is the arc-length and find an expression for the length of g for s 2 [0, L]. (b) Determine the geodesic curvature vector, geodesic curvature, torsion, normal, and binormal of g. (c) Determine the osculating plane of g. (d) Show that the lines containing the normal N(s) and passing through g(s) meet the z-axis under a constant angle equal to p/2. (e) Show that the tangent lines to g make a constant angle with the z-axis. Problem 2 (10 points). Let g : I ! R3 be a curve parametrized by arc length. Show that the torsion of g is given by ... hg˙ (s) × g¨(s), g(s)i ( ) = − t s 2 jkg(s)j where × is the vector cross product. Problem 3 (20 points). Let g : I ! R3 be a curve and let g˜ : I ! R3 be the reparametrization of g defined by g˜ := g ◦ f where f : I ! I is a diffeomorphism. -
Superellipse (Lamé Curve)
6 Superellipse (Lamé curve) 6.1 Equations of a superellipse A superellipse (horizontally long) is expressed as follows. Implicit Equation x n y n + = 10<b a , n > 0 (1.1) a b Explicit Equation 1 n x n y = b 1 - 0<b a , n > 0 (1.1') a When a =3, b=2 , the superellipses for n = 9.9 , 2, 1 and 2/3 are drawn as follows. Fig1 These are called an ellipse when n= 2, are called a diamond when n = 1, and are called an asteroid when n = 2/3. These are known well. parametric representation of an ellipse In order to ask for the area and the arc length of a super-ellipse, it is necessary to calculus the equations. However, it is difficult for (1.1) and (1.1'). Then, in order to make these easy, parametric representation of (1.1) is often used. As far as the 1st quadrant, (1.1) is as follows . xn yn 0xa + = 1 a n b n 0yb Let us compare this with the following trigonometric equation. sin 2 + cos 2 = 1 Then, we obtain xn yn = sin 2 , = cos 2 a n b n i.e. - 1 - 2 2 x = a sin n ,y = bcos n The variable and the domain are changed as follows. x: 0a : 0/2 By this representation, the area and the arc length of a superellipse can be calculated clockwise from the y-axis. cf. If we represent this as usual as follows, 2 2 x = a cos n ,y = bsin n the area and the arc length of a superellipse can be calculated counterclockwise from the x-axis. -
Arc Length and Curvature
Arc Length and Curvature For a ‘smooth’ parametric curve: xftygt= (), ==() and zht() for atb≤≤ OR for a ‘smooth’ vector function: rijk()tftgtht= ()++ () () for atb≤≤ the arc length of the curve for the t values atb≤ ≤ is defined as the integral b 222 ('())('())('())f tgthtdt++ ∫ a b For vector functions, the integrand can be simplified this way: r'(tdt ) ∫a Ex) Find the arc length along the curve rjk()tt= (cos())33+ (sin()) t for 0/2≤ t ≤π . Unit Tangent and Unit Normal Vectors r'(t ) Unit Tangent Vector Æ T()t = r'(t ) T'(t ) Unit Normal Vector Æ N()t = (can be a lengthy calculation) T'(t ) The unit normal vector is designed to be perpendicular to the unit tangent vector AND it points ‘into the turn’ along a vector curve’s path. 2 Ex) For the vector function rij()tt=++− (2 3) (5 t ), find T()t and N()t . (this blank page was NOT a mistake ... we’ll need it) Ex) Graph the vector function rij()tt= (2++− 3) (5 t2 ) and its unit tangent and unit normal vectors at t = 1. Curvature Curvature, denoted by the Greek letter ‘ κ ’ (kappa) measures the rate at which the ‘tilt’ of the unit tangent vector is changing with respect to the arc length. The derivation of the curvature formula is a rather lengthy one, so I will leave it out. Curvature for a vector function r()t rr'(tt )× ''( ) Æ κ= r'(t ) 3 Curvature for a scalar function yfx= () fx''( ) Æ κ= (This numerator represents absolute value, not vector magnitude.) (1+ (fx '( ))23/2 ) YOU WILL BE GIVEN THESE FORMULAS ON THE TEST!! NO NEED TO MEMORIZE!! One visualization of curvature comes from using osculating circles. -
Geometry in the Age of Enlightenment
Geometry in the Age of Enlightenment Raymond O. Wells, Jr. ∗ July 2, 2015 Contents 1 Introduction 1 2 Algebraic Geometry 3 2.1 Algebraic Curves of Degree Two: Descartes and Fermat . 5 2.2 Algebraic Curves of Degree Three: Newton and Euler . 11 3 Differential Geometry 13 3.1 Curvature of curves in the plane . 17 3.2 Curvature of curves in space . 26 3.3 Curvature of a surface in space: Euler in 1767 . 28 4 Conclusion 30 1 Introduction The Age of Enlightenment is a term that refers to a time of dramatic changes in western society in the arts, in science, in political thinking, and, in particular, in philosophical discourse. It is generally recognized as being the period from the mid 17th century to the latter part of the 18th century. It was a successor to the renaissance and reformation periods and was followed by what is termed the romanticism of the 19th century. In his book A History of Western Philosophy [25] Bertrand Russell (1872{1970) gives a very lucid description of this time arXiv:1507.00060v1 [math.HO] 30 Jun 2015 period in intellectual history, especially in Book III, Chapter VI{Chapter XVII. He singles out Ren´eDescartes as being the founder of the era of new philosophy in 1637 and continues to describe other philosophers who also made significant contributions to mathematics as well, such as Newton and Leibniz. This time of intellectual fervor included literature (e.g. Voltaire), music and the world of visual arts as well. One of the most significant developments was perhaps in the political world: here the absolutism of the church and of the monarchies ∗Jacobs University Bremen; University of Colorado at Boulder; [email protected] 1 were questioned by the political philosophers of this era, ushering in the Glo- rious Revolution in England (1689), the American Revolution (1776), and the bloody French Revolution (1789). -
11.1 Circumference and Arc Length
11.1 Circumference and Arc Length EEssentialssential QQuestionuestion How can you fi nd the length of a circular arc? Finding the Length of a Circular Arc Work with a partner. Find the length of each red circular arc. a. entire circle b. one-fourth of a circle y y 5 5 C 3 3 1 A 1 A B −5 −3 −1 1 3 5 x −5 −3 −1 1 3 5 x −3 −3 −5 −5 c. one-third of a circle d. fi ve-eighths of a circle y y C 4 4 2 2 A B A B −4 −2 2 4 x −4 −2 2 4 x − − 2 C 2 −4 −4 Using Arc Length Work with a partner. The rider is attempting to stop with the front tire of the motorcycle in the painted rectangular box for a skills test. The front tire makes exactly one-half additional revolution before stopping. LOOKING FOR The diameter of the tire is 25 inches. Is the REGULARITY front tire still in contact with the IN REPEATED painted box? Explain. REASONING To be profi cient in math, you need to notice if 3 ft calculations are repeated and look both for general methods and for shortcuts. CCommunicateommunicate YourYour AnswerAnswer 3. How can you fi nd the length of a circular arc? 4. A motorcycle tire has a diameter of 24 inches. Approximately how many inches does the motorcycle travel when its front tire makes three-fourths of a revolution? Section 11.1 Circumference and Arc Length 593 hhs_geo_pe_1101.indds_geo_pe_1101.indd 593593 11/19/15/19/15 33:10:10 PMPM 11.1 Lesson WWhathat YYouou WWillill LLearnearn Use the formula for circumference.