Design and Dynamic Analysis of a Novel Valve Control Mechanism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Engine Components and Filters: Damage Profiles, Probable Causes and Prevention
ENGINE COMPONENTS AND FILTERS: DAMAGE PROFILES, PROBABLE CAUSES AND PREVENTION Technical Information AFTERMARKET Contents 1 Introduction 5 2 General topics 6 2.1 Engine wear caused by contamination 6 2.2 Fuel flooding 8 2.3 Hydraulic lock 10 2.4 Increased oil consumption 12 3 Top of the piston and piston ring belt 14 3.1 Hole burned through the top of the piston in gasoline and diesel engines 14 3.2 Melting at the top of the piston and the top land of a gasoline engine 16 3.3 Melting at the top of the piston and the top land of a diesel engine 18 3.4 Broken piston ring lands 20 3.5 Valve impacts at the top of the piston and piston hammering at the cylinder head 22 3.6 Cracks in the top of the piston 24 4 Piston skirt 26 4.1 Piston seizure on the thrust and opposite side (piston skirt area only) 26 4.2 Piston seizure on one side of the piston skirt 27 4.3 Diagonal piston seizure next to the pin bore 28 4.4 Asymmetrical wear pattern on the piston skirt 30 4.5 Piston seizure in the lower piston skirt area only 31 4.6 Heavy wear at the piston skirt with a rough, matte surface 32 4.7 Wear marks on one side of the piston skirt 33 5 Support – piston pin bushing 34 5.1 Seizure in the pin bore 34 5.2 Cratered piston wall in the pin boss area 35 6 Piston rings 36 6.1 Piston rings with burn marks and seizure marks on the 36 piston skirt 6.2 Damage to the ring belt due to fractured piston rings 37 6.3 Heavy wear of the piston ring grooves and piston rings 38 6.4 Heavy radial wear of the piston rings 39 7 Cylinder liners 40 7.1 Pitting on the outer -
Harrop Camshaft Grind Specifications
Harrop Engineering Australia Pty Ltd www.harrop.com.au ABN: 87 134 196 080 Phone: +61 3 9474 - 0900 96 Bell Street, Preston, Fax: +61 3 9474 – 0999 Melbourne, VIC, 3072, Australia Email: [email protected] Harrop Camshaft Grind Specifications Harrop HO1 Camshaft 226/232 .607”/.602” @ 112 LSA Great NA camshaft Lumpy idle but acceptable driveability, Great power and torque Manual or auto standard gear ratios are ok but 3.7 or 3.9 would be preferred. Automatic may require stall converter. Could be used in boosted application but due to low LSA Would require smaller pulley to be increase boost. Harrop HO2 camshaft 224/232 .610” / .610” @ 114 LSA Great blower camshaft offering acceptably lumpy idle and great drivability, this camshaft will give great power through the mid to high RPM range. As this camshaft is more aggressive then the H05. Normally this would require a stall converter, it can be run on a standard converter but it may push on it slightly. Sound clip: https://www.youtube.com/watch?v=NvOGohRd7-k Harrop H03 Camshaft 232/233 .610” / .602” @ 112 LSA Will give great lumpy cammed affect, Low LSA would take boost out of a forced induction motor. Largest recommend camshaft for a 5.7 N/A , Acceptable in 6.0L and 6.2L square port engines, Must have 3.7 (square port) or 3.9 (LS1) for the best results in a manual car. Auto would require stall converter. 1 / 2 File: Harrop Letter Head “Commercial in Confidence” Issue:12th January 2018 designdevelop deliver Print: Friday, 25 September 2020 ` Harrop HO4 camshaft 234/238 .593” / .595” @ 114 LSA The H04 is designed with Forced induction in mind but can be used as a naturally aspirated camshaft as well. -
SV470-SV620 Service Manual
SV470-SV620 Service Manual IMPORTANT: Read all safety precautions and instructions carefully before operating equipment. Refer to operating instruction of equipment that this engine powers. Ensure engine is stopped and level before performing any maintenance or service. 2 Safety 3 Maintenance 5 Specifi cations 13 Tools and Aids 16 Troubleshooting 20 Air Cleaner/Intake 21 Fuel System 31 Governor System 33 Lubrication System 35 Electrical System 44 Starter System 47 Emission Compliant Systems 50 Disassembly/Inspection and Service 63 Reassembly 20 690 01 Rev. F KohlerEngines.com 1 Safety SAFETY PRECAUTIONS WARNING: A hazard that could result in death, serious injury, or substantial property damage. CAUTION: A hazard that could result in minor personal injury or property damage. NOTE: is used to notify people of important installation, operation, or maintenance information. WARNING WARNING CAUTION Explosive Fuel can cause Accidental Starts can Electrical Shock can fi res and severe burns. cause severe injury or cause injury. Do not fi ll fuel tank while death. Do not touch wires while engine is hot or running. Disconnect and ground engine is running. Gasoline is extremely fl ammable spark plug lead(s) before and its vapors can explode if servicing. CAUTION ignited. Store gasoline only in approved containers, in well Before working on engine or Damaging Crankshaft ventilated, unoccupied buildings, equipment, disable engine as and Flywheel can cause away from sparks or fl ames. follows: 1) Disconnect spark plug personal injury. Spilled fuel could ignite if it comes lead(s). 2) Disconnect negative (–) in contact with hot parts or sparks battery cable from battery. -
Executive Order D-425-50 Toyota Racing Development
State of California AIR RESOURCES BOARD EXECUTIVE ORDER D—425—50 Relating to Exemptions Under Section 27156 of the California Vehicle Code Toyota Racing Development TRD Supercharger System Pursuant to the authority vested in the Air Resources Board by Section 27156 of the Vehicle Code; and Pursuant to the authority vested in the undersigned by Section 39515 and Section 39516 of the Health and Safety Code and Executive Order G—14—012; IT IS ORDERED AND RESOLVED: That the installation of the TRD Supercharger System, manufactured and marketed by Toyota Racing Development, 19001 South Western Avenue, Torrance, California, has been found not to reduce the effectiveness of the applicable vehicle pollution control systems and, therefore, is exempt from the prohibitions of Section 27156 of the Vehicle Code for the following Toyota truck applications: Part No. Model Year Engine Disp. Model PTR29—34070 2007 to 2013 5.7L (3UR—FE) Tundra PTR29—00140 2014 to 2015 5.7L (3UR—FE) Tundra PTR29—34070 2008 to 2013 5.7L (3UR—FE) Sequoia PTR29—00140 2014 to 2015 5.7L (3UR—FE) Sequoia PTR29—60140 2008 to 2015 5.7L (3UR—FE) Land Cruiser/LX570 PTR29—35090 2005 to 2015 4.0L (1GR—FE) Tacoma PTR29—35090 2007 to 2009 4.0L (1GR—FE) FJ Cruiser PTR29—35090 2003 to 2009 4.0L (1GR—FE) 4—Runner PTR29—00130 2010 to 2014 4.0L (1GR—FE) FJ Cruiser PTR29—00130 2010 to 2015 4.0L (1GR—FE) 4—Runner The 5.7L Supercharger System includes a Magnuson supercharger (rated at a maximum boost of 8.5 psi.) with a 2.45 inch diameter supercharger pulley and the stock crankshaft pulley, high flow injectors to replace the stock injectors, a new ECU calibration, intercooler, intake manifold, an air bypass valve, and a new replacement fuel pump which is located in the fuel tank. -
Finite Element Analysis of a Car Rocker Arm
Proceedings of the 2015 International Conference on Operations Excellence and Service Engineering Orlando, Florida, USA, September 10-11, 2015 Finite element analysis of a car rocker arm Tawanda Mushiri D.Eng. Student; University of Johannesburg, Department of Mechanical Engineering, P. O. Box 524, Auckland Park 2006, South Africa. [email protected] Lecturer; University of Zimbabwe, Department of Mechanical Engineering, P.O Box MP167, Mt Pleasant, Harare Charles Mbohwa Professor and Supervisor; University of Johannesburg, Auckland Park Bunting Road Campus, P. O. Box 524, Auckland Park 2006, Room C Green 5, Department of Quality and Operations Management, Johannesburg, South Africa. [email protected] Abstract High Density Polyethylene (HDPE) composite rocker arm has been considered for analysis owing to its light weight, higher strength and good frictional characteristics. A 3-D finite element analysis was carried out to find out the maximum stresses developed in the rocker arms made of steel and composite. From the results it was noted that almost same stresses are developed for both the materials (steel and the composite). With this it may be concluded that the stresses developed in the composite is well within the limits without failure. Therefore the proposed composite may be considered as an alternate material for steel to be used as rocker arm. Keywords High Density Polyethylene (HDPE), Rocker arm, finite element, modelling, simulation, steel, composite 1.0: Introduction A rocker arm is an oscillating lever that conveys radial movement from the cam lobe into linear movement at the poppet valve to open it. One end is raised and lowered by a rotating lobe of the camshaft (either directly or via a tappet (lifter) and pushrod) while the other end acts on the valve stem. -
4.6L/5.4L Sohc Modular ( 2 Valve ) Mechanical Flat
4.6L/5.4L SOHC MODULAR (2 VALVE ) MECHANICAL FLAT TAPPET Ford Low Lift Design 1994-1998 (Early Model Cylinder Head) Advertised Duration Gross Lift Suitable Description Part Lobe Duration @ .050" Lobe Lift (1.8) Component Number Sep Intake Exhaust Intake Exhaust Intake Exhaust Intake Exhaust Kit FACTORY OEM SPECS (1994-98) Stock 233° Lobe 242° 186° Lobe 191° Stock .256" .259" .461" .466" 242° Valve 254° 202° Valve 207° STAGE 1 62811-2 252° Lobe 256° 204° Lobe 208° 84706 .296" .296" .532" .532" Hot street profi le. Emphasis on mid range. Spring recommended. RPM Range: 1500 to 6000+ on 4.6L, 5.4L will be lower MTO 114° 266° Valve 270° 220° Valve 224° 84707 STAGE 2 62812-2 258° Lobe 258° 212° Lobe 212° 84706 114° .296" .296" .532" .532" Designed specifi cally for supercharger applications for street use. RPM Range: 1750 to 6500+ on 4.6L, 5.4L will be lower MTO 272° Valve 272° 230° Valve 230° 84707 STAGE 3 62813-2 258° Lobe 258° 212° Lobe 212° 114° Designed specifi cally for supercharger applications for street use. RPM Range: 1750 to 6500+ on 4.6L, 5.4L will be lower MTO 272° Valve 272° 230° Valve 230° CUSTOM GROUND 4.6L/5.4L CAMS 00080-2 Special order custom ground profi les available for an additional charge. Proprietary and confi dential profi les also Refer to www.crower.com for available. camshaft recommendation Note: These cams use .000" intake and exhaust valve lash. NOTE: These cams require aftermarket cam bolt kit #86053-2. The factory bolt WILL NOT work. -
Understanding Overhead-Valve Engines Once Unheard of These Engines Now Supply the Power for Nearly All of Your Equipment
Understanding Overhead-Valve Engines Once unheard of these engines now supply the power for nearly all of your equipment. By ROBERT SOKOL Intertec Publishing Corp., Technical Manuals Division You've all heard about overhead valves when shopping Valve-Design Characteristics for power equipment, but what do they mean to you? Do The valves consist of a round head, a stem and a groove you need overhead valves? Do they cost more? What will at the top of the valve. The head of the valve is the larger they do for you? Twenty years ago, overhead valves were end that opens and closes the passageway to and from the unheard of in any type of power equipment. Nowadays, it combustion chamber. The stem guides the valve up and is difficult to find a small engine without them. down and supports the valve spring. The groove at the top In an engine with overhead valves, the intake and of the valve stem holds the valve spring in place with a exhaust valve(s) is located in the cylinder head, as opposed retainer lock. The valves must open and close for the air- to being mounted in the engine block. Many of the larger and-fuel mix to enter, then exit, the combustion chamber. engine manufacturers still offer "standard" engines that Proper timing of the opening and closing of the valves is have the valves in the block. Their "deluxe" engines have required for the engine to run smoothly. The camshaft con- overhead valves and stronger construction. Overhead trols valve sequence and timing. -
Poppet Valve
POPPET VALVE A poppet valve is a valve consisting of a hole, usually round or oval, and a tapered plug, usually a disk shape on the end of a shaft also called a valve stem. The shaft guides the plug portion by sliding through a valve guide. In most applications a pressure differential helps to seal the valve and in some applications also open it. Other types Presta and Schrader valves used on tires are examples of poppet valves. The Presta valve has no spring and relies on a pressure differential for opening and closing while being inflated. Uses Poppet valves are used in most piston engines to open and close the intake and exhaust ports. Poppet valves are also used in many industrial process from controlling the flow of rocket fuel to controlling the flow of milk[[1]]. The poppet valve was also used in a limited fashion in steam engines, particularly steam locomotives. Most steam locomotives used slide valves or piston valves, but these designs, although mechanically simpler and very rugged, were significantly less efficient than the poppet valve. A number of designs of locomotive poppet valve system were tried, the most popular being the Italian Caprotti valve gear[[2]], the British Caprotti valve gear[[3]] (an improvement of the Italian one), the German Lentz rotary-cam valve gear, and two American versions by Franklin, their oscillating-cam valve gear and rotary-cam valve gear. They were used with some success, but they were less ruggedly reliable than traditional valve gear and did not see widespread adoption. In internal combustion engine poppet valve The valve is usually a flat disk of metal with a long rod known as the valve stem out one end. -
History of a Forgotten Engine Alex Cannella, News Editor
POWER PLAY History of a Forgotten Engine Alex Cannella, News Editor In 2017, there’s more variety to be found un- der the hood of a car than ever. Electric, hybrid and internal combustion engines all sit next to a range of trans- mission types, creating an ever-increasingly complex evolu- tionary web of technology choices for what we put into our automobiles. But every evolutionary tree has a few dead end branches that ended up never going anywhere. One such branch has an interesting and somewhat storied history, but it’s a history that’s been largely forgotten outside of columns describing quirky engineering marvels like this one. The sleeve-valve engine was an invention that came at the turn of the 20th century and saw scattered use between its inception and World War II. But afterwards, it fell into obscurity, outpaced (By Andy Dingley (scanner) - Scan from The Autocar (Ninth edition, circa 1919) Autocar Handbook, London: Iliffe & Sons., pp. p. 38,fig. 21, Public Domain, by the poppet valves we use in engines today that, ironically, https://commons.wikimedia.org/w/index.php?curid=8771152) it was initially developed to replace. Back when the sleeve-valve engine was first developed, through the economic downturn, and by the time the econ- the poppet valves in internal combustion engines were ex- omy was looking up again, poppet valve engines had caught tremely noisy contraptions, a concern that likely sounds fa- up to the sleeve-valve and were quickly becoming just as miliar to anyone in the automotive industry today. Charles quiet and efficient. -
Vvt Solenoid
PROGRAM SPOTLIGHT VVT SOLENOID What does a Variable Valve Timing Solenoid do? The Variable Valve Timing Solenoid (VVTS) controls the oil flow to control the action of the Sprocket, which shifts the position of the camshaft. The position is varied based on the car’s computer commands to increase or decrease the engine’s valve timing. Where are Variable Valve Timing Solenoids located? The VVTS are usually located on or around the cylinder head block. Will a malfunctioning Variable Valve Timing Solenoid illuminate the check engine light or affect vehicle operation? Yes, a malfunctioning VVTS may cause the check engine light to be illuminated and may trigger multiple codes. What are the common causes of failure? VVTS can fail due to low engine oil levels, clogs due to oil sludge, and/or irregularly changed engine oil and filters. How to determine if Variable Valve Timing Solenoids are malfunctioning: Possible indications of a malfunctioning or failed VVTS include: an illuminated check engine light, engine noise and/or stalling, rough idling, and general poor performance. What makes Holstein Variable Valve Timing Solenoids the best? • Holstein focuses on using only the highest quality materials, manufactured to exacting standards for an aftermarket product that is truly built to match or exceed the OE part • Holstein Variable Valve Position Sensor line has superior coverage for domestic and import applications • Designed to maximize engine performance and fuel efficiency • 3 Year / 36,000 Mile Warranty on all Holstein Parts VVT Sensors HOLSTEINPARTS.COM | 1-800-893-8299. -
DEUTZ Pose Also Implies Compliance with the Con- Original Parts Is Prescribed
Operation Manual 914 Safety guidelines / Accident prevention ● Please read and observe the information given in this Operation Manual. This will ● Unauthorized engine modifications will in- enable you to avoid accidents, preserve the validate any liability claims against the manu- manufacturer’s warranty and maintain the facturer for resultant damage. engine in peak operating condition. Manipulations of the injection and regulating system may also influence the performance ● This engine has been built exclusively for of the engine, and its emissions. Adherence the application specified in the scope of to legislation on pollution cannot be guaran- supply, as described by the equipment manu- teed under such conditions. facturer and is to be used only for the intended purpose. Any use exceeding that ● Do not change, convert or adjust the cooling scope is considered to be contrary to the air intake area to the blower. intended purpose. The manufacturer will The manufacturer shall not be held respon- not assume responsibility for any damage sible for any damage which results from resulting therefrom. The risks involved are such work. to be borne solely by the user. ● When carrying out maintenance/repair op- ● Use in accordance with the intended pur- erations on the engine, the use of DEUTZ pose also implies compliance with the con- original parts is prescribed. These are spe- ditions laid down by the manufacturer for cially designed for your engine and guaran- operation, maintenance and servicing. The tee perfect operation. engine should only be operated by person- Non-compliance results in the expiry of the nel trained in its use and the hazards in- warranty! volved. -
Overview the Ignition System Is Designed to Ignite the Compressed
« 1: Description and Operation» Overview The Ignition System is designed to ignite the compressed air/fuel mixture in an internal combustion engine by a high voltage spark from an ignition coil. The ignition system also provides engine timing information to the powertrain control module (PCM) for proper vehicle operation and misfire detection. Integrated Electronic Ignition System The Integrated Electronic Ignition (EI) system consists of a crankshaft position (CKP) sensor, coil pack(s), connecting wiring, and PCM. The Coil On Plug (COP) Integrated EI System uses a separate coil per spark plug and each coil is mounted directly onto the plug. The COP Integrated EI System eliminates the need for spark plug wires but does require input from the camshaft position (CMP) sensor. Operation of the components are as follows (Figure 49): 1. NOTE: Electronic Ignition engine timing is entirely controlled by the PCM. Electronic Ignition engine timing is NOT adjustable. Do not attempt to check base timing. You will receive false readings. The CKP sensor is used to indicate crankshaft position and speed by sensing a missing tooth on a pulse wheel mounted to the crankshaft. The CMP sensor is used by the COP Integrated EI System to identify top dead center of compression of cylinder 1 to synchronize the firing of the individual coils. 2. The PCM uses the CKP signal to calculate a spark target and then fires the coil pack(s) to that target shown in Figure 50. The PCM uses the CMP sensor not shown in Figure 50 on COP Integrated EI Systems to identify top dead center of compression of cylinder 1 to synchronize the firing of the individual coils.