Laser Speckle Photometry – Optical Sensor Systems for Condi- Tion and Process Monitoring

Total Page:16

File Type:pdf, Size:1020Kb

Laser Speckle Photometry – Optical Sensor Systems for Condi- Tion and Process Monitoring MATERIALS TESTING FOR JOINING AND ADDITIVE MANUFACTURING APPLICATIONS 213 Laser speckle photometry – Optical sensor systems for condi- tion and process monitoring Lili Chen, Ulana Cikalova, Beatrice Bendjus, Laser speckle photometry (LSP) is an innovative, non-destruc- Andreas Gommlich, Shohag Roy Sudip, tive monitoring technique based on the detection and analy- Carolin Schott, Juliane Steingroewer, Dresden, sis of thermally or mechanically activated speckle dynamics Matthias Belting, Aachen, and in a non-stationary optical field. With the development of Stefan Kleszczynski, Duisburg, Germany speckle theories, it has been found that speckle patterns carry information about surface characteristics. Therefore, LSP offers a great potential for the characterization of mate- rial properties and monitoring of manufacturing processes. In contrast to the speckle interferometry method, LSP is very simple and robust. The sample is illuminated by only one la- ser beam to generate a speckle pattern on the surface. The Article Information signals obtained are directly recorded by a CCD or CMOS Correspondence Address Dr.-Ing. Beatrice Bendjus camera. By appropriate optical solutions for the beam path, Fraunhofer Institute for Ceramic typically, resolutions of less than 10 μm are reached if larger Technologies and Systems IKTS Maria-Reiche-Str. 2 areas are illuminated. LSP is definitely a contactless, quick 01109 Dresden, Germany and quality relevant material characterization and defect de- E-mail: [email protected] tection method, allowing process monitoring in many indus- Keywords trial fields. Examples from online biotechnological monitoring Laser speckle photometry, process-monitoring, defect-monitoring, build-up welding, additive and laser based manufacturing demonstrate further poten- manufacturing, biomass tials of the method for process monitoring and controlling. Material testing and material properties and practice, is presented, thus offering an ent laser beam upon an optically rough characterization, which guarantee the innovative approach to optical NDT and surface that results in a boiling grainy im- quality of materials and promote progress monitoring. age [2]. The theory of speckle or dynamic in manufacturing, play a significant role in speckle belongs to the category of statisti- both academic and industrial fields. New Theoretical approach cal optics for which a detailed account of non-destructive testing (NDT) methods the phenomena is given by Goodman [3], and appropriate sensors developed in the Speckle or speckle patterns are interfer- including the mathematical description of industry are used for detecting defects ence patterns produced by a scattering co- speckle properties, for instance the central such as porosities or delaminations as well herent light beam. Scientists have investi- limit theorem of probability theory and as for the characterization of delamination gated this phenomenon since the time of random processes. parameters and material properties re- Newton, but it was only after the invention Techniques based on laser speckle ef- spectively for the description of their and development of the laser that speckles fects, which can be contactless, non-inva- changes in manufacturing processes. have finally come into prominence. Until sive and remote, have become more and Therefore, choosing a suitable measuring now, numerous speckle related applica- more popular in NDT. One of the earliest method is important for fabrication in tions have been found. The dynamic techniques was laser speckle photography. terms of adapting process parameters and speckle is a result of the temporal evolu- Here, speckle patterns are recorded on a avoiding waste. In addition, the sensors tion of a speckle pattern which can be con- photographic emulsion called a photo- should be integrated inline as a control in sidered as the temporal expression of an graphic negative before and after deforma- manufacturing plants. In this paper, Laser interference speckle pattern [1]. It is gener- tion of an object. By using this negative to speckle photometry (LSP), both in theory ated by the incidence of a high-level coher- re-photograph the fringe pattern through 61 (2019) 3 © Carl Hanser Verlag, München Materials Testing 214 MATERIALS TESTING FOR JOINING AND ADDITIVE MANUFACTURING APPLICATIONS illumination by a laser beam, quantity in- change in interference fringes. Therefore, Relying on high speed cameras and easier formation of an object’s deformation can be the defect of an object makes the fringes configurations compared with the experi- obtained by estimating the diffraction look unusual. Speckle interferometry is a mental setups presented above, LSP can fringes. A laser speckle image encodes well-established optical technique for also be used in real time monitoring, and it phase information and phase differences measuring in-plane displacements [10]. In has a high sensitivity to both out-of-plane generated by variations in travel distance this section, three kinds of interferometry and in-plane displacement. Deviating from which are affected by tiny changes in the will be introduced, namely holographic in- other techniques based on speckle phe- surface geometry. If the surface profile is terferometry, electronic speckle pattern nomena which concentrate on the distor- altered by an amount as small as a laser interferometry (ESPI) and shearography. tion of a whole speckle pattern or fringes, wavelength, the speckle pattern is modi- Holography is a technique which can re- LSP is based on measuring the spatial-tem- fied [4]. An algorithm called cross-correla- cord both amplitude and phase information poral dynamics of laser speckles which fo- tion is established to evaluate the images from a light beam reflecting off objects. In cuses on the intensity change of each sin- [5]. It measures the deformation of the ob- interferometry a laser beam is split into gle pixel of a camera sensor. Through a ject surface by associating patterns with two beams, one, called a “reference beam”, specific correlation function (difference the surface that deforms. is used as a reference, the other, the” object autocorrelation), the connection between A second important speckle method, la- beam”, is used to illuminate the object in speckle dynamics and quality states of the ser speckle contrast analysis (LSCAS), is a question. ESPI and shearography use two samples can be established [14-16]. The digital version of the single exposure ver- different optical setups for speckle interfer- basic algorithm of LSP includes the calcu- sion of speckle photography which avoids ometry. ESPI is based on the same princi- lation of thermal diffusivity by applying the main disadvantages of the photo- ples as holographic interferometry but it the thermal transfer equation [14-18] and graphic process. LSCAS is a diagnostic electronically records and processes active thermography for crack detection technique in which the features of scat- speckle interference patterns [11]. The [15]. The algorithms will be introduced in tered coherent light are explored [6]. At visualization is achieved in the form of the next section. In recent years, LSP tech- present, it is alternatively called “laser fringes which approximately represent a nique has been successfully used for the speckle contrast imaging” (LSCI) or “laser displacement of half a wavelength of the hardness calibration of steel samples, the speckle imaging” (LSI). These techniques laser beam. The sensitivity of in-plane dis- evaluation of material porosity of cellular are mainly used in the medical field to de- placement equals the value of half a wave- metals and ceramics, damage fatigue tect blood flow and organic tissues whose length. The features of shearography in- states and stress change during welding local speckle contrast varies according to clude sensitivity to out-of-plane deforma- processes. the velocity distribution of the targets [7- tion and the capability to directly measure LSP represents a promising foundation 9]. The speckle contrast is shown in an strain data in real time but not the dis- for new NDT methods and appropriate sen- equation, which is defined as the ratio be- placement of objects because rigid body sors to be developed by industry to charac- tween the standard deviation of the speckle movement produces displacement as well. terize material properties or describe their pattern and the mean intensity. A formula Shearography was used to detect large changes in the manufacturing process. It is presenting the relationship between vari- cracks in reinforced concrete and the intra- definitely a fast quality relevant material ance of a time-averaged dynamic speckle dos of bridges [12]. Micro-cracks in a glass- characterization and defect detection pattern and the temporal fluctuation statis- fiber reinforced plastic tube stressed by a method, allowing for the monitoring of pro- tics is now given [8]. 0.04 MPa internal pressure can be detected duction processes completely in-line. The A third well-known speckle-method is by shearography as well [13]. sensor system developed comprises the op- laser speckle interferometry. Interferomet- A novel speckle method for NDT is laser tical and electronic components, algo- ric techniques are effective tools for visual- speckle photometry (LSP) [14, 15] which is rithms, the hardware and software. The izing or measuring object deformation. based on the detection and analysis of ther- monitoring process is synchronized with When an object
Recommended publications
  • Laser Speckle Imaging: a Quantitative Tool for Flow Analysis
    LASER SPECKLE IMAGING: A QUANTITATIVE TOOL FOR FLOW ANALYSIS A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Biomedical Engineering by Taylor Andrew Hinsdale June 2014 © 2014 Taylor Andrew Hinsdale ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Laser Speckle Imaging: A Quantitative Tool for Flow Analysis AUTHOR: Taylor Andrew Hinsdale DATE SUBMITTED: June 2104 COMMITTEE CHAIR: Lily Laiho, PhD Associate Professor of Biomedical Engineering COMMITTEE MEMBER: David Clague, PhD Associate Professor of Biomedical Engineering COMMITTEE MEMBER: John Sharpe, PhD Professor of Physics iii ABSTRACT Laser Speckle Imaging: A Quantitative Tool for Flow Analysis Taylor Andrew Hinsdale Laser speckle imaging, often referred to as laser speckle contrast analysis (LASCA), has been sought after as a quasi-real-time, full-field, flow visualization method. It has been proven to be a valid and reliable qualitative method, but there has yet to be any definitive consensus on its ability to be used as a quantitative tool. The biggest impediment to the process of quantifying speckle measurements is the introduction of additional non dynamic speckle patterns from the surroundings. The dynamic speckle pattern under investigation is often obscured by noise caused by background static speckle patterns. One proposed solution to this problem is known as dynamic laser speckle imaging (dLSI). dLSI attempts to isolate the dynamic speckle signal from the previously mentioned background and provide a consistent dynamic measurement. This paper will investigate the use of this method over a range of experimental and simulated conditions.
    [Show full text]
  • Industrial Applications of Speckle Techniques
    TRITA-IIP-02-03 ISSN-1650-1888 Industrial Applications of Speckle Techniques -Measurement of Deformation and Shape Wei An Doctoral Thesis Chair of Industrial Metrology & Optics Department of Production Engineering Stockholm 2002 Royal Institute of Technology Industrial Applications of Speckle Techniques -Measurement of Deformation and Shape Wei An Doctoral Thesis TRITA-IIP-02-03 ISSN-1650-1888 Royal Institute of Technology Department of Production Engineering Chair of Industrial Metrology & Optics 100 44 Stockholm, Sweden 2002 TRITA-IIP-02-03 ISSN-1650-1888 Copyright © Wei An Department of Production Engineering Royal Institute of Technology S-100 44 Stockholm Sweden ABSTRACT Modern industry needs quick and reliable measurement methods for measuring deformation, position, shape, roughness, etc. This thesis is mainly concerned with industrial applications of speckle metrology. Speckle metrology is an optical non-contact whole field technique that provides the means to measure; deformation and displacement, object shape, surface roughness, vibration, and dynamic events, on rough surfaces and with a sensitivity of the order of a light wavelength. In particular, the electronic speckle metrology technique combined with advanced computers, fast frame grabbers, and image processing makes it very suitable for industrial applications. The thesis consists of four main parts. The first part presents the basic principle of speckle metrology. Some formulas and theoretical analysis are reviewed. The procedure of recording electronic speckle patterns is discussed. The phase shifting and the phase unwrapping techniques are also presented in this part. The second part considers some applications of speckle metrology technique. Four types of measurements have been done during this thesis period. They correspond to deformation measurements of solder joints on electronic device boards, 3D shape measurement with light-in-flight electronic speckle pattern interferometry, continuous deformation measurement, and cutting tool monitoring.
    [Show full text]
  • Multiplexed Digital Holography Incorporating Speckle Correlation
    DOCTORAL T H E SIS Department of Engineering Sciences and Mathematics Division of Fluid and Experimental Mechanics Davood Khodadad Multiplexed Digital incorporating Holography Khodadad Multiplexed Speckle Correlation Davood ISSN 1402-1544 Multiplexed Digital Holography ISBN 978-91-7583-517-4 (print) ISBN 978-91-7583-518-1 (pdf) incorporatingMultiplexed SpeckleDigital Holography Correlation Luleå University of Technology 2016 incorporating Speckle Correlation Davood Khodadad Davood Khodadad Experimental Mechanics Multiplexed Digital Holography incorporating Speckle Correlation Davood Khodadad Luleå University of Technology Department of Engineering Sciences and Mathematics Division of Fluid and Experimental Mechanics February 2016 Printed by Luleå University of Technology, Graphic Production 2016 ISSN 1402-1544 ISBN 978-91-7583-517-4 (print) ISBN 978-91-7583-518-1 (pdf) Luleå 2016 www.ltu.se To you who always believe in me, my beloved parents and sisters, words could never explain how I feel about you. i Preface This work has been carried out at the Division of Fluid and Experimental Mechanics, Department of Engineering Sciences and Mathematics at Luleå University of Technology (LTU) in Sweden. The research was performed during the years 2012-2016, under the supervision of Prof. Mikael Sjödahl, LTU, Dr. Emil Hällstig, Fotonic, and Dr. Erik Olsson, LTU. First I would like to thank my supervisors Prof. Mikael Sjödahl, Dr. Emil Hällstig and Dr. Erik Olsson for their valuable support, ideas and encouragement during this work. I would also like to thank Dr. Per Gren, Dr. Henrik Lycksam and Dr. Eynas Amer for all the help in the lab. Secondly, I would like to express my gratitude to Prof.
    [Show full text]
  • Robustness of Laser Speckles As Unique Traceable Markers of Metal Components
    Article Robustness of Laser Speckles as Unique Traceable Markers of Metal Components Mikael Sjödahl * and Erik Olsson Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden; [email protected] * Correspondence: [email protected] Abstract: The traceability of manufactured components is growing in importance with the greater use of digital service solutions offered and with an increased digitalization of manufacturing logistics. In this paper, we investigate the use of image-plane laser speckles as a tool to acquire a unique code from the surface of the component and the ability to use this pattern as a secure component-specific digital fingerprint. Intensity correlation is used as a numerical identifier. Metal sheets of different materials and steel pipes are considered. It is found that laser speckles are robust against surface alterations caused by surface compression and scratching and that the correct pattern reappears from a surface contaminated by oil after cleaning. In this investigation, the detectability is close to 100% for all surfaces considered, with zero false positives. The exception is a heavily oxidized surface wiped by a cotton cloth between recordings. It is further found that the main source for lost detectability is caused by misalignment between the registration and detection geometries where a positive match is lost by a change in angle in the order of 60 mrad. Therefore, as long as the registration and detection systems, respectively, use the same optical arrangement, laser speckles have the ability to serve as unique component identifiers without having to add extra markings or a dedicated sensor to the component.
    [Show full text]
  • Customizing Speckle Intensity Statistics
    Research Article Vol. 5, No. 5 / May 2018 / Optica 595 Customizing speckle intensity statistics 1 1 2 1, NICHOLAS BENDER, HASAN YILMAZ, YARON BROMBERG, AND HUI CAO * 1Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA 2Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel *Corresponding author: [email protected] Received 9 February 2018; revised 6 April 2018; accepted 7 April 2018 (Doc. ID 322894); published 9 May 2018 Speckles commonly satisfy Rayleigh statistics. However, in many applications, non-Rayleigh speckles with customized intensity statistics are desirable. Here, we present a general method for customizing the intensity statistics of speckle patterns on a target plane. By judiciously modulating the phase front of a monochromatic laser beam, we experi- mentally generate speckle patterns with arbitrarily tailored intensity probability density functions. Relative to Rayleigh speckles, our customized speckles exhibit radically different topologies yet maintain the same spatial corre- lation length. The customized speckles are fully developed, ergodic, and stationary–with circular non-Gaussian statistics for the complex field. Propagating away from the target plane, the customized speckles revert back to Rayleigh speckles. This work provides a versatile framework for tailoring speckle patterns with varied applications in microscopy, imaging, and optical manipulation. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement OCIS codes: (030.0030) Coherence and statistical optics; (030.6140) Speckle; (030.6600) Statistical optics. https://doi.org/10.1364/OPTICA.5.000595 1. INTRODUCTION the speckle pattern could possess an intensity PDF with a tail Speckle formation is a phenomenon inherent to both classical and decaying either slower or faster than a negative-exponential func- quantum waves.
    [Show full text]
  • Simple and Versatile Heterodyne Whole-Field Interferometer for Phase Optics Characterization D
    Simple and versatile heterodyne whole-field interferometer for phase optics characterization D. M. Silva, E. A. Barbosa, and N. U. Wetter Citation: Rev. Sci. Instrum. 83, 103103 (2012); doi: 10.1063/1.4757396 View online: http://dx.doi.org/10.1063/1.4757396 View Table of Contents: http://rsi.aip.org/resource/1/RSINAK/v83/i10 Published by the American Institute of Physics. Related Articles Continuously tunable optical multidimensional Fourier-transform spectrometer Rev. Sci. Instrum. 84, 023107 (2013) The frequency stabilization method of laser feedback interferometer based on external cavity modulation Rev. Sci. Instrum. 84, 025108 (2013) Efficient end-fire coupling of surface plasmons on flat metal surfaces for improved plasmonic Mach-Zehnder interferometer J. Appl. Phys. 113, 053101 (2013) Automation of an “Aculight” continuous-wave optical parametric oscillator Rev. Sci. Instrum. 84, 013102 (2013) Two-path solid-state interferometry using ultra-subwavelength two-dimensional plasmonic waves Appl. Phys. Lett. 102, 021104 (2013) Additional information on Rev. Sci. Instrum. Journal Homepage: http://rsi.aip.org Journal Information: http://rsi.aip.org/about/about_the_journal Top downloads: http://rsi.aip.org/features/most_downloaded Information for Authors: http://rsi.aip.org/authors Downloaded 14 Mar 2013 to 143.107.255.190. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions REVIEW OF SCIENTIFIC INSTRUMENTS 83, 103103 (2012) Simple and versatile heterodyne whole-field interferometer for
    [Show full text]
  • Robust Single Shot Structured Light
    Robust Single-Shot Structured Light 3D Scanning Robuste 3D-Vermessung mit strukturierter Beleuchtung in Einzelbildern Der Technischen Fakultät der Universität Erlangen–Nürnberg zur Erlangung des Grades DOKTOR–INGENIEUR vorgelegt von Christoph Schmalz Erlangen — 2011 Als Dissertation genehmigt von der Technischen Fakultät der Universität Erlangen-Nürnberg Tag der Einreichung: 29.08.2011 Tag der Promotion: 05.03.2012 Dekan: Prof. Dr.-Ing. habil. Marion Merklein Berichterstatter: Prof. Dr.-Ing. Joachim Hornegger Prof. Dr.-Ing. Gerd Häusler Abstract In this thesis a new robust approach for Single-Shot Structured Light 3D scanning is developed. As the name implies, this measurement principle requires only one image of an object, illuminated with a suitable pattern, to reconstruct the shape and distance of the object. This technique has several advantages. It can be used to record 3D video with a moving sensor or of a moving scene. Since the required hardware is very simple, the sensor can also be easily miniaturized. Single-Shot Structured Light, thus, has the potential to be the basis of a versatile and inexpensive 3D scanner. One focus of the work is the robustness of the method. Existing approaches are mostly limited to simple scenes, that is, smooth surfaces with neutral color and no external light. In contrast, the proposed method can work with almost any close-range scene and produces reliable range images even for very low-quality input images. An important consideration in this respect is the design of the illumination pattern. We show how suitable color stripe patterns for different applications can be created. A major part of the robustness is also due to the graph-based decoding algorithm for the pattern images.
    [Show full text]
  • Universal Sensitivity of Speckle Intensity Correlations to Wavefront Change in Light Diffusers
    Universal sensitivity of speckle intensity correlations to wavefront change in light diffusers KyungDuk Kim,1 HyeonSeung Yu,1 KyeoReh Lee,1 and YongKeun Park1* 1Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea Here, we present a concept based on the realization that a complex medium can be used as a simple interferometer. Changes in the wavefront of an incident coherent beam can be retrieved by analyzing changes in speckle patterns when the beam passes through a light diffuser. We demonstrate that the spatial intensity correlations of the speckle patterns are independent of the light diffusers, and are solely determined by the phase changes of an incident beam. With numerical simulations using the random matrix theory, and an experimental pressure-driven wavefront- deforming setup using a microfluidic channel, we theoretically and experimentally confirm the universal sensitivity of speckle intensity correlations, which is attributed to the conservation of optical field correlation despite multiple light scattering. This work demonstrates that a complex media is a simple interferometer, and presents opportunities to replace complicated reference-beam-assisted interferometers with a simple and compact scattering layer in various applications in metrology, analytical chemistry, and biomedicine. I. INTRODUCTION Speckle is a granular pattern that appears when highly coherent light is scattered by a random structure [1]. In contrast to efforts to suppress speckle to improve imaging quality [2-5], there have also been approaches to exploit speckle patterns as a means of gathering physical information about a target. This field of research, known as speckle metrology, enables the measurement of various physical quantities such as vibration [6], roughness [7], and velocity [8].
    [Show full text]
  • Application of Electronic Speckle Pattern Interferometry Method for Simultaneous Measurement of Young’S Modulus and the Poisson’S Ratio of Metals †
    Proceedings Application of Electronic Speckle Pattern Interferometry Method for Simultaneous Measurement of Young’s Modulus and the Poisson’s Ratio of Metals † Alexandre Michtchenko *, Juan Benito Pascual Francisco and Omar Barragán Pérez Instituto Politécnico Nacional, Seccion de Estudios de Posgrado e Investigación, ESIME-ZAC, México 07738, Mexico; [email protected] (J.B.P.F.); [email protected] (O.B.P.) * Correspondence: [email protected]; Tel.: +52-5512-9773-26 † Presented at the 18th International Conference on Experimental Mechanics (ICEM18), Brussels, Belgium, 1–5 July 2018. Published: 28 June 2018 Abstract: In this paper, mechanical experiments with a low-cost interferometry set-up are presented. The set-up is suitable for an undergraduate laboratory where optical equipment is absent. The arrangement consists of two planes of illumination, allowing the measurement of the two perpendicular in-plane displacement directions. An axial load was applied to three different metals, and the longitudinal and transversal displacements were measured sequentially. A digital camera was used to acquire the images of the different states of the load of the illuminated area. A personal computer was used to perform the digital subtraction of the images to obtain the fringe correlations, which are needed to calculate the displacements. Finally, Young’s modulus and Poisson’s ratio of the metals were calculated using the displacement data. Keywords: electronic speckle pattern interferometry; Poisson’s ratio; Young’s modulus 1. Introduction Electronic Speckle Pattern Interferometry (ESPI) is a technique for full-field displacement measurement and has been well accepted in experimental mechanics field [1,2]. Sophisticated equipment has been developed for this purpose, and usually employ relative expensive items such as CCD camera, frame grabber, mirror mounts, PZT, etc.
    [Show full text]
  • Speckling in Diffraction Patterns and Optical Images Formed with the Laser
    viii SPECKLING IN DIFFRACTION PATTERNS AND OPTICAL IMAGES FORMED WITH THE LASER H.H. Hopkins H. Tiziani The University, Reading E.T.H., Zurich Abstract Elementary physical considerations are used to show that the waves scattered from an optically rough surface have not only random phases but also random real amplitudes. The same simple physical model serves to establish the main features of speckling in diffraction patterns, namely (i) that the smallest size of detail in any azimuth is determined by the formula O.5A/e, where 0 is the angular diameter of the object in that azimuth, (ii) that the scale of the speckling is predominantly of this order of size, and (iii) that speckling is expected to be of high contrast. This last conclusion is easily derived from the randomness of the real amplitudes of the scattered waves. The result (ii) is obtained by finding the autocorrelation function of the diffracted intensity distribution, following Goldfischer (1965). In the formation of the image of a rough object using coherent light, the entrance pupil is illuminated by a speckled diffraction pattern. This random illumination then appears in the exit pupil, so that the speckling in the image is determined by considering the exit pupil to act as a rough object. The order of size of speckling in the image is thus determined by the formula O. S6 /A, where 6 is now the total convergence angle of the image-forming pencil. 0 0 (1) Physical Considerations : The Envelope of the Diffraction Pattern and the Minimum Size of Speckle We silall consider first the factors wbich determine the form of the envelope of the intensity in the diffraction pattern.
    [Show full text]
  • Holographic and Speckle Methods - A
    EXPERIMENTAL MECHANICS - Holographic and Speckle Methods - A. Albertazzi G. Jr, M. R. Viotti HOLOGRAPHIC AND SPECKLE METHODS A. Albertazzi G. Jr Department of Mechanical Engineering, Universidade Federal de Santa Catarina, Brazil M. R. Viotti Optical Metrology Division, Photonita Ltda, Brazil Keywords: Experimental mechanics, optical metrology, holography, holographic interferometry, digital holography, speckle, speckle correlation, speckle interferometry, DSPI, ESPI. Contents 1. Holographic Methods 1.1. Light Waves 1.1.1. Wave mathematics 1.1.2. Interference 1.1.3. Interference Fringes 1.1.4. Phase Extraction 1.2. Film Holography 1.2.1. Hologram Recording 1.2.2. Hologram Reconstruction 1.3. Holographic Interferometry 1.3.1. Double Exposure Holographic Interferometry 1.3.2. Real Time Holographic Interferometry 1.3.3. Time Average Holographic Interferometry 1.3.4. Interpretation of Interference Fringes 1.3.5. Special Applications 1.4. Digital Holography 1.4.1. Basic Principle 1.4.2. Digital holographic interferometry 2. Speckle Methods 2.1 The speckle effect 2.1.1. Objective speckle 2.1.2. Subjective speckle 2.2 Speckle Photography 2.3. Digital Speckle Interferometry 2.3.1. Basic Principle 2.3.2. Interpretation of Interference Fringes 2.3.3. Special Configurations 2.3.4. Vibration measurement 2.4. Shearography 2.4.1. Basic principle 2.4.2. Formation and Interpretation of Interference Fringes 2.4.3. Applications Glossary ©Encyclopedia of Life Support Systems(EOLSS) EXPERIMENTAL MECHANICS - Holographic and Speckle Methods - A. Albertazzi G. Jr, M. R. Viotti Bibliography Biographical Sketches Summary Two important full filed optical techniques widely used in experimental mechanic applications are presented in this topic: holography and speckle methods.
    [Show full text]
  • Speckle Mechanism in Holographic Optical
    SPECKLE MECHANISM IN HOLOGRAPHIC OPTICAL COHERENCE IMAGING _______________________________________________________________________________ A Dissertation Presented to The Faculty of the Graduate School University of Missouri _____________________________________________________________ In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy _____________________________________________________________ By HAIBO LIN Dr. Ping Yu, Dissertation Supervisor May 2009 The undersigned, appointed by the Dean of the Graduate School, have examined the dissertation entitled: SPECKLE MECHANISM IN HOLOGRAPHIC OPTICAL COHERENCE IMAGING presented by Haibo Lin a candidate for the degree of Doctor of Philosophy and hereby certify that in their opinion, it is worthy of acceptance. ____________________________________ Dr. Ping Yu ____________________________________ Dr. Liqun (Andrew) Gu ____________________________________ Dr. Meera Chandrasekhar ____________________________________ Dr. Suchismita Guha ____________________________________ Dr. H. R. Chandrasekhar To my parents: Aimei He and Zhimin Lin and my wife: Huifang Zhai ACKNOWLEDGEMENTS I have been fortunate to work with professors who have been encouraging and supportive of my endeavors during my Ph.D. study. I would like to specially thank my thesis advisor, Prof. Ping Yu who has been invaluable in his constant support, continuous motivation and inspiration, and in allowing me to work in an environment with the freedom to explore different avenues of research. In giving me the opportunity to attend conferences, he has contributed immeasurably to my personal and professional growth. I would like to thank Prof. Lixin Ma and Dr. Sunder Balasubramanian for their help and support since the beginning of my research. Thanks to Prof. David Nolte, Dr. Kwan Jeong and Yihong Liu from Purdue University for generously providing the quantum well device and training for device fabrication.
    [Show full text]