Wind Turbine Components [28]
Total Page:16
File Type:pdf, Size:1020Kb
School of Engineering and Energy ENG460 Engineering Thesis Investigating Low Voltage Ride Through capability on Wind Farm by using Static Synchronous Compensator (STATCOM) Application A report submitted to the School of Engineering and Energy, Murdoch University in partial fulfilment of the requirements for the degree of Bachelor of Engineering Submitted: December 2012 Author: Zack Forest Academic Supervisor: Dr. Greg Crebbin 1 Abstract As an alternative to traditional fossil fuel extracted energy, wind energy has been acknowledged as one of the most important sources of renewable energies in the world. This clean and natural source of energy could be a key to solving the worldwide energy crisis with low environmental impact. The increased penetration of wind power into the power grids mean the impact of the wind turbines on the grid can no longer be ignored. Grid codes these days include the requirement that the wind turbines have to stay connected when the voltage drops. This is known as the Low Voltage Ride Through (LVRT) requirement. Tripping wind turbines during any fault event can have a major effect on the stability of the power system. A voltage regulation device is needed for stability improvement and power quality improvement of the overall system. The voltage stability issue can be achieved by using Flexible AC Transmission System (FACTS) devices with the reactive power compensation required by the power grid. FACTS devices are widely used for enhancing power system performance, reducing overall power losses, increasing grid reliability and voltage stability. This thesis investigates the use of Static Synchronous Compensator (STATCOM) on wind farms for the purpose of stabilizing the grid voltage after a disturbance. The study focuses on a fundamental grid operation requirement to maintain a voltage at the point of common coupling by regulating the voltage. The simulations were carried out by using DIgSILENT PowerFactory software and attaching STATCOM model in the wind farm model. The results indicate that the STATCOM can provide an enhanced performance to the power grid. This is mainly achieved by generating or absorbing the reactive power to provide grid stability during the fault period. Result comparison was made with the previous results which were carried out by another student in 2010. i Acknowledgments I would like to thanks my academic supervisor Dr. Gregory Crebbin for all the help, insight, positivity and advice over the course of this thesis. I thank Dr Martina Calais for all the knowledge and support throughout my degree towards completion of this thesis. Thank you to Dr Jonathan Whale for all the knowledge conveyed through the coursework. Also I would like thank to all my friends from Murdoch University, School of Engineering and Energy department for their support and help. I would like to thank all those who have directly and indirectly supported and helped me towards the completion of my thesis. Special thanks to my wonderful friend, Nebojsa Vuksun for his support, encouragement and friendship. Our endless conversations will remain unforgettable. Finally I would like to thank my family for believing in me and supporting me in every ways. Their love and concern are my inspiration for completion of this thesis. ii Contents Abstract ......................................................................................................................................................... i Acknowledgments ....................................................................................................................................... ii Chapter 1 Introduction ............................................................................................................................... 1 1.1 Introduction ................................................................................................................................. 1 1.2 Objective of the Thesis .................................................................................................................. 1 1.3 Thesis Structure .......................................................................................................................... 2 Chapter 2 Background................................................................................................................................ 3 2.1 Global Wind Energy .................................................................................................................... 3 2.2 Wind Energy in Australia ............................................................................................................ 3 2.3 South West Interconnected System (SWIS) ........................................................................... 4 2.4 Western power technical rules .................................................................................................. 5 2.5 Grid code requirement .................................................................................................................... 6 2.5.1 Wind Turbine Condition ..................................................................................................... 6 2.5.2 Active Power Stipulation During Fault Period ................................................................. 7 2.5.3 Voltage Support Requirement During Disturbance ........................................................ 7 2.5.4 Reactive Power and Voltage Control ................................................................................ 7 2.6 Low Voltage Ride Through Capability (LVRT) ....................................................................... 8 2.7 The need for Reactive Power Compensation Devices .................................................................. 9 Chapter 3 Characteristics of Wind Turbine ........................................................................................... 11 3.1 Wind turbine .............................................................................................................................. 11 3.2 Blade aerodynamics .................................................................................................................. 13 3.3 Power control ............................................................................................................................. 14 3.3.1 Stall control (also known as passive control) ............................................................... 15 3.3.2 Pitch control (Active control) ........................................................................................... 15 3.3.3 Active stall power control................................................................................................. 15 3.4 Speed control ............................................................................................................................. 15 3.4.1 Type A: Fixed speed ......................................................................................................... 15 3.4.2 Type B: Limited variable speed....................................................................................... 16 3.4.3 Type C: Variable speed (Partially scale frequency converter).................................... 16 3.4.4 Type D: Variable speed (full scale frequency converter) ............................................ 16 iii Chapter 4 Doubly Fed Induction Generator (DFIG) ....................................................................... 17 4.1 Steady State Operation ........................................................................................................ 17 4.2 Power Converters .................................................................................................................. 18 4.2.1 Rotor Side Converter (RSC) ............................................................................................. 19 4.2.2 Grid Side Converter (GSC) ............................................................................................... 19 4.3 Converter Losses ................................................................................................................... 19 4.4 Converter Protection System ............................................................................................... 19 Chapter 5 Impact of Wind turbine on Distribution Network............................................................... 20 5.1 Power Compensation for System Stability ............................................................................ 21 Chapter 6.0 Flexible AC Transmission System ............................................................................... 24 6.1 Introduction ............................................................................................................................... 24 6.2.1 Series compensation ......................................................................................................... 25 6.2.2 Shunt compensation ......................................................................................................... 27 6.2.2.1 Shunt capacitive compensation .................................................................................. 27 6.2.2.2 Shunt inductive compensation .................................................................................... 27 6.2.3 Shunt Compensator Operation ...................................................................................... 28 6.3 Static Synchronous Compensator (STATCOM) ................................................................. 29 6.4. STATCOM Operation