Symmetrically and Asymmetrically Hard Cryptography Alex Biryukov, Léo Perrin To cite this version: Alex Biryukov, Léo Perrin. Symmetrically and Asymmetrically Hard Cryptography. Asiacrypt 2017 - Advances in Cryptology, Dec 2017, Hong Kong, China. pp.417–445, 10.1007/978-3-319-70700-6_15. hal-01650044 HAL Id: hal-01650044 https://hal.inria.fr/hal-01650044 Submitted on 28 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Symmetrically and Asymmetrically Hard Cryptography (Full Version)* Alex Biryukovy, L´eoPerrinz y
[email protected], CSC, SnT, University of Luxembourg z
[email protected], SnT, Univeristy of Luxembourg and Inria, France Abstract The main efficiency metrics for a cryptographic primitive are its speed, its code size and its memory complexity. For a variety of reasons, many algorithms have been proposed that, instead of optimizing, try to increase one of these hardness forms. We present for the first time a unified framework for describing the hardness of a primitive along any of these three axes: code-hardness, time- hardness and memory-hardness. This unified view allows us to present modular block cipher and sponge constructions which can have any of the three forms of hardness and can be used to build any higher level symmetric primitive: hash function, PRNG, etc.