Scale Morphology and Squamation Pattern of Guiyu Oneiros Provide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Osteichthyes: Sarcopterygii) Apex Predator from the Eifelian-Aged Dundee Formation of Ontario, Canada
Canadian Journal of Earth Sciences A large onychodontiform (Osteichthyes: Sarcopterygii) apex predator from the Eifelian-aged Dundee Formation of Ontario, Canada. Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2016-0119.R3 Manuscript Type: Article Date Submitted by the Author: 04-Dec-2016 Complete List of Authors: Mann, Arjan; Carleton University, Earth Sciences; University of Toronto Faculty of ArtsDraft and Science, Earth Sciences Rudkin, David; Royal Ontario Museum Evans, David C.; Royal Ontario Museum, Natural History; University of Toronto, Ecology and Evolutionary Biology Laflamme, Marc; University of Toronto - Mississauga, Chemical and Physical Sciences Keyword: Sarcopterygii, Onychodontiformes, Body size, Middle Devonian, Eifelian https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 34 Canadian Journal of Earth Sciences A large onychodontiform (Osteichthyes: Sarcopterygii) apex predator from the Eifelian- aged Dundee Formation of Ontario, Canada. Arjan Mann 1,2*, David Rudkin 1,2 , David C. Evans 2,3 , and Marc Laflamme 1 1, Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, Ontario, M5S 3B1, Canada, [email protected], [email protected] 2, Department of Palaeobiology, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada M5S 2C6 3, Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2 *Corresponding author (e-mail: [email protected] ca). https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 34 Abstract The Devonian marine strata of southwestern Ontario, Canada have been well documented geologically, but their vertebrate fossils are poorly studied. Here we report a new onychodontiform (Osteichthyes, Sarcopterygii) Onychodus eriensis n. -
Fish Identification
FISH IDENTIFICATION Anurag Babu EWRG ,CES, IISc, Bangalore SUPER CLASS INFRAPHYLUM AGNATHA CYCLOSTOMAT A PHYLUM CHORDATA SUPER CLASS INFRAPHYLUM Incertae serdis GNATHOSTOMA SUPER CLASS OSTEICHTHYES CLASS CLASS CLASS MYXINI PETROMYZONTIDA CONODANTA CLASS CLASS CLASS CONDRICHTHYES PLACODERMI ACANTHODII CLASS CLASS ACTINOPTERYGII SARCOPTERYGII CLASS CLASS CLASS PTERASPIDOMORPHI THELODONTI ANASPIDA CLASS CEPHALASPIDOMORPHI So , What are the Steps FISH SAMPLING What is the purpose of our Sampling ? Use suitable gears Gears based on purpose Active Gear/ Sampling Passive Gear/ Sampling Fyke Net Cast Net Scoop Net Gill Net Angling FISH IDENTIFICATION ANATOMICAL BODY SHAPE Torpediform Dorso Ventrally Flattened Ribbon like Eel like Spheroid Laterally Flattened Arrow like COLOR & PATTERN ? Etroplus maculatus Scatophagus argus Etroplus suratensis MERISTIC FACIAL & CRANIAL BONES TYPE OF MOUTH Funneled Silver bellies Mouth Classification EYE Caranx latus EYE Caranx latus LEFT OR RIGHT Scophthalmus maximus Hippoglossus hippoglossus FINS DORSAL FINS CAUDAL FINS PECTORAL FIN PELVIC FIN ANAL FIN Caranx ignobilis Spiny Dorsal DORSAL FIN Rayed Dorsal Adipose Dorsal Spiny & Rayed Anal ANAl FIN Rayed Anal PECTORAL FINS PELVIC FINS Abdominal Thoracic CAUDAL FINS CAUDAL FINS What makes Spine & Ray Different ? GILL RAKERS SCALES LATERAL LINE CONTINUITY POSITION CURVE SCUTES IDENTIFICATION KEYS DICHOTOMOUS POLYTOMOUS FIN ( Neogobius melanostomus (Pallas, 1811).) FORMULAD1 VI (V-VII); D2 I + 14-16 (13-16); A I + 11-13 (11-14); P 18-19 (17-20). The anterior dorsal fin has 6 spines, ranging from 5-7 The posterior dorsal fin has one spine and 14-16 soft rays, ranging from 13-16 The anal fin has one spine, 11-13 soft rays, ranging from 11-14 The pectoral fins have 18-19 soft rays, ranging from 17-20 MORPHOMETRIC LET’S try Identifying A FISH !! FIN ( Neogobius melanostomus (Pallas, 1811).) FORMULAD1 VI (V-VII); D2 I + 14-16 (13-16); A I + 11-13 (11-14); P 18-19 (17-20). -
Reference Localities for Palaeontology and Geology in the Silurian of Gotland
SVERIGES GEOLOGISKA UNDERSOKNING SER C NR 705 AVHANDLINGAR OCH UPPSATSER ÅRSBOK 68 NR 12 SVEN LAUFELD REFERENCE LOCALITIES FOR PALAEONTOLOGY AND GEOLOGY IN THE SILURIAN OF GOTLAND STOCKHOLM 1974 SVERIGES GEOLOGISKA UNDERSOKNING SER C NR 705 AVHANDLINGAR OCH UPPSATSER ÅRSBOK 68 NR 12 SVEN LAUFELD REFERENCE LOCALITIES FOR PALAEONTOLOGY AND GEOLOGY IN THE SILURIAN OF GOTLAND STOCKHOLM 1974 ISBN 91-7158-059-X Kartorna är godkända från sekretessynpunkt för spridning Rikets allmänna kartverk 1974-03-29 IU S UNES D l Project ECOSTRATIGRAPHY Laufeld, S.: Reference loca!ities for palaeontology and geology in the Silurian of Gotland. Sveriges Geologiska Undersökning, Ser. C, No. 705, pp. 1-172. Stock holm, 24th May, 1974. About 530 geologkal localities in the Silurian of the island of Gotland, Sweden, are described under code names in alphabetical order. Each locality is provided with a UTM grid reference and a detailed description with references to the topographical and geologkal map sheets. Information on reference points and levels are included for some localities. The stratigraphic position of each locality is stated. A bibliography is attached to several localities. Sven Laufeld, Department of Historical Geology and Palaeontology, Sölvegatan 13, S-223 62 Lund, Sweden, 4th March, 1974. 4 Contents Preface. By Anders Martinsson 5 Introduction 7 Directions for use lO Grid references 10 Churches 11 Detailed descriptions 11 Reference point and leve! 11 Stratigraphy 11 References 12 Indexes .. 12 Practical details 13 Descriptions of localities 14 References .. 145 Index by topographical maps 149 Index by geological maps 157 Index by stratigraphical order .. 165 5 Preface In 1968 a course was set for continued investigations of the Silurian of Gotland and Scania. -
Paleontological Research
Paleontological Research Vol. 6 No.3 September 2002 The Palaeontological Society 0 pan Co-Editors Kazushige Tanabe and Tomoki Kase Language Editor Martin Janal (New York, USA) Associate Editors Alan G. Beu (Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand), Satoshi Chiba (Tohoku University, Sendai, Japan), Yoichi Ezaki (Osaka City University, Osaka, Japan), James C. Ingle, Jr. (Stanford University, Stanford, USA), Kunio Kaiho (Tohoku University, Sendai, Japan), Susan M. Kidwell (University of Chicago, Chicago, USA), Hiroshi Kitazato (Shizuoka University, Shizuoka, Japan), Naoki Kohno (National Science Museum, Tokyo, Japan), Neil H. Landman (Amemican Museum of Natural History, New York, USA), Haruyoshi Maeda (Kyoto University, Kyoto, Japan), Atsushi Matsuoka (Niigata University, Niigata, Japan), Rihito Morita (Natural History Museum and Institute, Chiba, Japan), Harufumi Nishida (Chuo University, Tokyo, Japan), Kenshiro Ogasawara (University of Tsukuba, Tsukuba, Japan), Tatsuo Oji (University of Tokyo, Tokyo, Japan), Andrew B. Smith (Natural History Museum, London, Great Britain), Roger D. K. Thomas (Franklin and Marshall College, Lancaster, USA), Katsumi Ueno (Fukuoka University, Fukuoka, Japan), Wang Hongzhen (China University of Geosciences, Beijing, China), Yang Seong Young (Kyungpook National University, Taegu, Korea) Officers for 2001-2002 Honorary President: Tatsuro Matsumoto President: Hiromichi Hirano Councillors: Shuko Adachi, Kazutaka Amano, Yoshio Ando, Masatoshi Goto, Hiromichi Hirano, Yasuo Kondo, Noriyuki -
Constraints on the Timescale of Animal Evolutionary History
Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J. -
Spiracular Air Breathing in Polypterid Fishes and Its Implications for Aerial
ARTICLE Received 1 May 2013 | Accepted 27 Nov 2013 | Published 23 Jan 2014 DOI: 10.1038/ncomms4022 Spiracular air breathing in polypterid fishes and its implications for aerial respiration in stem tetrapods Jeffrey B. Graham1, Nicholas C. Wegner1,2, Lauren A. Miller1, Corey J. Jew1, N Chin Lai1,3, Rachel M. Berquist4, Lawrence R. Frank4 & John A. Long5,6 The polypterids (bichirs and ropefish) are extant basal actinopterygian (ray-finned) fishes that breathe air and share similarities with extant lobe-finned sarcopterygians (lungfishes and tetrapods) in lung structure. They are also similar to some fossil sarcopterygians, including stem tetrapods, in having large paired openings (spiracles) on top of their head. The role of spiracles in polypterid respiration has been unclear, with early reports suggesting that polypterids could inhale air through the spiracles, while later reports have largely dismissed such observations. Here we resolve the 100-year-old mystery by presenting structural, behavioural, video, kinematic and pressure data that show spiracle-mediated aspiration accounts for up to 93% of all air breaths in four species of Polypterus. Similarity in the size and position of polypterid spiracles with those of some stem tetrapods suggests that spiracular air breathing may have been an important respiratory strategy during the fish-tetrapod transition from water to land. 1 Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA. 2 Fisheries Resource Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, California 92037, USA. 3 VA San Diego Healthcare System, San Diego, California 92161, USA. -
New Genus of Eugaleaspidiforms Found in China 15 February 2012
New genus of Eugaleaspidiforms found in China 15 February 2012 The new genus is most suggestive of Eugaleaspis of the Eugaleaspidae by the absence of inner corners, in addition to the diagnostic features of the family, such as only 3 pairs of lateral transverse canals from lateral dorsal canals, and the U-shaped trajectory of median dorsal canals. They differ in that the new genus possesses a pair of posteriorly extending corners, the breadth/length ratio of the shield smaller than 1.1, and the posterior end of median dorsal opening beyond the posterior margin of orbits. Dr. ZHU Min, lead author of the study, and his colleagues reexamined the type specimen of Eugaleaspis xiushanensis from the Wenlock Huixingshao Formation of Chongqing, and observed a pair of posteriorly extending lobate corners and three (instead of four in the original description) pairs of lateral transverse canals. Thus, they re-assigned it to Dunyu. The new species Fig.1: Cephalic shield of Dunyu longiforus gen. et sp. differs from Dunyu xiushanensis in its large nov. ( holotype IVPP V 17681). A. dorsal view; B. ventral cephalic shield which is longer than broad, spine- view; C. close-up view of the left corner; D. close-up shaped corners, anteriorly positioned orbits, the view to show the regional variation of polygonal length ratio between preorbital and postorbital tubercles, and minute spines on the inner surface of the portions of the shield less than 0.75, and large dermal rim encircling the median dorsal opening; E. polygonal, flat-topping tubercles exceeding 2.0 mm illustrative drawing in dorsal view. -
THE CLASSIFICATION and EVOLUTION of the HETEROSTRACI Since 1858, When Huxley Demonstrated That in the Histological Struc
ACTA PALAEONT OLOGICA POLONICA Vol. VII 1 9 6 2 N os. 1-2 L. BEVERLY TARLO THE CLASSIFICATION AND EVOLUTION OF THE HETEROSTRACI Abstract. - An outline classification is given of the Hetero straci, with diagnoses . of th e following orders and suborders: Astraspidiformes, Eriptychiiformes, Cya thaspidiformes (Cyathaspidida, Poraspidida, Ctenaspidida), Psammosteiformes (Tes seraspidida, Psarnmosteida) , Traquairaspidiformes, Pteraspidiformes (Pte ras pidida, Doryaspidida), Cardipeltiformes and Amphiaspidiformes (Amphiaspidida, Hiber naspidida, Eglonaspidida). It is show n that the various orders fall into four m ain evolutionary lineages ~ cyathaspid, psammosteid, pteraspid and amphiaspid, and these are traced from primitive te ssellated forms. A tentative phylogeny is pro posed and alternatives are discussed. INTRODUCTION Since 1858, when Huxley demonstrated that in the histological struc ture of their dermal bone Cephalaspis and Pteraspis were quite different from one another, it has been recognized that there were two distinct groups of ostracoderms for which Lankester (1868-70) proposed the names Osteostraci and Heterostraci respectively. Although these groups are generally considered to be related to on e another, Lankester belie ved that "the Heterostraci are at present associated with the Osteostraci because they are found in the same beds, because they have, like Cepha laspis, a large head shield, and because there is nothing else with which to associate them". In 1889, Cop e united these two groups in the Ostracodermi which, together with the modern cyclostomes, he placed in the Class Agnatha, and although this proposal was at first opposed by Traquair (1899) and Woodward (1891b), subsequent work has shown that it was correct as both the Osteostraci and the Heterostraci were agnathous. -
The Pharynx of the Stem-Chondrichthyan Ptomacanthus and the Early Evolution of the Gnathostome Gill Skeleton
ARTICLE https://doi.org/10.1038/s41467-019-10032-3 OPEN The pharynx of the stem-chondrichthyan Ptomacanthus and the early evolution of the gnathostome gill skeleton Richard P. Dearden 1, Christopher Stockey1,2 & Martin D. Brazeau1,3 The gill apparatus of gnathostomes (jawed vertebrates) is fundamental to feeding and ventilation and a focal point of classic hypotheses on the origin of jaws and paired appen- 1234567890():,; dages. The gill skeletons of chondrichthyans (sharks, batoids, chimaeras) have often been assumed to reflect ancestral states. However, only a handful of early chondrichthyan gill skeletons are known and palaeontological work is increasingly challenging other pre- supposed shark-like aspects of ancestral gnathostomes. Here we use computed tomography scanning to image the three-dimensionally preserved branchial apparatus in Ptomacanthus,a 415 million year old stem-chondrichthyan. Ptomacanthus had an osteichthyan-like compact pharynx with a bony operculum helping constrain the origin of an elongate elasmobranch-like pharynx to the chondrichthyan stem-group, rather than it representing an ancestral condition of the crown-group. A mixture of chondrichthyan-like and plesiomorphic pharyngeal pat- terning in Ptomacanthus challenges the idea that the ancestral gnathostome pharynx con- formed to a morphologically complete ancestral type. 1 Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK. 2 Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester LE1 7RH, UK. 3 Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK. Correspondence and requests for materials should be addressed to M.D.B. -
The Big Picture Book
BOOK PUBLISHERS Teachers Notes (Middle Years) by Dr John Long The Big Picture Book by Dr John Long, illustrated by Brian Choo ISBN 9781741143287 Recommended for ages 8-14 These notes may be reproduced free of charge for use and study within schools but they may not be reproduced (either in whole or in part) and offered for commercial sale. Introduction ............................................ 2 Science studies........................................ 2 Time........................................... 2 Astronomy .................................. 3 Geology ...................................... 3 Biology ....................................... 4 Science and the future .................. 6 Cultural studies ....................................... 6 Language................................................ 7 Meanings of some of the names featured in the book ........... 7 About the writer and illustrator .................. 7 Appendix: A ‘Bestiary’ of living things featured in the illustrations........................ 10 83 Alexander Street PO Box 8500 Crows Nest, Sydney St Leonards NSW 2065 NSW 1590 ph: (61 2) 8425 0100 [email protected] Allen & Unwin PTY LTD Australia Australia fax: (61 2) 9906 2218 www.allenandunwin.com ABN 79 003 994 278 INTRODUCTION This book was written to introduce to upper primary and lower secondary level children an outline of the three main themes that contribute towards our understanding of evolution: time, physical processes, and biological change. The book can be used to augment studies in general science (astronomy, geology, biology), but also to contribute to an understanding of the birth of human culture and to promote discussion of environmental issues confronting the world today. The writing is a simple, almost lyrical style to facilitate an easy level of reading, with pronunciation guide and glossary at the back of the book to help children say and understand the meaning of most of the technical words used in the text. -
Re-Validation and Re-Description of an Endemic and Threatened Species, Aphanius Pluristriatus (Jenkins, 1910) (Teleostei, Cyprinodontidae), from Southern Iran
Zootaxa 3208: 58–67 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Re-validation and re-description of an endemic and threatened species, Aphanius pluristriatus (Jenkins, 1910) (Teleostei, Cyprinodontidae), from southern Iran HAMID REZA ESMAEILI1,4, AZAD TEIMORI2,3, ZEINAB GHOLAMI3, NEDA ZAREI1 & BETTINA REICHENBACHER3,4 1Department of Biology, College of Sciences, Shiraz University, Shiraz 71454, Iran. 2Department of Biology, Faculty of Sciences, Shahid-Bahonar University of Kerman 22 Bahman Blvd. Kerman, 76169-14111 Iran 3Department of Earth- and Environmental Sciences, Palaeontology & Geobiology & GeoBio-CenterLMU, Ludwig-Maximilians-Univer- sity, Richard-Wagner-Strasse 10, D-80333 Munich, Germany 4Corresponding authors. E-mails: [email protected]; [email protected] Abstract Aphanius pluristriatus (Jenkins, 1910) (Cyprinodontidae) is a poorly known species from Fasa, located in the Mond River drainage system, east of Shiraz, southern Iran. It has not been investigated since its first description, its validity has been questioned and a synonymy with A. sophiae (Heckel, 1849) has been suggested. In this study, we describe a new collection of Aphanius specimens from the Zarjan spring system, which is probably the same spring system from where Jenkins (1910) collected the type specimens of A. pluristriatus. The morphological characters of our new series of specimens are consistent with those of A. pluristriatus as originally described by Jenkins (1910). We emend the original description of A. pluristriatus and add morphometric and meristic data. A comparison with the related taxa A. sophiae, A. farsicus (for- mer A. persicus) and A. -
I Ecomorphological Change in Lobe-Finned Fishes (Sarcopterygii
Ecomorphological change in lobe-finned fishes (Sarcopterygii): disparity and rates by Bryan H. Juarez A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Ecology and Evolutionary Biology) in the University of Michigan 2015 Master’s Thesis Committee: Assistant Professor Lauren C. Sallan, University of Pennsylvania, Co-Chair Assistant Professor Daniel L. Rabosky, Co-Chair Associate Research Scientist Miriam L. Zelditch i © Bryan H. Juarez 2015 ii ACKNOWLEDGEMENTS I would like to thank the Rabosky Lab, David W. Bapst, Graeme T. Lloyd and Zerina Johanson for helpful discussions on methodology, Lauren C. Sallan, Miriam L. Zelditch and Daniel L. Rabosky for their dedicated guidance on this study and the London Natural History Museum for courteously providing me with access to specimens. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ii LIST OF FIGURES iv LIST OF APPENDICES v ABSTRACT vi SECTION I. Introduction 1 II. Methods 4 III. Results 9 IV. Discussion 16 V. Conclusion 20 VI. Future Directions 21 APPENDICES 23 REFERENCES 62 iv LIST OF TABLES AND FIGURES TABLE/FIGURE II. Cranial PC-reduced data 6 II. Post-cranial PC-reduced data 6 III. PC1 and PC2 Cranial and Post-cranial Morphospaces 11-12 III. Cranial Disparity Through Time 13 III. Post-cranial Disparity Through Time 14 III. Cranial/Post-cranial Disparity Through Time 15 v LIST OF APPENDICES APPENDIX A. Aquatic and Semi-aquatic Lobe-fins 24 B. Species Used In Analysis 34 C. Cranial and Post-Cranial Landmarks 37 D. PC3 and PC4 Cranial and Post-cranial Morphospaces 38 E. PC1 PC2 Cranial Morphospaces 39 1-2.