Contemporaneous Trace and Body Fossils from a Late Pleistocene Lakebed in Victoria, Australia, Allow Assessment of Bias in the Fossil Record
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SUPPLEMENTARY INFORMATION for a New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution
Title A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Authors Beck, RMD; Louys, J; Brewer, Philippa; Archer, M; Black, KH; Tedford, RH Date Submitted 2020-10-13 SUPPLEMENTARY INFORMATION FOR A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2*, Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2, Richard H. Tedford5 (deceased) 1Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, UK 2PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia 3Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Queensland, Australia 4Department of Earth Sciences, Natural History Museum, London, United Kingdom 5Division of Paleontology, American Museum of Natural History, New York, USA Correspondence and requests for materials should be addressed to R.M.D.B (email: [email protected]) This pdf includes: Supplementary figures Supplementary tables Comparative material Full description Relevance of Marada arcanum List of morphological characters Morphological matrix in NEXUS format Justification for body mass estimates References Figure S1. Rostrum of holotype and only known specimen of Mukupirna nambensis gen. et. sp. nov. (AMNH FM 102646) in ventromedial (a) and anteroventral (b) views. Abbreviations: C1a, upper canine alveolus; I1a, first upper incisor alveolus; I2a, second upper incisor alveolus; I1a, third upper incisor alveolus; P3, third upper premolar. Scale bar = 1 cm. -
Relative Demographic Susceptibility Does Not Explain the Extinction Chronology of Sahul's Megafauna
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342303; this version posted October 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Full title: Relative demographic susceptibility does not explain the 2 extinction chronology of Sahul’s megafauna 3 Short title: Demographic susceptibility of Sahul’s megafauna 4 5 Corey J. A. Bradshaw1,2,*, Christopher N. Johnson3,2, John Llewelyn1,2, Vera 6 Weisbecker4,2, Giovanni Strona5, and Frédérik Saltré1,2 7 1 Global Ecology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, 8 South Australia 5001, Australia, 2 ARC Centre of Excellence for Australian Biodiversity and Heritage, 9 EpicAustralia.org, 3 Dynamics of Eco-Evolutionary Pattern, University of Tasmania, Hobart, Tasmania 10 7001, Australia, 4 College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, 11 South Australia 5001, Australia, 5 Research Centre for Ecological Change, University of Helsinki, 12 Viikinkaari 1, Biocentre 3, 00790, Helsinki, Finland 13 14 * [email protected] (CJAB) 15 ORCIDs: C.J.A. Bradshaw: 0000-0002-5328-7741; C.N. Johnson: 0000-0002-9719-3771; J. 16 Llewelyn: 0000-0002-5379-5631; V. WeisbecKer: 0000-0003-2370-4046; F. Saltré: 0000- 17 0002-5040-3911 18 19 Keywords: vombatiformes, macropodiformes, flightless birds, carnivores, extinction 20 Author Contributions: C.J.A.B and F.S. conceptualized the paper, and C.J.A.B. -
Book of Abstracts Australian Mammal Society Conference 2020
BOOK OF ABSTRACTS Alphabetical author index on page 31 EASTERN GREY KANGAROO POPULATION DYNAMICS Rachel Bergeron1, David Forsyth2,3, Wendy King1,4 and Marco Festa-Bianchet1,4 1 Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada 2 Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange, NSW 2800, Australia 3 School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia 4 School of Biological Sciences, Australian National University, Acton, ACT 2601, Australia Email: [email protected] Twitter: @festa_bianchet Recent studies of density-dependence in herbivore population dynamics seek to identify the mechanisms underlying these changes. Kangaroo populations experience large fluctuations in size. Early research suggested that rainfall was a good predictor of population changes through its effect on per capita food availability. Population dynamics of large herbivores, however, are likely influenced by interactions between stochastic environmental variation and density dependence. Vital rates can respond differently to environmental variation and to changes in density. In particular, juvenile survival is most sensitive to harsh conditions, and adult survival rarely affected. Consequently, an improved understanding of population dynamics requires monitoring of individuals of known sex and age under a variety of environmental conditions. I will investigate how density, age structure and environmental conditions affect the population dynamics of eastern grey kangaroos (Macropus giganteus) at Wilsons Promontory National Park, Victoria, where >1200 individuals of known age and sex have been monitored since 2008. I will test the hypothesis that environmental conditions and density dependence have interacting and age-specific roles in generating changes in population size. -
A New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution of Wombats, Koalas, and Their Relatives (Vombatiformes) Robin M
www.nature.com/scientificreports OPEN A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2 ✉ , Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2 & Richard H. Tedford5,6 We describe the partial cranium and skeleton of a new diprotodontian marsupial from the late Oligocene (~26–25 Ma) Namba Formation of South Australia. This is one of the oldest Australian marsupial fossils known from an associated skeleton and it reveals previously unsuspected morphological diversity within Vombatiformes, the clade that includes wombats (Vombatidae), koalas (Phascolarctidae) and several extinct families. Several aspects of the skull and teeth of the new taxon, which we refer to a new family, are intermediate between members of the fossil family Wynyardiidae and wombats. Its postcranial skeleton exhibits features associated with scratch-digging, but it is unlikely to have been a true burrower. Body mass estimates based on postcranial dimensions range between 143 and 171 kg, suggesting that it was ~5 times larger than living wombats. Phylogenetic analysis based on 79 craniodental and 20 postcranial characters places the new taxon as sister to vombatids, with which it forms the superfamily Vombatoidea as defned here. It suggests that the highly derived vombatids evolved from wynyardiid-like ancestors, and that scratch-digging adaptations evolved in vombatoids prior to the appearance of the ever-growing (hypselodont) molars that are a characteristic feature of all post-Miocene vombatids. Ancestral state reconstructions on our preferred phylogeny suggest that bunolophodont molars are plesiomorphic for vombatiforms, with full lophodonty (characteristic of diprotodontoids) evolving from a selenodont morphology that was retained by phascolarctids and ilariids, and wynyardiids and vombatoids retaining an intermediate selenolophodont condition. -
Systematic and Palaeobiological Implications of Postcranial Morphology in the Diprotodontidae (Marsupialia)
Systematic and palaeobiological implications of postcranial morphology in the Diprotodontidae (Marsupialia) Aaron B. Camens School of Earth and Environmental Sciences Discipline of Ecology and Evolutionary Biology The University of Adelaide South Australia A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy at the University of Adelaide February 2010 II Declaration This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Aaron Camens and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time. Publications in this thesis include: Camens, A. B. and Wells, R.T. 2009. Diprotodontid footprints from the Pliocene of Central Australia. Journal of Vertebrate Paleontology 29: 863-869. Copyright held by Taylor and Francis. Camens, A. B. and Wells, R.T. -
Download Full Article 1.5MB .Pdf File
https://doi.org/10.24199/j.mmv.1973.34.03 9 May 1973 FOSSIL VERTEBRATE FAUNAS FROM THE LAKE VICTORIA REGION, S.W. NEW SOUTH WALES, AUSTRALIA By Larry G. Marshall Zoology Department, Monash University, Victoria* Abstract Fossil vertebrate localities and faunas in the Lake Victoria region of S.W. New South Wales, Australia, are described. The oldest fossil bearing deposit, the late Pliocene or early Pleistocene Moorna Formation and associated Chowilla Sand have yielded specimens of Neoceratodus sp., Emydura macquarrii, several species of small dasyurid, specimens of Glaucodon cf. G. ballaratensis, a species of Protemnodon which compares closely with P. cf. P. otibandus from the late Pliocene or early Pleistocene Chinchilla Sand in SE. Queensland, specimens of Lagostrophus cf L. fasciatus, species of Petrogale, Macropus, Osphranter, Sthenurus, Bettongia, Diprotodon, Lasiorhinus, a peramelid, at least two species of pseudomyine rodents and a species of Rattus cf. R. lutreolus. It is shown that the holotype of Zygomaturus victoriae (Owen) 1872 may have been collected from these sediments. The late Pliocene or early Pleistocene Blanchetown Clay has yielded species of Neoceratodus, Thylacoleo, Phas- colonus, Bettongia, Sthenurus, a diprotodontid, and a rodent. The late Pleistocene Rufus Formation has yielded species of Dasycercus, Sarcophilus, Thylacinus, Phascolonus, Lasiorhinus, Bettongia, Procoptodon, Onychogalea, Macropus, and Leporillus. A large species of macropod and a species of Phascolonus were collected from the late Pleistocene Monoman Formation. The lunette on the E. side of Lake Victoria has yielded a large, diverse fauna of late Pleistocene —Holocene age, that includes such extinct species as Protemnodon anak, P. brehus, Procoptodon goliah, Sthenurus andersoni, S. -
Gawler's Diprotodon
TOWN OF GAWLER Gawler’s Diprotodon Diprotodon australis (Source: http://www.goyder.sa.gov.au) Gawler Public Library Institute Building, 91 Murray Street Gawler SA 5118 Phone (08) 8522 9213 Fax (08) 8522 9212 Email : [email protected] Website : www.gawler.sa.gov.au Diprotodon australis was the largest marsupial to ever live. Its name means ‘two forward teeth” (di = two; proto = front; dont = tooth) and it was one of the group of animals known, because of their large size, as ‘megafaurna’. There were possibly three species of Diprotodon which lived during the 2 million year time-span known as the Pleistocene which began about 1.8 million years ago and ended roughly 10,000 years ago. Diprotodons became extinct somewhere around (Source: http://www.parks.sa.gov.au) 45,000 years ago. Diprotodons were about the size of a large hippopotamus. A fully grown adult weighed somewhere between 1.5 and 2.5 tonnes and, despite its bulk, was quite fast on its relatively long legs and wombat- like feet. It was a herbivore which fed on trees and shrubs. Its large head had four molars in each jaw, three pairs of upper incisors and one pair of lower incisors. The incisor teeth (which grew continuously throughout the Diprotodon’s life) were perfect for rooting out small shrubs and biting through tough vegetation and the molars (which were as large as a human fist) were designed for slicing and crushing coarse vegetation. The Diprotodon is believed to have had a shaggy coat of hair and it was flat-footed, walking mainly on the outside of the foot. -
A Survey of Cenozoic Mammal Baramins
The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 217-221 Article 43 2018 A Survey of Cenozoic Mammal Baramins C Thompson Core Academy of Science Todd Charles Wood Core Academy of Science Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Thompson, C., and T.C. Wood. 2018. A survey of Cenozic mammal baramins. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 217–221. Pittsburgh, Pennsylvania: Creation Science Fellowship. Thompson, C., and T.C. Wood. 2018. A survey of Cenozoic mammal baramins. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 217–221, A1-A83 (appendix). Pittsburgh, Pennsylvania: Creation Science Fellowship. A SURVEY OF CENOZOIC MAMMAL BARAMINS C. Thompson, Core Academy of Science, P.O. Box 1076, Dayton, TN 37321, [email protected] Todd Charles Wood, Core Academy of Science, P.O. Box 1076, Dayton, TN 37321, [email protected] ABSTRACT To expand the sample of statistical baraminology studies, we identified 80 datasets sampled from 29 mammalian orders, from which we performed 82 separate analyses. -
A Tiny New Marsupial Lion (Marsupialia, Thylacoleonidae) from the Early Miocene of Australia
Palaeontologia Electronica palaeo-electronica.org A tiny new marsupial lion (Marsupialia, Thylacoleonidae) from the early Miocene of Australia Anna K. Gillespie, Michael Archer, and Suzanne J. Hand ABSTRACT Microleo attenboroughi, a new genus and species of diminutive marsupial lion (Marsupialia: Thylacoleonidae), is described from early Miocene freshwater limestones in the Riversleigh World Heritage Area, northwestern Queensland, Australia. A broken palate that retains incomplete cheektooth rows demonstrates that this new, very small marsupial lion possessed the elongate, trenchant P3 and predominantly subtriangular upper molars characteristic of thylacoleonids, while other features of the premolar sup- port its placement in a new genus. Phylogenetic analysis suggests that Microleo atten- boroughi is the sister taxon to all other thylacoleonids, and that Thylacoleonidae may lie outside Vombatomorphia as the sister taxon of all other wombat-like marsupials including koalas. However, given limited data about the cranial morphology of M. atten- boroughi, Thylacoleonidae is concluded here, conservatively, to be part of the vom- batomorphian clade. This new thylacoleonid brings to three the number of marsupial lion species that have been recovered from early Miocene deposits at Riversleigh and indicates a level of diversity previously not seen for this group. It is likely that the differ- ent size and morphology of the three sympatric taxa reflects niche partitioning and hence reduced competition. Thylacoleonids may have been the dominant arboreal predators of Cenozoic Australia. Anna K. Gillespie*, Palaeontology, Geobiology and Earth Archives (PANGEA) Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052, Australia; [email protected], *corresponding author Michael Archer, Palaeontology, Geobiology and Earth Archives (PANGEA) Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052, Australia; [email protected] Suzanne J. -
Natureworks All Things Prehistoric Catalogue
NATUREWORKS PREHISTORIC COLLECTION [email protected] www.natureworks.com.au 07 3289 7555 DINOSAURS Natureworks collection of Life-size Prehistoric Art Natureworks Pty Ltd is a Brisbane based exhibition and fabrication company which applies museum techniques commercially. It was started by David Joffe an ex Queensland museum preparator as a vehicle to pursue his interest in the natural world. Natureworks specialises in wildlife sculpture of all things PREHISTORIC, EXTINCT and ENDANGERED. His team of creative sculptors is prototyping hundreds of life-size 3D wildlife replicas in fibreglass produced to museum standard, for distribution worldwide. This unique collection of animal art now numbers over 2000 spectacular items of interest to museums, zoos and naturalists from all over the world who are reconstructing themed environments to educate, entertain and delight. www.natureworks.com.au Triceratops Skeleton On the drawing board for 2020 W: natureworks.com.au P: 07 3289 7555 E: [email protected] Prehistoric Collection 1 PREHISTORIC ARCHWAY Prehistoric Archway Prehistoric entry statement showing embedded fossil detail Archway Installed Business Name Here The archway provides a themed entry statement to any dinosaur themed project such as a mini- golf, dinosaur park, a museum exhibit or a black-light prehistoric landscape display. Natureworks has created the dream fossil stone feature filled with perfectly exposed castings to fascinate those who pass through its “ancient” arches. W: natureworks.com.au P: 07 3289 7555 E: [email protected] -
Understanding Morphological Variation in the Extant Koala As A
Journal of Systematic Palaeontology Understanding morphological variatio n in the extant koala as a framework for identification of species boundaries in extinct koalas (Phascolarctidae; Marsupialia) Journal: Journal of Systematic Palaeontology Manuscript ID: TJSP-2011-0098.R2 Manuscript Type: Original Article intraspecific variation, Phascolarctomorphia, rainforest, Riversleigh, Keywords: Miocene, morphometric URL: http://mc.manuscriptcentral.com/tjsp Page 1 of 80 Journal of Systematic Palaeontology 1 1 2 3 4 Understanding morphological variation in the extant koala as a framework 5 6 for identification of species boundaries in extinct koalas (Phascolarctidae; 7 8 Marsupialia) 9 10 11 a b,c c 12 Karen H. Black* , Julien Louys , Gilbert J. Price , 13 a 14 School of Biological, Earth and Environmental Sciences, University of New South Wales, 15 Sydney, 2052, New South Wales, Australia; bGeosciences, Queensland Museum, PO Box 16 17 3300, South Brisbane BC, Queensland, 4101; cSchool of Earth Sciences, The University of 18 19 Queensland, St. Lucia, 4072, Queensland 20 21 22 23 24 *Corresponding author. Email: [email protected] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 URL: http://mc.manuscriptcentral.com/tjsp Journal of Systematic Palaeontology Page 2 of 80 2 1 2 3 4 We document morphological variation (both geographical and sexual) in the dentition of the 5 6 extant koala, Phascolarctos cinereus , in order to facilitate discrimination of species 7 boundaries in extinct phascolarctids. Considerable variation is evident in dental structures 8 9 previously used to diagnose several phascolarctid fossil species. -
The Diprotodons of Lake Callabonna
AUSTRALIAN NATURAL HISTORY Published Quarterly by the Australian Museum, College Street, Sydney lntemational Standard Serial Number: 0004-9840 Editor: F. H. TALBOT, Ph.D., F.L.S. Annual subscription, $2.50 posted Assistant Editor: P. F. COLLIS Single copy, 50c (62c posted) To become a11 annual subscriber to "Australian Natural History" send cheque or money order (made payable to the Government Printing Office) to the Government Printer, Box 4050. G.P.O., Sydney, N.S. W. 2001. Single copies are obtainable by post similarly. VOL. 17, NO. II SEPTEMBER 15, 1973 CONTENTS PAGE TH F. 0IPROTODONS OF LAKE CALLABONNA- Ric/Iard H. Tee/ford 349 THE RATIONAL UsE OF NATURAL RESOURCES-StephenS. Clark 355 RATS AS ANIMALS-S. A. Bamett 360 NATURALIST's UNIQU E OSPR EY PHOTO- Vincent Serventy 364 ABORIGI NA L WATERHOLES IN THE COBAR AREA- C. M . Cunningham 365 3,000 YEARS OF TRADE IN NEW GUINEA 0BSIDIAN- Wal/ace Ambrose 370 SOUND PRODUCTIO N IN ClCA DAS- Dm1id Young 375 NEW BOOKS REVIEWED 374 MEET OUR CONTRIBUTORS 380 • FRONT COVER: Antechinus stuartii, commonly called Marsupial Mouse, is the subject of an intensive research programme by the Department of Environmental Studies at the Australian Museum. Amechinus stuartii, common in forest habitats throughout southeastern Australia, is especially interesting because each year all the males die within a period of two weeks, leaving behind a population consisting solely of pregnant females. Antechinus stuartii is a marsupial, and its only resemblance to a mouse is its small size, from 20 to 40 grams (about five-sevenths of an ounce to about 1-} ounces).