7. Understanding Error and Determining Statistical Significance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
811D Ecollomic Statistics Adrllillistra!Tioll
811d Ecollomic Statistics Adrllillistra!tioll BUREAU THE CENSUS • I n i • I Charles G. Langham Issued 1973 U.S. D OF COM ERCE Frederick B. Dent. Secretary Social Economic Statistics Edward D. Administrator BU OF THE CENSUS Vincent P. Barabba, Acting Director Vincent Director Associate Director for Economic Associate Director for Statistical Standards and 11/1",1"\"/1,, DATA USER SERVICES OFFICE Robert B. Chief ACKNOWLEDGMENTS This report was in the Data User Services Office Charles G. direction of Chief, Review and many persons the Bureau. Library of Congress Card No.: 13-600143 SUGGESTED CiTATION U.S. Bureau of the Census. The Economic Censuses of the United by Charles G. longham. Working Paper D.C., U.S. Government Printing Office, 1B13 For sale by Publication Oistribution Section. Social and Economic Statistics Administration, Washington, D.C. 20233. Price 50 cents. N Page Economic Censuses in the 19th Century . 1 The First "Economic Censuses" . 1 Economic Censuses Discontinued, Resumed, and Augmented . 1 Improvements in the 1850 Census . 2 The "Kennedy Report" and the Civil War . • . 3 Economic Censuses and the Industrial Revolution. 4 Economic Censuses Adjust to the Times: The Censuses of 1880, 1890, and 1900 .........................•.. , . 4 Economic Censuses in the 20th Century . 8 Enumerations on Specialized Economic Topics, 1902 to 1937 . 8 Censuses of Manufacturing and Mineral Industries, 1905 to 1920. 8 Wartime Data Needs and Biennial Censuses of Manufactures. 9 Economic Censuses and the Great Depression. 10 The War and Postwar Developments: Economic Censuses Discontinued, Resumed, and Rescheduled. 13 The 1954 Budget Crisis. 15 Postwar Developments in Economic Census Taking: The Computer, and" Administrative Records" . -
2019 TIGER/Line Shapefiles Technical Documentation
TIGER/Line® Shapefiles 2019 Technical Documentation ™ Issued September 2019220192018 SUGGESTED CITATION FILES: 2019 TIGER/Line Shapefiles (machine- readable data files) / prepared by the U.S. Census Bureau, 2019 U.S. Department of Commerce Economic and Statistics Administration Wilbur Ross, Secretary TECHNICAL DOCUMENTATION: Karen Dunn Kelley, 2019 TIGER/Line Shapefiles Technical Under Secretary for Economic Affairs Documentation / prepared by the U.S. Census Bureau, 2019 U.S. Census Bureau Dr. Steven Dillingham, Albert Fontenot, Director Associate Director for Decennial Census Programs Dr. Ron Jarmin, Deputy Director and Chief Operating Officer GEOGRAPHY DIVISION Deirdre Dalpiaz Bishop, Chief Andrea G. Johnson, Michael R. Ratcliffe, Assistant Division Chief for Assistant Division Chief for Address and Spatial Data Updates Geographic Standards, Criteria, Research, and Quality Monique Eleby, Assistant Division Chief for Gregory F. Hanks, Jr., Geographic Program Management Deputy Division Chief and External Engagement Laura Waggoner, Assistant Division Chief for Geographic Data Collection and Products 1-0 Table of Contents 1. Introduction ...................................................................................................................... 1-1 1. Introduction 1.1 What is a Shapefile? A shapefile is a geospatial data format for use in geographic information system (GIS) software. Shapefiles spatially describe vector data such as points, lines, and polygons, representing, for instance, landmarks, roads, and lakes. The Environmental Systems Research Institute (Esri) created the format for use in their software, but the shapefile format works in additional Geographic Information System (GIS) software as well. 1.2 What are TIGER/Line Shapefiles? The TIGER/Line Shapefiles are the fully supported, core geographic product from the U.S. Census Bureau. They are extracts of selected geographic and cartographic information from the U.S. -
The Effect of Sampling Error on the Time Series Behavior of Consumption Data*
Journal of Econometrics 55 (1993) 235-265. North-Holland The effect of sampling error on the time series behavior of consumption data* William R. Bell U.S.Bureau of the Census, Washington, DC 20233, USA David W. Wilcox Board of Governors of the Federal Reserve System, Washington, DC 20551, USA Much empirical economic research today involves estimation of tightly specified time series models that derive from theoretical optimization problems. Resulting conclusions about underly- ing theoretical parameters may be sensitive to imperfections in the data. We illustrate this fact by considering sampling error in data from the Census Bureau’s Retail Trade Survey. We find that parameter estimates in seasonal time series models for retail sales are sensitive to whether a sampling error component is included in the model. We conclude that sampling error should be taken seriously in attempts to derive economic implications by modeling time series data from repeated surveys. 1. Introduction The rational expectations revolution has transformed the methodology of macroeconometric research. In the new style, the researcher typically begins by specifying a dynamic optimization problem faced by agents in the model economy. Then the researcher derives the solution to the optimization problem, expressed as a stochastic model for some observable economic variable(s). A trademark of research in this tradition is that each of the parameters in the model for the observable variables is endowed with a specific economic interpretation. The last step in the research program is the application of the model to actual economic data to see whether the model *This paper reports the general results of research undertaken by Census Bureau and Federal Reserve Board staff. -
2020 Census Barriers, Attitudes, and Motivators Study Survey Report
2020 Census Barriers, Attitudes, and Motivators Study Survey Report A New Design for the 21st Century January 24, 2019 Version 2.0 Prepared by Kyley McGeeney, Brian Kriz, Shawnna Mullenax, Laura Kail, Gina Walejko, Monica Vines, Nancy Bates, and Yazmín García Trejo 2020 Census Research | 2020 CBAMS Survey Report Page intentionally left blank. ii 2020 Census Research | 2020 CBAMS Survey Report Table of Contents List of Tables ................................................................................................................................... iv List of Figures .................................................................................................................................. iv Executive Summary ......................................................................................................................... 1 Introduction ............................................................................................................................. 3 Background .............................................................................................................................. 5 CBAMS I ......................................................................................................................................... 5 CBAMS II ........................................................................................................................................ 6 2020 CBAMS Survey Climate ........................................................................................................ -
13 Collecting Statistical Data
13 Collecting Statistical Data 13.1 The Population 13.2 Sampling 13.3 Random Sampling 1.1 - 1 • Polls, studies, surveys and other data collecting tools collect data from a small part of a larger group so that we can learn something about the larger group. • This is a common and important goal of statistics: Learn about a large group by examining data from some of its members. 1.1 - 2 Data collections of observations (such as measurements, genders, survey responses) 1.1 - 3 Statistics is the science of planning studies and experiments, obtaining data, and then organizing, summarizing, presenting, analyzing, interpreting, and drawing conclusions based on the data 1.1 - 4 Population the complete collection of all individuals (scores, people, measurements, and so on) to be studied; the collection is complete in the sense that it includes all of the individuals to be studied 1.1 - 5 Census Collection of data from every member of a population Sample Subcollection of members selected from a population 1.1 - 6 A Survey • The practical alternative to a census is to collect data only from some members of the population and use that data to draw conclusions and make inferences about the entire population. • Statisticians call this approach a survey (or a poll when the data collection is done by asking questions). • The subgroup chosen to provide the data is called the sample, and the act of selecting a sample is called sampling. 1.1 - 7 A Survey • The first important step in a survey is to distinguish the population for which the survey applies (the target population) and the actual subset of the population from which the sample will be drawn, called the sampling frame. -
Sampling Methods It’S Impractical to Poll an Entire Population—Say, All 145 Million Registered Voters in the United States
Sampling Methods It’s impractical to poll an entire population—say, all 145 million registered voters in the United States. That is why pollsters select a sample of individuals that represents the whole population. Understanding how respondents come to be selected to be in a poll is a big step toward determining how well their views and opinions mirror those of the voting population. To sample individuals, polling organizations can choose from a wide variety of options. Pollsters generally divide them into two types: those that are based on probability sampling methods and those based on non-probability sampling techniques. For more than five decades probability sampling was the standard method for polls. But in recent years, as fewer people respond to polls and the costs of polls have gone up, researchers have turned to non-probability based sampling methods. For example, they may collect data on-line from volunteers who have joined an Internet panel. In a number of instances, these non-probability samples have produced results that were comparable or, in some cases, more accurate in predicting election outcomes than probability-based surveys. Now, more than ever, journalists and the public need to understand the strengths and weaknesses of both sampling techniques to effectively evaluate the quality of a survey, particularly election polls. Probability and Non-probability Samples In a probability sample, all persons in the target population have a change of being selected for the survey sample and we know what that chance is. For example, in a telephone survey based on random digit dialing (RDD) sampling, researchers know the chance or probability that a particular telephone number will be selected. -
American Community Survey Accuracy of the Data (2018)
American Community Survey Accuracy of the Data (2018) INTRODUCTION This document describes the accuracy of the 2018 American Community Survey (ACS) 1-year estimates. The data contained in these data products are based on the sample interviewed from January 1, 2018 through December 31, 2018. The ACS sample is selected from all counties and county-equivalents in the United States. In 2006, the ACS began collecting data from sampled persons in group quarters (GQs) – for example, military barracks, college dormitories, nursing homes, and correctional facilities. Persons in sample in (GQs) and persons in sample in housing units (HUs) are included in all 2018 ACS estimates that are based on the total population. All ACS population estimates from years prior to 2006 include only persons in housing units. The ACS, like any other sample survey, is subject to error. The purpose of this document is to provide data users with a basic understanding of the ACS sample design, estimation methodology, and the accuracy of the ACS data. The ACS is sponsored by the U.S. Census Bureau, and is part of the Decennial Census Program. For additional information on the design and methodology of the ACS, including data collection and processing, visit: https://www.census.gov/programs-surveys/acs/methodology.html. To access other accuracy of the data documents, including the 2018 PRCS Accuracy of the Data document and the 2014-2018 ACS Accuracy of the Data document1, visit: https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html. 1 The 2014-2018 Accuracy of the Data document will be available after the release of the 5-year products in December 2019. -
THE CENSUS in U.S. HISTORY Library of Congress of Library
Bill of Rights Constitutional Rights in Action Foundation FALL 2019 Volume 35 No1 THE CENSUS IN U.S. HISTORY Library of Congress of Library A census taker talks to a group of women, men, and children in 1870. The Constitution requires that a census be taken every ten After the 1910 census, the House set the total num- years. This means counting all persons, citizens and ber of House seats at 435. Since then, when Congress noncitizens alike, in the United States. In addition to reapportions itself after each census, those states gain- conducting a population count, the census has evolved to collect massive amounts of information on the growth and ing population may pick up more seats in the House at development of the nation. the expense of states declining in population that have to lose seats. Why Do We Have a Census? Who is counted in apportioning seats in the House? The original purpose of the census was to determine The Constitution originally included “the whole Number the number of representatives each state is entitled to in of free persons” plus indentured servants but excluded the U.S. House of Representatives. The apportionment “Indians not taxed.” What about slaves? The North and (distribution) of seats in the House depends on the pop- South argued about this at the Constitutional Conven- ulation of each state. Every state is guaranteed at least tion, finally agreeing to the three-fifths compromise. one seat. Slaves would be counted in each census, but only three- After the first census in 1790, the House decided a fifths of the count would be included in a state’s popu- state was allowed one representative for each approxi- lation for the purpose of House apportionment. -
Survey Nonresponse Bias and the Coronavirus Pandemic∗
Coronavirus Infects Surveys, Too: Survey Nonresponse Bias and the Coronavirus Pandemic∗ Jonathan Rothbaum U.S. Census Bureau† Adam Bee U.S. Census Bureau‡ May 3, 2021 Abstract Nonresponse rates have been increasing in household surveys over time, increasing the potential of nonresponse bias. We make two contributions to the literature on nonresponse bias. First, we expand the set of data sources used. We use information returns filings (such as W-2's and 1099 forms) to identify individuals in respondent and nonrespondent households in the Current Population Survey Annual Social and Eco- nomic Supplement (CPS ASEC). We link those individuals to income, demographic, and socioeconomic information available in administrative data and prior surveys and the decennial census. We show that survey nonresponse was unique during the pan- demic | nonresponse increased substantially and was more strongly associated with income than in prior years. Response patterns changed by education, Hispanic origin, and citizenship and nativity. Second, We adjust for nonrandom nonresponse using entropy balance weights { a computationally efficient method of adjusting weights to match to a high-dimensional vector of moment constraints. In the 2020 CPS ASEC, nonresponse biased income estimates up substantially, whereas in other years, we do not find evidence of nonresponse bias in income or poverty statistics. With the sur- vey weights, real median household income was $68,700 in 2019, up 6.8 percent from 2018. After adjusting for nonresponse bias during the pandemic, we estimate that real median household income in 2019 was 2.8 percent lower than the survey estimate at $66,790. ∗This report is released to inform interested parties of ongoing research and to encourage discussion. -
MRS Guidance on How to Read Opinion Polls
What are opinion polls? MRS guidance on how to read opinion polls June 2016 1 June 2016 www.mrs.org.uk MRS Guidance Note: How to read opinion polls MRS has produced this Guidance Note to help individuals evaluate, understand and interpret Opinion Polls. This guidance is primarily for non-researchers who commission and/or use opinion polls. Researchers can use this guidance to support their understanding of the reporting rules contained within the MRS Code of Conduct. Opinion Polls – The Essential Points What is an Opinion Poll? An opinion poll is a survey of public opinion obtained by questioning a representative sample of individuals selected from a clearly defined target audience or population. For example, it may be a survey of c. 1,000 UK adults aged 16 years and over. When conducted appropriately, opinion polls can add value to the national debate on topics of interest, including voting intentions. Typically, individuals or organisations commission a research organisation to undertake an opinion poll. The results to an opinion poll are either carried out for private use or for publication. What is sampling? Opinion polls are carried out among a sub-set of a given target audience or population and this sub-set is called a sample. Whilst the number included in a sample may differ, opinion poll samples are typically between c. 1,000 and 2,000 participants. When a sample is selected from a given target audience or population, the possibility of a sampling error is introduced. This is because the demographic profile of the sub-sample selected may not be identical to the profile of the target audience / population. -
Categorical Data Analysis
Categorical Data Analysis Related topics/headings: Categorical data analysis; or, Nonparametric statistics; or, chi-square tests for the analysis of categorical data. OVERVIEW For our hypothesis testing so far, we have been using parametric statistical methods. Parametric methods (1) assume some knowledge about the characteristics of the parent population (e.g. normality) (2) require measurement equivalent to at least an interval scale (calculating a mean or a variance makes no sense otherwise). Frequently, however, there are research problems in which one wants to make direct inferences about two or more distributions, either by asking if a population distribution has some particular specifiable form, or by asking if two or more population distributions are identical. These questions occur most often when variables are qualitative in nature, making it impossible to carry out the usual inferences in terms of means or variances. For such problems, we use nonparametric methods. Nonparametric methods (1) do not depend on any assumptions about the parameters of the parent population (2) generally assume data are only measured at the nominal or ordinal level. There are two common types of hypothesis-testing problems that are addressed with nonparametric methods: (1) How well does a sample distribution correspond with a hypothetical population distribution? As you might guess, the best evidence one has about a population distribution is the sample distribution. The greater the discrepancy between the sample and theoretical distributions, the more we question the “goodness” of the theory. EX: Suppose we wanted to see whether the distribution of educational achievement had changed over the last 25 years. We might take as our null hypothesis that the distribution of educational achievement had not changed, and see how well our modern-day sample supported that theory. -
Observational Studies and Bias in Epidemiology
The Young Epidemiology Scholars Program (YES) is supported by The Robert Wood Johnson Foundation and administered by the College Board. Observational Studies and Bias in Epidemiology Manuel Bayona Department of Epidemiology School of Public Health University of North Texas Fort Worth, Texas and Chris Olsen Mathematics Department George Washington High School Cedar Rapids, Iowa Observational Studies and Bias in Epidemiology Contents Lesson Plan . 3 The Logic of Inference in Science . 8 The Logic of Observational Studies and the Problem of Bias . 15 Characteristics of the Relative Risk When Random Sampling . and Not . 19 Types of Bias . 20 Selection Bias . 21 Information Bias . 23 Conclusion . 24 Take-Home, Open-Book Quiz (Student Version) . 25 Take-Home, Open-Book Quiz (Teacher’s Answer Key) . 27 In-Class Exercise (Student Version) . 30 In-Class Exercise (Teacher’s Answer Key) . 32 Bias in Epidemiologic Research (Examination) (Student Version) . 33 Bias in Epidemiologic Research (Examination with Answers) (Teacher’s Answer Key) . 35 Copyright © 2004 by College Entrance Examination Board. All rights reserved. College Board, SAT and the acorn logo are registered trademarks of the College Entrance Examination Board. Other products and services may be trademarks of their respective owners. Visit College Board on the Web: www.collegeboard.com. Copyright © 2004. All rights reserved. 2 Observational Studies and Bias in Epidemiology Lesson Plan TITLE: Observational Studies and Bias in Epidemiology SUBJECT AREA: Biology, mathematics, statistics, environmental and health sciences GOAL: To identify and appreciate the effects of bias in epidemiologic research OBJECTIVES: 1. Introduce students to the principles and methods for interpreting the results of epidemio- logic research and bias 2.