Importance of Mild Hyperoxaluria in the Pathogenesis of Urolithiasis - New Evidence from Studies in the Arabian Peninsula

Total Page:16

File Type:pdf, Size:1020Kb

Importance of Mild Hyperoxaluria in the Pathogenesis of Urolithiasis - New Evidence from Studies in the Arabian Peninsula Scanning Microscopy Volume 7 Number 1 Article 42 10-23-1992 Importance of Mild Hyperoxaluria in the Pathogenesis of Urolithiasis - New Evidence from Studies in the Arabian Peninsula W. G. Robertson King Faisal Specialist Hospital and Research Centre H. Hughes King Faisal Specialist Hospital and Research Centre Follow this and additional works at: https://digitalcommons.usu.edu/microscopy Part of the Biology Commons Recommended Citation Robertson, W. G. and Hughes, H. (1992) "Importance of Mild Hyperoxaluria in the Pathogenesis of Urolithiasis - New Evidence from Studies in the Arabian Peninsula," Scanning Microscopy: Vol. 7 : No. 1 , Article 42. Available at: https://digitalcommons.usu.edu/microscopy/vol7/iss1/42 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Scanning Microscopy, Vol. 7, No. 1, 1993 (Pages 391-402) 0891-7035/93$5.00+ .00 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA IMPORTANCEOF MILDHYPEROXALURIA IN THE PATHOGENESISOF UROLITHIASIS- NEWEVIDENCE FROM STUDIES IN THEARABIAN PENINSULA W.G. Robertson* and H. Hughes King Faisal Specialist Hospital and Research Centre Department of Biological and Medical Research Riyadh 11211, Kingdom of Saudi Arabia (Received for publication May 12, 1992, and in revised form October 23, 1992) Abstract Introduction The hypothesis that mild hyperoxa l uri a is For over half a century, hypercalciuria has more important than hyperca l ci uri a in the been considered by the majority of researchers pathogenesis of urolithiasis is re-examined in in the kidney stone field to be the main risk the light of new evidence. Small increments in factor for primary (idiopathic) and secondary urinary oxalate in the normal to high-normal calcium urol ithiasis (Flocks, 1939; Albright et range are much more critical than similar rises al., 1953; Hodgkinson and Pyrah, 1958; Pak et in urinary calcium for increasing the relative al., 1975; Coe and Favus, 1980; Hal abe and supersaturation of urine with respect to calcium Sutton, 1987). The main evidence cited in oxalate, the oxalate/calcium ratio in urine, the support of this hypothesis is that most we11- total volume of calcium oxalate crystals control led studies which have compared the excreted, the proportion of abnormally large urinary excretions of minerals by stone-formers crystals and aggregates of calcium oxalate and and normals have shown that the patients tend to the severity of the disorder as defined by the excrete more calcium although there is recurrence rate of stone-formation. Data from invariably a large degree of overlap between the the Arabian Peninsula, where the prevalence of two groups. This overlap is so considerable calcium-containing stones is considerably higher that, once allowance is made for the true than in the West, have shown that this occurs in prevalence of urinary stone-formation in the spite of the almost complete absence of population, the urinary calcium excretions of hyperca lei uri a. On the other hand, there is a stone-formers all lie within the projected range strong association between stone-formation and for the normal population, albeit within the the occurrence of mild hyperoxaluria. The life­ upper half of that range (Robertson et al., time expectancy of stone-formation in men from 1978; Bataille et al., 1983; Robertson and various countries is strongly correlated with Peacock, 1985a). There is certainly not the the average daily excretion of oxalate in the clear-cut separation between the urinary calcium urine of the normal men in these countries. excretions of calcium stone-formers and their This relationship extends to include patients controls that exists between the cystine with enteric and hereditary hyperoxaluria. excretions of cystinuric stone-formers and their There is no such relationship, however, between controls (Robertson and Peacock, 1985b). the life-time expectancy of stones and urinary If the hypothesis that hypercalciuria is calcium excretion in the same populations. the main risk factor for calcium stone-formation Studies on the regulation of urinary is correct, then therapeutic measures designed oxalate indicate that it is largely controlled to decrease urinary calcium excretion would be by the quantity of "free" dietary oxalate expected to reduce the rate of recurrence of available for absorption in the lower intestine calcium stone-formation in patients affected This can be calculated from the intakes of with the disorder. Although many of these calcium and oxalate and the urinary excretion of modalities, such as thiazide diuretics (Yendt, calcium. 1970; Coe and Kavalich, 1974), cellulose phosphate (Pak et al., 1974) and a low calcium KEY WORDS: Oxalate, Calcium Urolithiasis, diet (Nordin et al., 1973), have been claimed to Crystallization, Prevalence, Mild Hyperoxaluria, have a benefi ci a 1 effect on stone recurrence, Hyperca lei uri a. more recent reports have cast doubt on their efficacy. Such doubts have arisen (a) because of faults in the design of the studies concerned *Address for correspondence: ( Churchi 11 , 1987), ( b) because the effect of a W.G. Robertson, King Faisal Specialist Hospital particular form of treatment in long-term and Research Centre, Office of Chief Executive studies seems to be minimal (Marickar and Rose, Director, P.O. Box 3354, MBC-31, Riyadh 11211, 1985), or (c) because the treatment concerned Saudi Arabia. Phone No. (966)-1-442-7857 leads to adverse changes in urine biochemistry, 391 W.G. Robertson and H. Hughes such as an increase in urinary oxalate or pH, stone-formers and normals. In this respect mild which may more than offset the beneficial effect hyperoxal uri a does not appear to be different of reducing urinary calcium (Marshall and Barry, from hypercalciuria. More in-depth studies have 1973; Hall son and Rose, 1978; Hall son, 1988). shown, however, that, when stone-formers are There are growing doubts, therefore, about the studied when they first present with stones, importance of hyperca lei uri a ~ as a major their mild hyperoxaluria is much more marked risk factor for calcium stone-formation. This than after they consult their urologist or has led some of the former protagonists of the physician (Robertson and Peacock, 1980). The "hypercalciuria theory" to turn their attention overlap between the oxalate excretions of stone­ to other possible urinary risk factors, such as formers and normals when they first present is hypocitraturia (Pak et al., 1985) and defective much less than it is when they are referred inhibitors of crystallization such as later to the specialist Stone Clinic. This "nephrocalcin" (Coe and Parks, 1990). reduction following hospitalization or out­ One important factor which these and many patient consultation is now a recognised feature other workers continue to overlook, however, is of the so-called "stone clinic effect" (Hoskin the importance of mild hyperoxaluria in calcium et al., 1983; Norman et al., 1984) and should stone-formation. Calcium oxalate, after all, is not be discounted in the assessment of patients consistently the most common constituent of presenting with stones. calcium-containing calculi in stone series It would seem from the above evidence that reported from all parts of the world and mild hypercalciuria and mild hyperoxaluria are both hyperoxa1 uri a should deserve at 1east as much commonfindings among stone-forming populations, attention as hyperca 1c i uri a as a factor in the so why then has doubt been cast on the formation of such calculi. importance of hypercalciuria in the pathogenesis The main problem for most potential of stones and what new evidence is there to researchers in this area has been the difficulty support the hypothesis that mi1 d hyperoxal uri a in measuring oxalate reliably in biological is a much more significant risk factor than fluids. Unlike the situation with respect to hypercalciuria for stone-formation? the measurement of urinary calcium, the accurate determination of oxalate in urine has only Relative Importance of Hypercalciuria and Mild become possible in recent years with the Hyperoxaluria for Urolithiasis application of the modern techniques of high performance liquid chromatography (HPLC)(Hughes The relative effects of hypercalciuria and et al., 1982), ion-chromatography (Menon and mild hyperoxaluria on the risk of calcium Mahle, 1983; Robertson et al., 1982, Robertson oxalate stone-formation were first investigated and Scurr, 1984) and gas chromatography by Robertson and his co 11eagues ( Robertson and (Yanagawa et al., 1983). In general, however, Nordin, 1969; Robertson et al., 1971; Robertson urinary oxalate (where measured at all) is still and Peacock, 1980). Their initial findings in assayed badly (Samuell, 1988), particularly when this respect have since been largely confirmed using techniques other than those described by others (Bataille et al., 1983; Hallson, 1988; above. The reasons for the unre l i abi 1 ity of Lindsjo, 1989). The hypothesis that mild most methods are multifactorial but are most hyperoxaluria is much more critical than frequently due to inadequate handling and work­ hypercalciuria in the pathogenesis of calcium up of urine prior to the actua 1 measurement, oxalate stone-formation was developed based on particularly in the case of urines which contain findings obtained from both
Recommended publications
  • Oxalate Loading Test: a Screening Test for Steatorrhoea
    Gut: first published as 10.1136/gut.20.12.1089 on 1 December 1979. Downloaded from Gut, 1979, 20, 1089-1094 Oxalate loading test: a screening test for steatorrhoea D. S. RAMPTON', G. P. KASIDAS, G. ALAN ROSE, AND MARTIN SARNER2 From University College Hospital, London, St. Peter's Hospitals and Institute of Urology, London SUMMARY To investigate the possibility of measuring urinary oxalate output instead of faecal fat excretion as an outpatient screening test for steatorrhoea, we determined 24 hour urinary oxalate and five day faecal fat excretion before and during an oral load of sodium oxalate 600 mg daily (oxalate 4-44 mmol), in 32 patients with suspected malabsorption on a diet containing oxalate 30 mg (0-33 mmol), fat 50 g (180 mmol), and calcium 1 g (25 mmol). Nineteen patients proved to have steatorrhoea (mean faecal fat 62 mmol/24 h, range 19-186 mmol) of varying aetiologies. On the diet alone, urinary oxalate was raised in only nine of these patients (mean 0 25 mmol/24 h, range 0-08-059 mmol) (normal <0 20). By contrast, when the diet was supplemented with oral sodium oxalate, all 19 patients with steatorrhoea had hyperoxaluria (mean 0-91 mmol/24 h, range 046- 1P44 mmol) (normal <0-44). There was a significant positive linear relationship between urinary oxalate and faecal fat when the 32 patients were on the high oxalate intake (r=0*73, P <0.001), but not when they were on the low oxalate intake. Mean percentage absorption of orally administered oxalate was 58+09% (±1 SD) in normal subjects and 14-7+6-0% (P <0.002) in patients with steatorrhoea.
    [Show full text]
  • Blueprint Genetics Primary Hyperoxaluria Panel
    Primary Hyperoxaluria Panel Test code: KI0801 Is a 3 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of hyperoxaluria. About Primary Hyperoxaluria The primary hyperoxalurias are rare disorders of glyoxylate metabolism, which result in markedly increased endogenous oxalate synthesis by the liver. They are characterized by an excess of oxalate resulting in manifestations ranging from occasional renal stones, recurrent nephrolithiasis and nephrocalcinosis to end-stage renal disease (ESRD) and systemic oxalosis. Presenting ranges from the neonatal period to adulthood. Among disorders causing hyperoxaluria, the primary hyperoxalurias are the most severe, ultimately leading to ESRD and if untreated, death in most patients. Type I primary hyperoxaluria (PH1), is caused by deficient or absent activity of liver-specific peroxisomal alanine glyoxylate aminotransferase (AGT). In some patients with PH1 type disease, the enzyme is present but mistargeted to mitochondria where it is metabolically inactive. The severe infantile form is characterized by a failure to thrive, nephrocalcinosis with or without nephrolithiasis and early ESRD. Onset in childhood and adolescence is often characterized by recurrent urolithiasis (with or without nephrocalcinosis) and progressive renal failure. The late onset form is characterized by occasional renal stones with onset in adulthood, but acute renal failure caused by bilateral obstruction of the kidneys by oxalate stones may occur. Other manifestations include urinary tract infections, dysuria and hematuria. The ongoing systemic oxalosis also may lead to other clinical manifestations such as cardiac conduction defects, vascular calcification with distal gangrene, disturbed vision, specific brown colored retinal deposits, skin nodules, joint involvement and bone disease leading to fractures in long-term dialysis-dependent patients.
    [Show full text]
  • Redalyc.The Nutritional Limitations of Plant-Based Beverages in Infancy
    Nutrición Hospitalaria ISSN: 0212-1611 [email protected] Sociedad Española de Nutrición Parenteral y Enteral España Vitoria, Isidro The nutritional limitations of plant-based beverages in infancy and childhood Nutrición Hospitalaria, vol. 34, núm. 5, 2017, pp. 1205-1214 Sociedad Española de Nutrición Parenteral y Enteral Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=309253341026 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Nutr Hosp. 2017; 34(5):1205-1214 ISSN 0212-1611 - CODEN NUHOEQ S.V.R. 318 Nutrición Hospitalaria Revisión The nutritional limitations of plant-based beverages in infancy and childhood Limitaciones nutricionales de las bebidas vegetales en la lactancia y la infancia Isidro Vitoria Unit of Nutrition and Metabolopathies. Hospital Universitario y Politécnico La Fe. Valencia, Spain Abstract Breastfeeding, infant formula and cow’s milk are basic foods in infant nutrition. However, they are being increasingly replaced either totally or partially by plant-based beverages. The composition of 164 plant-based beverages available in Spain was reviewed based on the nutritional labeling of the package and the man- ufacturers’ webpages. This was compared to the composition of cow’s milk and infant formula. In addition, the nutritional disease associated with consumption of plant-based beverages in infants and children was reviewed by means of a literature search in Medline and Embase since 1990 based on the key words “plant-based beverages” or “rice beverages” or “almond beverages” or “soy beverages” and “infant” or “child”.
    [Show full text]
  • Fructose As an Endogenous Toxin
    HEPATOCYTE MOLECULAR CYTOTOXIC MECHANISM STUDY OF FRUCTOSE AND ITS METABOLITES INVOLVED IN NONALCOHOLIC STEATOHEPATITIS AND HYPEROXALURIA By Yan (Cynthia) Feng A thesis submitted in the conformity with the requirements for the degree of Master of Science Graduate Department of Pharmaceutical Sciences University of Toronto © Copyright by Yan (Cynthia) Feng 2010 ABSTRACT HEPATOCYTE MOLECULAR CYTOTOXIC MECHANISM STUDY OF FRUCTOSE AND ITS METABOLITES INVOLVED IN NONALCOHOLIC STEATOHEPATITIS AND HYPEROXALURIA Yan (Cynthia) Feng Master of Science, 2010 Department of Pharmaceutical Sciences University of Toronto High chronic fructose consumption is linked to a nonalcoholic steatohepatitis (NASH) type of hepatotoxicity. Oxalate is the major endpoint of fructose metabolism, which accumulates in the kidney causing renal stone disease. Both diseases are life-threatening if not treated. Our objective was to study the molecular cytotoxicity mechanisms of fructose and some of its metabolites in the liver. Fructose metabolites were incubated with primary rat hepatocytes, but cytotoxicity only occurred if the hepatocytes were exposed to non-toxic amounts of hydrogen peroxide such as those released by activated immune cells. Glyoxal was most likely the endogenous toxin responsible for fructose induced toxicity formed via autoxidation of the fructose metabolite glycolaldehyde catalyzed by superoxide radicals, or oxidation by Fenton’s hydroxyl radicals. As for hyperoxaluria, glyoxylate was more cytotoxic than oxalate presumably because of the formation of condensation product oxalomalate causing mitochondrial toxicity and oxidative stress. Oxalate toxicity likely involved pro-oxidant iron complex formation. ii ACKNOWLEDGEMENTS I would like to dedicate this thesis to my family. To my parents, thank you for the sacrifices you have made for me, thank you for always being there, loving me and supporting me throughout my life.
    [Show full text]
  • Peroxisomal Alanine:Glyoxylate Aminotransferase Deficiency in Primary Hyperoxaluria Type I
    Volume 201, number 1 FEBS 3672 May 1986 Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type I C.J. Danpure and P.R Jennings Divisum of Inherited Metabolic Diseases, Clinical Research Centre, Watford Road, Harrow HA1 3UJ, England Received 1 April 1986 Activities of alanine:glyoxylate aminotransferase in the livers of two patients with primary hyperoxaluria type I were substantially lower than those found in five control human livers. Detailed subcellular fractiona- tion of one of the hyperoxaluric livers, compared with a control liver, showed that there was a complete absence of peroxisomal alanine:glyoxylate aminotransferase. This enzyme deficiency explains most of the biochemical characteristics of the disease and means that primary hyperoxaluria type I should be added to the rather select list of peroxisomal disorders. Hyperoxaluria Alanine:glyoxylate aminotransferase Glutamate:glyoxylate aminotransferase Peroxisomal disorder Glyoxylate metabolism (Human) Liver pathology 1. INTRODUCTION transamination in primary hyperoxaluria type I. Our results suggest that the basic biochemical Primary hyperoxaluria type I is a rare inborn er- defect in the disease is the absence of peroxisomal ror of metabolism caused by an accumulation of alanine : glyoxylate aminotransferase. glyoxylate, which leads to increased synthesis and excretion of oxalate and glycolate. Clinically the disease is characterized by recurrent calcium ox- 2. EXPERIMENTAL alate kidney stones, resulting in progressive renal insufficiency and death usually before the age of 2.1. Livers 20 [l]. Numerous in vivo studies in the 1960s sug- The subcellular fractionation experiments were gested that there might be an abnormality in the carried out on the liver of a patient with transamination of glyoxylate to glycine [2-41 in pyridoxine-resistant primary hyperoxaluria type I the type I disease, but the observations made in and a normal human liver.
    [Show full text]
  • Antenatal Diagnosis of Inborn Errors Ofmetabolism
    816 ArchivesofDiseaseinChildhood 1991;66: 816-822 CURRENT PRACTICE Arch Dis Child: first published as 10.1136/adc.66.7_Spec_No.816 on 1 July 1991. Downloaded from Antenatal diagnosis of inborn errors of metabolism M A Cleary, J E Wraith The introduction of experimental treatment for Sample requirement and techniques used in lysosomal storage disorders and the increasing prenatal diagnosis understanding of the molecular defects behind By far the majority of antenatal diagnoses are many inborn errors have overshadowed the fact performed on samples obtained by either that for many affected families the best that can amniocentesis or chorion villus biopsy. For be offered is a rapid, accurate prenatal diag- some disorders, however, the defect is not nostic service. Many conditions remain at best detectable in this material and more invasive only partially treatable and as a consequence the methods have been applied to obtain a diagnos- majority of parents seek antenatal diagnosis in tic sample. subsequent pregnancies, particularly for those disorders resulting in a poor prognosis in terms of either life expectancy or normal neurological FETAL LIVER BIOPSY development. Fetal liver biopsy has been performed to The majority of inborn errors result from a diagnose ornithine carbamoyl transferase defi- specific enzyme deficiency, but in some the ciency and primary hyperoxaluria type 1. primary defect is in a transport system or Glucose-6-phosphatase deficiency (glycogen enzyme cofactor. In some conditions the storage disease type I) could also be detected by biochemical defect is limited to specific tissues this method. The technique, however, is inva- only and this serves to restrict the material avail- sive and can be performed by only a few highly able for antenatal diagnosis for these disorders.
    [Show full text]
  • Severe Child Form of Primary Hyperoxaluria Type 2
    Konkoľová et al. BMC Medical Genetics (2017) 18:59 DOI 10.1186/s12881-017-0421-8 CASE REPORT Open Access Severe child form of primary hyperoxaluria type 2 - a case report revealing consequence of GRHPR deficiency on metabolism Jana Konkoľová1,2*, Ján Chandoga1,2, Juraj Kováčik3, Marcel Repiský2, Veronika Kramarová2, Ivana Paučinová3 and Daniel Böhmer1,2 Abstract Background: Primary hyperoxaluria type 2 is a rare monogenic disorder inherited in an autosomal recessive pattern. It results from the absence of the enzyme glyoxylate reductase/hydroxypyruvate reductase (GRHPR). As a consequence of deficient enzyme activity, excessive amounts of oxalate and L-glycerate are excreted in the urine, and are a source for the formation of calcium oxalate stones that result in recurrent nephrolithiasis and less frequently nephrocalcinosis. Case presentation: We report a case of a 10-month-old patient diagnosed with urolithiasis. Screening of inborn errors of metabolism, including the performance of GC/MS urine organic acid profiling and HPLC amino acid profiling, showed abnormalities, which suggested deficiency of GRHPR enzyme. Additional metabolic disturbances observed in the patient led us to seek other genetic determinants and the elucidation of these findings. Besides the elevated excretion of 3-OH-butyrate, adipic acid, which are typical marks of ketosis, other metabolites such as 3- aminoisobutyric acid, 3-hydroxyisobutyric acid, 3-hydroxypropionic acid and 2-ethyl-3-hydroxypropionic acids were observed in increased amounts in the urine. Direct sequencing of the GRHPR gene revealed novel mutation, described for the first time in this article c.454dup (p.Thr152Asnfs*39) in homozygous form. The frequent nucleotide variants were found in AGXT2 gene.
    [Show full text]
  • Hydroxyproline Metabolism and Oxalate Synthesis in Primary Hyperoxaluria
    BASIC RESEARCH www.jasn.org Hydroxyproline Metabolism and Oxalate Synthesis in Primary Hyperoxaluria Sonia Fargue,1 Dawn S. Milliner,2 John Knight,1 Julie B. Olson,2 W. Todd Lowther,3 and Ross P. Holmes1 1Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama; 2Mayo Clinic Hyperoxaluria Center, Division of Nephrology and Hypertension, Rochester, Minnesota; and 3Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina ABSTRACT Background Endogenous oxalate synthesis contributes to calcium oxalate stone disease and is markedly increased in the inherited primary hyperoxaluria (PH) disorders. The incomplete knowledge regarding oxalate synthesis complicates discovery of new treatments. Hydroxyproline (Hyp) metabolism results in the formation of oxalate and glycolate. However, the relative contribution of Hyp metabolism to endog- enous oxalate and glycolate synthesis is not known. Methods To define this contribution, we performed primed, continuous, intravenous infusions of the 15 13 stable isotope [ N, C5]-Hyp in nine healthy subjects and 19 individuals with PH and quantified the levels 13 13 of urinary C2-oxalate and C2-glycolate formed using ion chromatography coupled to mass detection. Results The total urinary oxalate-to-creatinine ratio during the infusion was 73.1, 70.8, 47.0, and 10.6 mg oxalate/gcreatinineinsubjectswithPH1,PH2,andPH3 and controls, respectively. Hyp metabolism accounted for 12.8, 32.9, and 14.8 mg oxalate/g creatinine in subjects with PH1, PH2, and PH3, respec- tively, compared with 1.6 mg oxalate/g creatinine in controls. The contribution of Hyp to urinary oxalate was 15% in controls and 18%, 47%, and 33% in subjects with PH1, PH2, and PH3, respectively.
    [Show full text]
  • Reduction in Urinary Oxalate Excretion in Mouse Models of Primary Hyperoxaluria by RNA Interference Inhibition of Liver Lactate Dehydrogenase T Activity
    BBA - Molecular Basis of Disease 1865 (2019) 2203–2209 Contents lists available at ScienceDirect BBA - Molecular Basis of Disease journal homepage: www.elsevier.com/locate/bbadis Reduction in urinary oxalate excretion in mouse models of Primary Hyperoxaluria by RNA interference inhibition of liver lactate dehydrogenase T activity Kyle D. Wooda, Ross P. Holmesa, David Erbeb, Abigail Liebowb, Sonia Farguea, John Knighta a University of Alabama at Birmingham, Birmingham, AL, USA b Alnylam Pharmaceuticals, Cambridge, MA, USA ABSTRACT The Primary Hyperoxaluria's (PH) are rare autosomal recessive disorders characterized by elevated oxalate production. PH patients suffer recurrent calcium oxalate kidney stone disease, and in severe cases end stage renal disease. Recent evidence has shown that RNA interference may be a suitable approach to reduce oxalate production in PH patients by knocking down key enzymes involved in hepatic oxalate synthesis. In the current study, wild type mice and mouse models of PH1 (AGT KO) and PH2 (GR KO) were treated with siRNA that targets hepatic LDHA. Although siRNA treatment substantially reduced urinary oxalate excretion [75%] in AGT KO animals, there was a relatively modest reduction [32%] in GR KO animals. Plasma and liver pyruvate levels significantly increased with siRNA treatment and liver organic acid analysis indicated significant changes in a number of glycolytic and TCA cycle metabolites, consistent with the known role of LDHA in metabolism. However, siRNA dosing data suggest that it may be possible to identify a dose that limits changes in liver organic acid levels, while maintaining a desired effect of reducing glyoxylate to oxalate synthesis. These results suggest that RNAi mediated reduction of hepatic LDHA may be an effective strategy to reduce oxalate synthesis in PH, and further analysis of its metabolic effects should be explored.
    [Show full text]
  • Review Article
    251 Review Article Ana Maria Martins Inborn errors of metabolism: a clinical overview Department of Pediatrics, Universidade Federal de São Paulo/ Escola Paulista de Medicina, São Paulo, Brazil ABSTRACT INTRODUCTION CONTEXT: Inborn errors of metabolism cause hereditary metabolic diseases (HMD) and classically they result from the In 1904 the doctor Archibald E. Garrod lack of activity of one or more specific enzymes or defects in the described alkaptonuria, a disease he classified transportation of proteins. as a lifelong congenital chemical alteration. OBJECTIVES: A clinical review of inborn errors of metabolism (IEM) to give a practical approach to the Later on, in 1909, he described other diseases: physician with figures and tables to help in understanding albinism, cystinuria, porphyria and pentosuria, the more common groups of these disorders. which he named “Inborn Errors of Metabolism”. DATA SOURCE: A systematic review of the clinical and biochemical basis of IEM in the literature, especially Garrod’s conclusions were completely correct considering the last ten years and a classic textbook in relation to the genetic basis of metabolic 1 (Scriver CR et al, 1995). disorders and the gene–enzyme concept. SELECTION OF STUDIES: A selection of 108 references about IEM by experts in the subject was made. Clinical cases According to Scriver, in the foreword of are presented with the peculiar symptoms of various diseases. “Physician’s Guide to the Laboratory Diagnosis 2 DATA SYNTHESIS: IEM are frequently misdiagnosed of Metabolic Diseases”, the importance of because the general practitioner, or pediatrician in the neonatal or intensive care units, does not think about this Garrod’s observation that inborn errors of diagnosis until the more common cause have been ruled out.
    [Show full text]
  • Increased Prevalence of Hereditary Metabolic Diseases Among Native Indians in Manitoba and Northwestern Ontario
    CLINICAL AND COMMUNITY STUDIES ETUDES CLINIQUES ET COMMUNAUTAIRES Increased prevalence of hereditary metabolic diseases among native Indians in Manitoba and northwestern Ontario James C. Haworth, MD, FRCPC; Louise A. Dilling, ART; Lorne E. Seargeant, PhD Objective: To compare the prevalence of hereditary metabolic diseases in the native and non-native populations of Manitoba and northwestern Ontario. Design: Retrospective analysis. Setting: Children's Hospital, Winnipeg. Patients: Patients were selected by three methods: laboratory tests designed to screen patients suspected of having a metabolic disease, laboratory investigation of newborn infants with abnormalities detected through screening, and investigation of near relatives of probands with disease. Results: A total of 138 patients with organic acid, amino acid and carbohydrate disorders were seen from 1960 to 1990. Of these, 49 (36%) were native Indians (Algonkian linguistic group). This was in sharp contrast to the proportion of native Indians in the total study population (5.8%). Congenital lactic acidosis due to pyruvate carboxylase deficiency (13 patients), glutaric aciduria type I (14 patients) and primary hyperoxaluria type II (8 patients) were the most common disorders detected. Other rare disorders included glutaric aciduria type II (one patient), 2-hydroxyglutaric aciduria (one patient) and sarcosinemia (one patient). Underreporting, especially of glutaric aciduria type I and hyperoxaluria type II, was likely in the native population. Conclusions: Hereditary metabolic diseases are greatly overrepresented in the native population of Manitoba and northwestern Ontario. We recommend that native children who present with illnesses involving disturbances of acid-base balance or with neurologic, renal or liver disease of unknown cause be investigated for a possible metabolic disorder.
    [Show full text]
  • SEED Urinalysis Sysmex Educational Enhancement and Development February 2012
    SEED Urinalysis Sysmex Educational Enhancement and Development February 2012 Laboratory investigation of haematuria Apart from diagnosing possible urinary tract infections, If no erythrocytes are found on microscopy, haemoglobi- haematuria is one of the most frequent findings on urinalysis. nuria and myoglobinuria can be confirmed by further The presence of erythrocytes in urine can be entirely laboratory tests physiological. According to literature, the number of n Haemoglobinuria is present when increased haemolysis excreted erythrocytes can amount up to 3,000 or 20,000 takes place in the blood. Some of the free haemoglobin erythrocytes/mL of normal urine or up to 3 x 106 erythro- has been excreted in the urine and was detected by the cytes/24h collected urine. Approx. 10% of healthy people test strip. In the blood, on the other hand, the increased have even higher levels, thus markedly exceeding the tendency to haemolysis can be underpinned diagnostically defined normal laboratory ranges. The normal ranges given by the finding of a raised serum LDH or reduced serum in the literature for erythrocytes in sediment microscopy haptoglobin level. also differ and the reported figures range between 2–3 n Myoglobinuria occurs together with myoglobinaemia erythrocytes/high power field and up to 10 erythrocytes/ when muscle tissue is destroyed. In the serum there are high power field, which can be explained by the different then higher levels of creatine kinase, which is released methods of obtaining and counting samples. from muscle cells when muscle is damaged. If a haematuria is pathological, there are many possible If no erythrocytes are found on microscopy, the possibility reasons for this.
    [Show full text]