Cathelicidin Antimicrobial Peptide As a Serologic Marker and Potential Pathogenic Factor in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis Adil Gasim

Total Page:16

File Type:pdf, Size:1020Kb

Cathelicidin Antimicrobial Peptide As a Serologic Marker and Potential Pathogenic Factor in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis Adil Gasim Gasim Arthritis Research & Therapy 2014, 16:105 http://arthritis-research.com/content/16/1/105 EDITORIAL Cathelicidin antimicrobial peptide as a serologic marker and potential pathogenic factor in antineutrophil cytoplasmic antibody-associated vasculitis Adil Gasim See related research by Zhang et al., http://arthritis-research.com/content/15/5/R161 Abstract is found within the lysosomes of macrophages and the secondary granules of neutrophils, and can be produced Antineutrophil cytoplasmic antibodies are associated by epithelial cells [1,2]. Cathelicidin LL37 is an effector with pauci-immune small-vessel vasculitis and molecule of the innate immune system that is important crescentic glomerulonephritis. Cathelicidin LL37 is the in defense against microbial pathogens. Cathelicidins have human member of a family of antimicrobial peptides also been proposed to play a role in the nonspecific that are released from activated neutrophils and defense against tumors [2], angiogenesis, and wound heal- monocytes at sites of acute inflammation. Zhang and ing [3]. IFNα is a type I interferon that functions in anti- colleagues evaluated serum levels of cathelicidin LL37 viral, antiproliferative, and immunomodulatory activities. and interferon-alpha in patients with antineutrophil Antineutrophil cytoplasmic antibody-associated vascu- cytoplasmic antibody-associated vasculitis (AAV) and litis (AAV) is necrotizing vasculitis with few or no im- glomerulonephritis. Increased levels of cathelicidin mune deposits that predominantly affects small vessels LL37 and interferon-alpha were associated with AAV and is associated with antineutrophil cytoplasmic anti- patients, particularly those with glomerular crescent bodies (ANCA) specific for myeloperoxidase (MPO- formation. Cathelicidin LL37 may also be involved in ANCA) or proteinase 3 (PR3-ANCA) [4]. MPO and PR3 the pathogenesis of AAV and thus could be a target are in the lysosomes of monocytes and the primary gran- for novel therapy. Cathelicidin LL37 is a promising ules of neutrophils, and are released when neutrophils new biomarker for active AAV, including aggressive and monocytes are activated by ANCA [5,6]. crescentic glomerulonephritis, and may prove to be The role of cathelicidin LL37 in pathogenesis of differ- both a prognostic marker and a guide for treatment. ent human diseases has been investigated by several re- search groups, mostly in the field of autoimmune and autoinflammatory diseases. Cathelicidin LL37 is overex- Zhang and colleagues have reported a potential role for pressed in inflamed skin in patients with psoriasis [7]. the endogenous antimicrobial peptide cathelicidin LL37 Human cathelicidin LL37 and its fragments inhibit HIV- α and interferon-alpha (IFN ) as serum markers for sys- 1 replication and the enzymes essential to the lifecycle of temic and local inflammation in patients with antineu- HIV, including HIV reverse transcriptase, HIV protease, trophil cytoplasmic antibody-associated pauci-immune and HIV integrase [8]. Plasma concentrations of catheli- vasculitis and crescentic glomerulonephritis [1]. cidin LL37 are significantly higher in active hepatitis C Cathelicidins are one family of antimicrobial peptides, virus infection and inactive hepatitis B virus infection, with various immune functions. Cathelicidin LL37 (also implicating cathelicidin LL37 in certain forms of hepa- known as human cationic antimicrobial protein, hCAP18) titis caused by hepatitis C virus and hepatitis B virus in- fections [9]. Human cathelicidins are involved in Correspondence: [email protected] mucosal immunity of the respiratory tract, gastrointes- Department of Pathology & Laboratory Medicine, University of North tinal tract, genitourinary tract, and eye [10]. Human Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA ©2014 BioMed Central Ltd. Gasim Arthritis Research & Therapy 2014, 16:105 Page 2 of 3 http://arthritis-research.com/content/16/1/105 cathelicidin is overexpressed in head and neck squamous development of more sophisticated assays for ANCA cell carcinoma, and is strongly correlated with radiother- epitope specificity, but this has not been definitively doc- apy effectiveness [11]. umented in a clinical setting [19]. Pathologic evaluation Zhang and colleagues are the first to report elevated of the diagnostic renal biopsy specimen provides some levels of cathelicidin LL37 in AAV, especially in patients prognostic value [20], but is most effective for demon- with crescentic glomerulonephritis [1]. In this study, strating advanced chronic disease that will not respond serum levels of cathelicidin LL37 and IFNα correlated well to therapy [21]. One or more effective clinical la- with crescent formation and also with serum creatinine. boratory tests for biomarkers that can predict outcome This observation is important because the correlation at the time of diagnosis, detect induction of remission, with cellular crescents would indicate a correlation with and identify relapses are badly needed to improve the disease activity, which could be an important prognostic management of ANCA disease. Cathelicidin LL37 and factor and may even suggest novel strategies for treat- IFNα should be investigated further to determine ment if the association results from a pathogenic role for whether they can serve this purpose. cathelicidin LL37. This hypothesis would be further sub- In summary, the report by Ying Zhang and colleagues stantiated if the correlation is with active cellular cres- supports the possibility that cathelicidin LL37 and IFNα cents accompanied by necrosis rather than with fibrotic are useful serologic markers for active AAV, including crescents accompanied by glomerular scarring. The aggressive crescentic glomerulonephritis. This study also presence of crescents, especially cellular crescents, is an raises the possibility that cathelicidin LL37 and IFNα important histological marker of active glomeruloneph- could be involved in the pathogenesis of AAV and thus ritis, which can be diagnosed only through renal biopsy, could be a target for novel therapy. an expensive, time-consuming, and invasive technique. Abbreviations Cathelicidin LL37 is a serological marker, and is non- AAV: Antineutrophil cytoplasmic antibody-associated vasculitis; invasive and cost-effective compared with renal biopsy. ANCA: Antineutrophil cytoplasmic antibodies; IFNα: Interferon-alpha; Cathelicidin LL37 is stored as an inactive pro-form in MPO: Myeloperoxidase; PR3: Proteinase 3. secondary granules of neutrophils and is activated by Competing interests PR3 (the autoantigen target of PR3-ANCA) when re- The author declares that he has no competing interests. leased at sites of inflammation [12]. Neutrophils and monocytes are activated by ANCA and release their Published: 28 Feb 2014 lysosome and granule proteins, including MPO and PR3 References [5,6]. Activated neutrophils also release cathelicidin 1. Zhang Y, Shi W, Tang S, Li J, Yin S, Gao X, Wang L, Zou L, Zhao J, Huang Y, LL37 [12,13]. Cathelicidin LL37 is found in neutrophil Shan L, Gounni AS, Wu Y, Yuan F, Zhang J: The influence of cathelicidin LL37 in human anti-neutrophils cytoplasmic antibody (ANCA)-associated extracellular traps that are released by activated neutro- vasculitis. Arthritis Res Ther 2013, 15:R161. phils [13]. These neutrophil extracellular traps have been 2. Heilborn JD, Nilsson MF, Chamorro Jimenez CI, Sandstedt B, Borregaard N, implicated in the induction of autoimmunity and the Tham E, Sørensen OE, Weber G, Ståhle M: Antimicrobial protein hCAP18/ LL-37 is highly expressed in breast cancer and is a putative growth mediation of inflammation in AAV [14]. factor for epithelial cells. Int J Cancer 2005, 114:713–719. To validate its value as a prognostic and predictive 3. Kittaka M, Shiba H, Kajiya M, Ouhara K, Takeda K, Kanbara K, Fujita T, biomarker, future studies should investigate the levels of Kawaguchi H, Komatsuzawa H, Kurihara H: Antimicrobial peptide LL37 promotes vascular endothelial growth factor-a expression in human cathelicidin LL37 in patients with different severities of periodontal ligament cells. J Periodontal Res 2013, 48:228–234. and different clinicopathologic phenotypes of AAV in 4. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, Flores-Suarez LF, large cohorts of patients with different levels of disease Gross WL, Guillevin L, Hagen EC, Hoffman GS, Jayne DR, Kallenberg CGM, Lamprecht P, Langford CA, Luqmani RA, Mahr AD, Matteson EL, Merkel PA, activity, remission, and relapse. More effective bio- Ozen S, Pusey CD, Rasmussen N, Rees AJ, Scott DGI, Specks U, Stone JH, markers are needed to improve prognostic and disease Takahashi K, Watts RA: Revised international Chapel Hill consensus activity monitoring. Current clinical and laboratory ob- conference nomenclature of vasculitides. Arthritis Rheum 2012, 2013:1–11. 5. Jennette JC, Falk RJ, Gasim AH: Pathogenesis of antineutrophil servations that indicate a worse prognosis, especially for cytoplasmic autoantibody vasculitis. Curr Opin Nephrol Hypertens 2011, renal survival, are older age at diagnosis (>65 years), 20:263–270. more severe renal failure (especially dialysis depend- 6. Jennette JC, Xiao H, Falk R, Gasim AM: Experimental models of vasculitis and glomerulonephritis induced by antineutrophil cytoplasmic ency), and PR3-ANCA versus MPO-ANCA [15-18]. Pa- autoantibodies. Contrib Nephrol 2011, 169:211–220. tients with PR3-ANCA have higher mortality, a higher 7. Dombrowski Y, Schauber J: Cathelicidin LL-37: a defense molecule with
Recommended publications
  • Immunomodulatory Role of the Antimicrobial LL-37 Peptide in Autoimmune Diseases and Viral Infections
    Review Immunomodulatory Role of the Antimicrobial LL-37 Peptide in Autoimmune Diseases and Viral Infections 1,2, , 3, 4 3 Bapi Pahar * y , Stefania Madonna y , Arpita Das , Cristina Albanesi and Giampiero Girolomoni 5 1 Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA 2 Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70118, USA 3 IDI-IRCCS, Dermopathic Institute of the Immaculate IDI, 00167 Rome, Italy; [email protected] (S.M.); [email protected] (C.A.) 4 Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA; [email protected] 5 Section of Dermatology, Department of Medicine, University of Verona, 37126 Verona, Italy; [email protected] * Correspondence: [email protected] Authors contributed equally. y Received: 4 August 2020; Accepted: 7 September 2020; Published: 10 September 2020 Abstract: Antimicrobial peptides (AMPs) are produced by neutrophils, monocytes, and macrophages, as well as epithelial cells, and are an essential component of innate immunity system against infection, including several viral infections. AMPs, in particular the cathelicidin LL-37, also exert numerous immunomodulatory activities by inducing cytokine production and attracting and regulating the activity of immune cells. AMPs are scarcely expressed in normal skin, but their expression increases when skin is injured by external factors, such as trauma, inflammation, or infection. LL-37 complexed to self-DNA acts as autoantigen in psoriasis and lupus erythematosus (LE), where it also induces production of interferon by plasmocytoid dendritic cells and thus initiates a cascade of autocrine and paracrine processes, leading to a disease state.
    [Show full text]
  • The Avian Heterophil ⇑ Kenneth J
    Developmental and Comparative Immunology xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect Developmental and Comparative Immunology journal homepage: www.elsevier.com/locate/dci The avian heterophil ⇑ Kenneth J. Genovese ,1, Haiqi He 1, Christina L. Swaggerty 1, Michael H. Kogut U.S. Department of Agriculture, Agricultural Research Service, Food and Feed Safety Research Unit, College Station, TX 77845, USA article info abstract Article history: Heterophils play an indispensable role in the immune defense of the avian host. To accomplish this Available online xxxx defense, heterophils use sophisticated mechanisms to both detect and destroy pathogenic microbes. Detection of pathogens through the toll-like receptors (TLR), FC and complement receptors, and other Keywords: pathogen recognition receptors has been recently described for the avian heterophil. Upon detection of Heterophil pathogens, the avian heterophil, through a network of intracellular signaling pathways and the release Innate immunity and response to cytokines and chemokines, responds using a repertoire of microbial killing mechanisms Avian including production of an oxidative burst, cellular degranulation, and production of extracellular matri- Poultry ces of DNA and histones (HETs). In this review, the authors describe the recent advances in our under- Granulocyte standing of the avian heterophil, its functions, receptors and signaling, identified antimicrobial products, cytokine and chemokine production, and some of the effects of genetic selection on heterophils and their functional characteristics. Published by Elsevier Ltd. 1. Introduction including its functions, receptors, intracellular signaling, antimi- crobial products, and the known genetics related to its functional Avian species, specifically domestic poultry, are constantly ex- efficiency. posed to a myriad of pathogens and microbes in their environ- ments.
    [Show full text]
  • Antimicrobial Activity of Cathelicidin Peptides and Defensin Against Oral Yeast and Bacteria JH Wong, TB Ng *, RCF Cheung, X Dan, YS Chan, M Hui
    RESEARCH FUND FOR THE CONTROL OF INFECTIOUS DISEASES Antimicrobial activity of cathelicidin peptides and defensin against oral yeast and bacteria JH Wong, TB Ng *, RCF Cheung, X Dan, YS Chan, M Hui KEY MESSAGES Mycosphaerella arachidicola, Saccharomyces cerevisiae and C albicans with an IC value of 1. Human cathelicidin LL37 and its fragments 50 3.9, 4.0, and 8.4 μM, respectively. The peptide LL13-37 and LL17-32 were equipotent in increased fungal membrane permeability. inhibiting growth of Candida albicans. 6. LL37 did not show obvious antibacterial activity 2. LL13-37 permeabilised the membrane of yeast below a concentration of 64 μM and its fragments and hyphal forms of C albicans and adversely did not show antibacterial activity below a affected mitochondria. concentration of 128 μM. Pole bean defensin 3. Reactive oxygen species was detectable in the exerted antibacterial activity on some bacterial yeast form after LL13-37 treatment but not in species. untreated cells suggesting that the increased membrane permeability caused by LL13-37 might also lead to uptake of the peptide, which Hong Kong Med J 2016;22(Suppl 7):S37-40 might have some intracellular targets. RFCID project number: 09080432 4. LL37 and its fragments also showed antifungal 1 JH Wong, 1 TB Ng, 1 RCF Cheung, 1 X Dan, 1 YS Chan, 2 M Hui activity against C krusei, and C tropicalis. 5. A 5447-Da antifungal peptide with sequence The Chinese University of Hong Kong: 1 School of Biomedical Sciences homology to plant defensins was purified from 2 Department of Microbiology king pole beans by chromatography on Q- Sepharose and FPLC-gel filtration on Superdex * Principal applicant and corresponding author: 75.
    [Show full text]
  • Primitive Teleost Fish Cathelicidin Antimicrobial Peptides in a Biological Activities of the Multiple Distinctive Structural
    Distinctive Structural Hallmarks and Biological Activities of the Multiple Cathelicidin Antimicrobial Peptides in a Primitive Teleost Fish This information is current as of October 1, 2021. Xu-Jie Zhang, Xiang-Yang Zhang, Nu Zhang, Xia Guo, Kai-Song Peng, Han Wu, Long-Feng Lu, Nan Wu, Dan-Dan Chen, Shun Li, Pin Nie and Yong-An Zhang J Immunol published online 15 April 2015 http://www.jimmunol.org/content/early/2015/04/15/jimmun Downloaded from ol.1500182 Supplementary http://www.jimmunol.org/content/suppl/2015/04/15/jimmunol.150018 Material 2.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 1, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published April 15, 2015, doi:10.4049/jimmunol.1500182 The Journal of Immunology Distinctive Structural Hallmarks and Biological Activities of the Multiple Cathelicidin Antimicrobial Peptides in a Primitive Teleost Fish Xu-Jie Zhang,*,† Xiang-Yang Zhang,*,† Nu Zhang,*,† Xia Guo,*,† Kai-Song Peng,*,‡ Han Wu,* Long-Feng Lu,*,† Nan Wu,* Dan-Dan Chen,*,† Shun Li,* Pin Nie,* and Yong-An Zhang* Cathelicidin antimicrobial peptides (CAMPs) represent a crucial component of the innate immune system in vertebrates.
    [Show full text]
  • Cathelicidin-Related Innate Immunity Role
    The Journal of Immunology Lysozyme-Modified Probiotic Components Protect Rats against Polymicrobial Sepsis: Role of Macrophages and Cathelicidin-Related Innate Immunity1 Heng-Fu Bu,*† Xiao Wang,*† Ya-Qin Zhu,*‡ Roxanne Y. Williams,* Wei Hsueh,† Xiaotian Zheng,† Ranna A. Rozenfeld,‡ Xiu-Li Zuo,† and Xiao-Di Tan2*†‡ Severe sepsis is associated with dysfunction of the macrophage/monocyte, an important cellular effector of the innate immune system. Previous investigations suggested that probiotic components effectively enhance effector cell functions of the immune system in vivo. In this study, we produced bacteria-free, lysozyme-modified probiotic components (LzMPC) by treating the probiotic bacteria, Lactobacillus sp., with lysozyme. We showed that oral delivery of LzMPC effectively protected rats against lethality from polymicrobial sepsis induced by cecal ligation and puncture. We found that orally administrated LzMPC was engulfed by cells such as macrophages in the liver after crossing the intestinal barrier. Moreover, LzMPC-induced protection was associated with an increase in bacterial clearance in the liver. In vitro, LzMPC up-regulated the expression of cathelicidin-related antimicrobial peptide (CRAMP) in macrophages and enhanced bactericidal activity of these cells. Furthermore, we demonstrated that surgical stress or cecal ligation and puncture caused a decrease in CRAMP expression in the liver, whereas enteral admin- istration of LzMPC restored CRAMP gene expression in these animals. Using a neutralizing Ab, we showed that protection against sepsis by LzMPC treatment required endogenous CRAMP. In addition, macrophages from LzMPC-treated rats had an enhanced capacity of cytokine production in response to LPS or LzMPC stimulation. Together, our data suggest that the protective effect of LzMPC in sepsis is related to an enhanced cathelicidin-related innate immunity in macrophages.
    [Show full text]
  • Human Cathelicidin LL-37 Is a Chemoattractant for Eosinophils and Neutrophils That Acts Via Formyl-Peptide Receptors
    Original Paper Int Arch Allergy Immunol 2006;140:103–112 Received: January 3, 2005 Accepted after revision: December 19, 2005 DOI: 10.1159/000092305 Published online: March 24, 2006 Human Cathelicidin LL-37 Is a Chemoattractant for Eosinophils and Neutrophils That Acts via Formyl-Peptide Receptors a a b G. Sandra Tjabringa Dennis K. Ninaber Jan Wouter Drijfhout a a Klaus F. Rabe Pieter S. Hiemstra a b Departments of Pulmonology, and Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden , The Netherlands Key Words ting using antibodies directed against phosphorylated Eosinophils Neutrophils Chemotaxis Antimicrobial ERK1/2. Results: Our results show that LL-37 chemoat- peptides Innate immunity Lung infl ammation tracts both eosinophils and neutrophils. The FPR antag- onistic peptide tBoc-MLP inhibited LL-37-induced che- motaxis. Whereas the FPR agonist fMLP activated ERK1/2 Abstract in neutrophils, LL-37 did not, indicating that fMLP and Background: Infl ammatory lung diseases such as asth- LL-37 deliver different signals through FPRs. Conclu- ma and chronic obstructive pulmonary disease (COPD) sions: LL-37 displays chemotactic activity for eosinophils are characterized by the presence of eosinophils and and neutrophils, and this activity is mediated via an FPR. neutrophils. However, the mechanisms that mediate the These results suggest that LL-37 may play a role in in- infl ux of these cells are incompletely understood. Neu- fl ammatory lung diseases such as asthma and COPD. trophil products, including neutrophil elastase and anti- Copyright © 2006 S. Karger AG, Basel microbial peptides such as neutrophil defensins and LL- 37, have been demonstrated to display chemotactic activity towards cells from both innate and adaptive im- Introduction munity.
    [Show full text]
  • Innate Immune System of Mallards (Anas Platyrhynchos)
    Anu Helin Linnaeus University Dissertations No 376/2020 Anu Helin Eco-immunological studies of innate immunity in Mallards immunity innate of studies Eco-immunological List of papers Eco-immunological studies of innate I. Chapman, J.R., Hellgren, O., Helin, A.S., Kraus, R.H.S., Cromie, R.L., immunity in Mallards (ANAS PLATYRHYNCHOS) Waldenström, J. (2016). The evolution of innate immune genes: purifying and balancing selection on β-defensins in waterfowl. Molecular Biology and Evolution. 33(12): 3075-3087. doi:10.1093/molbev/msw167 II. Helin, A.S., Chapman, J.R., Tolf, C., Andersson, H.S., Waldenström, J. From genes to function: variation in antimicrobial activity of avian β-defensin peptides from mallards. Manuscript III. Helin, A.S., Chapman, J.R., Tolf, C., Aarts, L., Bususu, I., Rosengren, K.J., Andersson, H.S., Waldenström, J. Relation between structure and function of three AvBD3b variants from mallard (Anas platyrhynchos). Manuscript I V. Chapman, J.R., Helin, A.S., Wille, M., Atterby, C., Järhult, J., Fridlund, J.S., Waldenström, J. (2016). A panel of Stably Expressed Reference genes for Real-Time qPCR Gene Expression Studies of Mallards (Anas platyrhynchos). PLoS One. 11(2): e0149454. doi:10.1371/journal. pone.0149454 V. Helin, A.S., Wille, M., Atterby, C., Järhult, J., Waldenström, J., Chapman, J.R. (2018). A rapid and transient innate immune response to avian influenza infection in mallards (Anas platyrhynchos). Molecular Immunology. 95: 64-72. doi:10.1016/j.molimm.2018.01.012 (A VI. Helin, A.S., Wille, M., Atterby, C., Järhult, J., Waldenström, J., Chapman, N A S J.R.
    [Show full text]
  • Antimicrobial Peptides in Reptiles
    Pharmaceuticals 2014, 7, 723-753; doi:10.3390/ph7060723 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review Antimicrobial Peptides in Reptiles Monique L. van Hoek National Center for Biodefense and Infectious Diseases, and School of Systems Biology, George Mason University, MS1H8, 10910 University Blvd, Manassas, VA 20110, USA; E-Mail: [email protected]; Tel.: +1-703-993-4273; Fax: +1-703-993-7019. Received: 6 March 2014; in revised form: 9 May 2014 / Accepted: 12 May 2014 / Published: 10 June 2014 Abstract: Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development.
    [Show full text]
  • Activity by Specific Inhibition of Myeloperoxidase Hlf1-11 Exerts Immunomodulatory Effects the Human Lactoferrin-Derived Peptide
    The Human Lactoferrin-Derived Peptide hLF1-11 Exerts Immunomodulatory Effects by Specific Inhibition of Myeloperoxidase Activity This information is current as of September 25, 2021. Anne M. van der Does, Paul J. Hensbergen, Sylvia J. Bogaards, Medine Cansoy, André M. Deelder, Hans C. van Leeuwen, Jan W. Drijfhout, Jaap T. van Dissel and Peter H. Nibbering J Immunol 2012; 188:5012-5019; Prepublished online 20 Downloaded from April 2012; doi: 10.4049/jimmunol.1102777 http://www.jimmunol.org/content/188/10/5012 http://www.jimmunol.org/ References This article cites 39 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/188/10/5012.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Human Lactoferrin-Derived Peptide hLF1-11 Exerts Immunomodulatory Effects by Specific Inhibition of Myeloperoxidase Activity Anne M.
    [Show full text]
  • Vitamin D-Cathelicidin Axis: at the Crossroads Between Protective Immunity and Pathological Inflammation During Infection
    Immune Netw. 2020 Apr;20(2):e12 https://doi.org/10.4110/in.2020.20.e12 pISSN 1598-2629·eISSN 2092-6685 Review Article Vitamin D-Cathelicidin Axis: at the Crossroads between Protective Immunity and Pathological Inflammation during Infection Chaeuk Chung 1, Prashanta Silwal 2,3, Insoo Kim2,3, Robert L. Modlin 4,5, Eun-Kyeong Jo 2,3,6,* 1Division of Pulmonary and Critical Care, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Korea Received: Oct 27, 2019 2Infection Control Convergence Research Center, Chungnam National University School of Medicine, Revised: Jan 28, 2020 Daejeon 35015, Korea Accepted: Jan 30, 2020 3Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea 4Division of Dermatology, Department of Medicine, David Geffen School of Medicine at the University of *Correspondence to California, Los Angeles, Los Angeles, CA 90095, USA Eun-Kyeong Jo 5Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Department of Microbiology, Chungnam Los Angeles, CA 90095, USA National University School of Medicine, 282 6Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea Munhwa-ro, Jung-gu, Daejeon 35015, Korea. E-mail: [email protected] Copyright © 2020. The Korean Association of ABSTRACT Immunologists This is an Open Access article distributed Vitamin D signaling plays an essential role in innate defense against intracellular under the terms of the Creative Commons microorganisms via the generation of the antimicrobial protein cathelicidin. In addition Attribution Non-Commercial License (https:// to directly binding to and killing a range of pathogens, cathelicidin acts as a secondary creativecommons.org/licenses/by-nc/4.0/) messenger driving vitamin D-mediated inflammation during infection.
    [Show full text]
  • Plasma Elafin, Cathelicidin, and Α-Defensins Are Increased in Paediatric Inflammatory Crohn’S Disease and Reflect Disease Location
    Research letter Gastroenterology Plasma elafin, cathelicidin, and α-defensins are increased in paediatric inflammatory Crohn’s disease and reflect disease location Andrzej Wędrychowicz1, Przemysław Tomasik2, Kinga Kowalska-Duplaga1, Stanisław Pieczarkowski1, Krzysztof Fyderek1 1Department of Paediatrics, Gastroenterology, and Nutrition, Jagiellonian University Corresponding author: Medical College, Krakow, Poland Prof. Andrzej Wędrychowicz 2Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Department of Paediatrics, Poland Gastroenterology, and Nutrition Submitted: 10 April 2021, Accepted: 1 June 2021 Jagiellonian University Online publication: 11 June 2021 Medical College Krakow, Poland Arch Med Sci 2021; 17 (4): 1114–1117 Phone: +48 12 3339330 DOI: https://doi.org/10.5114/aoms/138349 E-mail: Copyright © 2021 Termedia & Banach [email protected] Abstract Introduction: The aim of our study was to assess antimicrobial peptides in children with Crohn’s disease (CD). Methods: Plasma elafin, cathelicidin, and α- and β-defensins were assessed in 35 children with CD using immunoassays. Phenotype and location of CD were assessed based on the results of endoscopic and radiological studies. Results: We found increased elafin, cathelicidin, and α-defensins in children with inflammatory phenotype as compared to stricturing and penetrating phenotypes of CD. Additionally, we found increased elafin and cathelicidin in colonic location and α-defensins in ileal CD locations. Conclusions: Assessing antimicrobial
    [Show full text]
  • The Structure of the Antimicrobial Human Cathelicidin LL-37 Shows
    www.nature.com/scientificreports OPEN The structure of the antimicrobial human cathelicidin LL‑37 shows oligomerization and channel formation in the presence of membrane mimics Enea Sancho‑Vaello1,7, David Gil‑Carton2, Patrice François 3, Eve‑Julie Bonetti3, Mohamed Kreir4,8, Karunakar Reddy Pothula 5, Ulrich Kleinekathöfer 5 & Kornelius Zeth6* The human cathelicidin LL‑37 serves a critical role in the innate immune system defending bacterial infections. LL‑37 can interact with molecules of the cell wall and perforate cytoplasmic membranes resulting in bacterial cell death. To test the interactions of LL‑37 and bacterial cell wall components we crystallized LL‑37 in the presence of detergents and obtained the structure of a narrow tetrameric channel with a strongly charged core. The formation of a tetramer was further studied by cross‑ linking in the presence of detergents and lipids. Using planar lipid membranes a small but defned conductivity of this channel could be demonstrated. Molecular dynamic simulations underline the stability of this channel in membranes and demonstrate pathways for the passage of water molecules. Time lapse studies of E. coli cells treated with LL‑37 show membrane discontinuities in the outer membrane followed by cell wall damage and cell death. Collectively, our results open a venue to the understanding of a novel AMP killing mechanism and allows the rational design of LL‑37 derivatives with enhanced bactericidal activity. Te increase in antibiotic resistance is one of the biggest health challenges our society is currently facing1. As a consequence, the discovery of new bactericidal drug candidates from any source including antimicrobial peptides (AMPs) is urgent2–4.
    [Show full text]