Abnormal Neural Oscillations and Synchrony in Schizophrenia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Part II: Auditory Evoked Potentials, P300 Response and Contingent Negative Variation in Social Drinkers
Article NIMHANS Journal Social Drinking - Part II: Auditory Evoked Potentials, P300 Response and Contingent Negative Variation in Social Drinkers Volume: 14 Issue: 01 January 1996 Page: 23-30 Chitra Andrade &, C R Mukundan Reprints request , - Department of Clinical Psychology, National Institute of Mental Health & Neuro Sciences, Bangalore 560 029, India Abstract The study aimed to determine if any neurophysiological evidence supporting cognitive changes exist in social drinkers. The sample comprised of 44 male social drinkers and 22 teetotallers matched for age and education. Details of drinking habits were elicited through interviews of the subjects. The experiments consisted of tests for late Auditory Evoked Potentials (AEP), Auditory P300 and Contingent Negative Variation (CNV). EEG was recorded from the Fz and Cz electrode sites of the 10-20 International electrode placement system. The two groups were compared on the mean amplitudes and latencies of P1-N1-P2 components of the AEP, the P300 and the early and late components of the CNV. Results showed that the two groups did not differ significantly on both the amplitude and latency measures of the various components, indicating that there is no electrophysiological evidence of change in cognitive processing or brain dysfunction in social drinkers. Key words - Social drinking, Event related potentials, AEP, P 300, CNV Event Related Potential (ERP) responses have been reported to be sensitive to several aspects of alcohol use, including acute intoxication, withdrawal, tolerance, alcohol related chronic brain dysfunction, in utero exposure, social consumptions and familial risk for alcoholism [1], [2], [3], [4], [5]. There have been very few studies in social drinkers (SDs) using ERP measures and the results have been equivocal. -
The Deficit of Multimodal Perception of Congruent and Non-Congruent Fearful Expressions in Patients with Schizophrenia: the ERP Study
brain sciences Article The Deficit of Multimodal Perception of Congruent and Non-Congruent Fearful Expressions in Patients with Schizophrenia: The ERP Study Galina V. Portnova 1,2,*, Aleksandra V. Maslennikova 1,3, Natalya V. Zakharova 3 and Olga V. Martynova 1,4 1 Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Moscow, Russia; [email protected] (A.V.M.); [email protected] (O.V.M.) 2 The Pushkin State Russian Language Institute, 117485 Moscow, Russia 3 Psychiatric Clinical Hospital No. 1 Named after ON. Alekseeva of the Moscow City Health Department, 117152 Moscow, Russia; [email protected] 4 Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, 109548 Moscow, Russia * Correspondence: [email protected] Abstract: Emotional dysfunction, including flat affect and emotional perception deficits, is a specific symptom of schizophrenia disorder. We used a modified multimodal odd-ball paradigm with fearful facial expressions accompanied by congruent and non-congruent emotional vocalizations (sounds of women screaming and laughing) to investigate the impairment of emotional perception and reactions to other people’s emotions in schizophrenia. We compared subjective ratings of emotional state and event-related potentials (EPPs) in response to congruent and non-congruent stimuli in patients with schizophrenia and healthy controls. The results showed the altered multimodal perception of fearful stimuli in patients with schizophrenia. The amplitude of N50 was significantly higher for non-congruent stimuli than congruent ones in the control group and did not differ in patients. The Citation: Portnova, G.V.; P100 and N200 amplitudes were higher in response to non-congruent stimuli in patients than in Maslennikova, A.V.; Zakharova, N.V.; controls, implying impaired sensory gating in schizophrenia. -
Effects of Ketamine Administration on Auditory Information Processing in the Neocortex of Nonhuman Primates
ORIGINAL RESEARCH published: 19 August 2020 doi: 10.3389/fpsyt.2020.00826 Effects of Ketamine Administration on Auditory Information Processing in the Neocortex of Nonhuman Primates Misako Komatsu 1,2* and Noritaka Ichinohe 1,2 1 Laboratory for Molecular Analysis of Higher Brain Functions, RIKEN Center for Brain Science, Saitama, Japan, 2 Department of Ultrastructural Research, National Center of Neurology and Psychiatry, Tokyo, Japan Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts broad effects on consciousness and perception. Since NMDA receptor antagonists induce cognitive impairments, ketamine has been used for translational research on several psychiatric Edited by: diseases, such as schizophrenia. Whereas the effects of ketamine on cognitive functions Neal R. Swerdlow, have been extensively studied, studies on the effects of ketamine on simple sensory University of California, San Diego, United States information processing remain limited. In this study, we investigated the cortex-wide Reviewed by: effects of ketamine administration on auditory information processing in nonhuman Gregor Leicht, primates using whole-cortical electrocorticography (ECoG). We first recorded ECoG University Medical Center Hamburg-Eppendorf, Germany from awake monkeys on presenting auditory stimuli of different frequencies or different Yosuke Morishima, durations. We observed auditory evoked responses (AERs) across the cortex, including in University of Bern, Switzerland frontal, parietal, and temporal areas, while feature-specific responses were obtained *Correspondence: around the temporal sulcus. Next, we examined the effects of ketamine on cortical Misako Komatsu [email protected] auditory information processing. We conducted ECoG recordings from monkeys that had been administered anesthetic doses of ketamine from 10 to 180 min following Specialty section: administration. -
Spectral Components of the P300 Speller Response in Electrocorticography
Proceedings of the 5th International FrA1.4 IEEE EMBS Conference on Neural Engineering Cancun, Mexico, April 27 - May 1, 2011 Spectral Components of the P300 Speller Response in Electrocorticography Dean J. Krusienski, SeniorMember, IEEE , and Jerry. J. Shih Abstract —Recent studies have demonstrated that the P300 and showed predictable time courses in the delta, theta, and Speller can be used to reliably control a brain-computer alpha bands. With the increased spatial resolution and interface via scalp-recorded electroencephalography (EEG) and spectral bandwidth afforded by ECoG, and the recent intracranial electrocorticography (ECoG). However, the exact association of gamma band features with a wide variety of reasons why some disabled individuals are unable to cortical processes [7][23][32], an examination of the spectral successfully use the P300 Speller remain unknown. The characteristics of the P300 Speller response using ECoG is superior bandwidth and spatial resolution of ECoG compared justified. This paper provides a preliminary spatio-temporal to EEG may provide more insight into the nature of the responses evoked by the P300 Speller. This study examines the analysis of the P300 Speller responses in the conventional spatio-temporal progression of the P300 Speller response in delta, theta, alpha, beta, low-gamma, and high-gamma bands. ECoG for six conventional frequency bands. II. METHODOLOGY I. INTRODUCTION A. Subjects BRAIN -COMPUTER INTERFACE (BCI) is a device that Six subjects with medically intractable epilepsy who Auses brain signals to provide a non-muscular underwent Phase 2 evaluation for epilepsy surgery with communication channel [34], particularly for individuals with temporary placement of intracranial grid or strip electrode severe neuromuscular disabilities. -
Mismatch Negativity and Stimulus-Preceding Negativity in Paradigms of Increasing Auditory Complexity: a Possible Role in Predictive Coding
entropy Article Mismatch Negativity and Stimulus-Preceding Negativity in Paradigms of Increasing Auditory Complexity: A Possible Role in Predictive Coding Francisco J. Ruiz-Martínez * , Antonio Arjona and Carlos M. Gómez Human Psychobiology Lab, Experimental Psychology Department, University of Sevilla, 41018 Seville, Spain; [email protected] (A.A.); [email protected] (C.M.G.) * Correspondence: [email protected] Abstract: The auditory mismatch negativity (MMN) has been considered a preattentive index of auditory processing and/or a signature of prediction error computation. This study tries to demon- strate the presence of an MMN to deviant trials included in complex auditory stimuli sequences, and its possible relationship to predictive coding. Additionally, the transfer of information between trials is expected to be represented by stimulus-preceding negativity (SPN), which would possibly fit the predictive coding framework. To accomplish these objectives, the EEG of 31 subjects was recorded during an auditory paradigm in which trials composed of stimulus sequences with increasing or decreasing frequencies were intermingled with deviant trials presenting an unexpected ending. Our results showed the presence of an MMN in response to deviant trials. An SPN appeared during the intertrial interval and its amplitude was reduced in response to deviant trials. The presence of Citation: Ruiz-Martínez, F.J.; Arjona, an MMN in complex sequences of sounds and the generation of an SPN component, with different A.; Gómez, C.M. Mismatch Negativity and Stimulus-Preceding amplitudes in deviant and standard trials, would support the predictive coding framework. Negativity in Paradigms of Increasing Auditory Complexity: A Possible Keywords: mismatch negativity; stimulus preceding negativity; contingent negative variation; Role in Predictive Coding. -
A Critical Review of the Deviance Detection Theory of Mismatch Negativity
Review A Critical Review of the Deviance Detection Theory of Mismatch Negativity Jamie A. O’Reilly 1,* and Amonrat O’Reilly 2 1 College of Biomedical Engineering, Rangsit University, Pathumthani 12000, Thailand 2 Thailand Institute for Science and Technological Research, Pathumthani 12120, Thailand; [email protected] * Correspondence: [email protected] Abstract: Mismatch negativity (MMN) is a component of the difference waveform derived from passive auditory oddball stimulation. Since its inception in 1978, this has become one of the most popular event-related potential techniques, with over two-thousand published studies using this method. This is a testament to the ingenuity and commitment of generations of researchers engaging in basic, clinical and animal research. Despite this intensive effort, high-level descriptions of the mechanisms theorized to underpin mismatch negativity have scarcely changed over the past four decades. The prevailing deviance detection theory posits that MMN reflects inattentive detection of difference between repetitive standard and infrequent deviant stimuli due to a mismatch between the unexpected deviant and a memory representation of the standard. Evidence for these mechanisms is inconclusive, and a plausible alternative sensory processing theory considers fundamental principles of sensory neurophysiology to be the primary source of differences between standard and deviant responses evoked during passive oddball stimulation. By frequently being restated without appropri- ate methods to exclude alternatives, the potentially flawed deviance detection theory has remained largely dominant, which could lead some researchers and clinicians to assume its veracity implicitly. Citation: O’Reilly, J.A.; O’Reilly, A. It is important to have a more comprehensive understanding of the source(s) of MMN generation A Critical Review of the Deviance before its widespread application as a clinical biomarker. -
Using Somatosensory Mismatch Responses As a Window Into Somatotopic Processing of Tactile Stimulation
Received: 9 June 2017 | Revised: 18 October 2017 | Accepted: 19 October 2017 DOI: 10.1111/psyp.13030 ORIGINAL ARTICLE Using somatosensory mismatch responses as a window into somatotopic processing of tactile stimulation Guannan Shen1 | Nathan J. Smyk1 | Andrew N. Meltzoff2 | Peter J. Marshall1 1 Department of Psychology, Temple Abstract University, Philadelphia, Pennsylvania, USA Brain responses to tactile stimulation have often been studied through the examina- 2 Institute for Learning and Brain Sciences, tion of ERPs elicited to touch on the body surface. Here, we examined two factors University of Washington, Seattle, potentially modulating the amplitude of the somatosensory mismatch negativity Washington, USA (sMMN) and P300 responses elicited by touch to pairs of body parts: (a) the distance between the representation of these body parts in somatosensory cortex, and (b) the Correspondence physical distances between the stimulated points on the body surface. The sMMN Guannan Shen, Department of and the P300 response were elicited by tactile stimulation in two oddball protocols. Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, One protocol leveraged a discontinuity in cortical somatotopic organization, and USA. involved stimulation of either the neck or the hand in relation to stimulation of the Email: [email protected] lip. The other protocol involved stimulation to the third or fifth finger in relation to the second finger. The neck-lip pairing resulted in significantly larger sMMN Funding information responses (with shorter latencies) than the hand-lip pairing, whereas the reverse was National Institutes of Health true for the amplitude of the P300. Mean sMMN amplitude and latency did not differ (1R21HD083756), National Science Foundation (BCS-1460889) between finger pairings. -
Auditory P3a and P3b Neural Generators in Schizophrenia: an Adaptive Sloreta P300 Localization Approach
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UPCommons. Portal del coneixement obert de la UPC This is an author-edited version of the accepted manuscript published in Schizophrenia Research. The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.schres.2015.09.028 Auditory P3a and P3b neural generators in schizophrenia: An adaptive sLORETA P300 localization approach Alejandro Bachiller1, Sergio Romero2,3, Vicente Molina4,5, Joan F. Alonso2,3, Miguel A. Mañanas2,3, Jesús Poza1,5,6 and Roberto Hornero1,6 1 Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, 47011 Valladolid, Spain. {[email protected]; [email protected]; [email protected]} 2 Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politècnica de Catalunya (UPC), 08028 Barcelona, Spain. {[email protected]; [email protected]; [email protected]} 3 CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) 4 Psychiatry Department, Hospital Clínico Universitario, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain {[email protected]} 5 INCYL, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, 37007 Salamanca, Spain 6 IMUVA, Instituto de Investigación en Matemáticas, Universidad de Valladolid, 47011 Valladolid, Spain Corresponding author. Alejandro Bachiller, Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, 47011 Valladolid, Spain Tel: +34 983423000 ext. 5589; fax: +34 983423667; Email address: [email protected] Abstract The present study investigates the neural substrates underlying cognitive processing in schizophrenia (Sz) patients. -
ERP Peaks Review 1 LINKING BRAINWAVES to the BRAIN
ERP Peaks Review 1 LINKING BRAINWAVES TO THE BRAIN: AN ERP PRIMER Alexandra P. Fonaryova Key, Guy O. Dove, and Mandy J. Maguire Psychological and Brain Sciences University of Louisville Louisville, Kentucky Short title: ERPs Peak Review. Key Words: ERP, peak, latency, brain activity source, electrophysiology. Please address all correspondence to: Alexandra P. Fonaryova Key, Ph.D. Department of Psychological and Brain Sciences 317 Life Sciences, University of Louisville Louisville, KY 40292-0001. [email protected] ERP Peaks Review 2 Linking Brainwaves To The Brain: An ERP Primer Alexandra Fonaryova Key, Guy O. Dove, and Mandy J. Maguire Abstract This paper reviews literature on the characteristics and possible interpretations of the event- related potential (ERP) peaks commonly identified in research. The description of each peak includes typical latencies, cortical distributions, and possible brain sources of observed activity as well as the evoking paradigms and underlying psychological processes. The review is intended to serve as a tutorial for general readers interested in neuropsychological research and a references source for researchers using ERP techniques. ERP Peaks Review 3 Linking Brainwaves To The Brain: An ERP Primer Alexandra P. Fonaryova Key, Guy O. Dove, and Mandy J. Maguire Over the latter portion of the past century recordings of brain electrical activity such as the continuous electroencephalogram (EEG) and the stimulus-relevant event-related potentials (ERPs) became frequent tools of choice for investigating the brain’s role in the cognitive processing in different populations. These electrophysiological recording techniques are generally non-invasive, relatively inexpensive, and do not require participants to provide a motor or verbal response. -
Rapid P300 Brain-Computer Interface Communication with a Head-Mounted Display
ORIGINAL RESEARCH published: 05 June 2015 doi: 10.3389/fnins.2015.00207 Rapid P300 brain-computer interface communication with a head-mounted display Ivo Käthner 1*, Andrea Kübler 1 and Sebastian Halder 1, 2 1 Institute of Psychology, University of Würzburg, Würzburg, Germany, 2 Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan Visual ERP (P300) based brain-computer interfaces (BCIs) allow for fast and reliable spelling and are intended as a muscle-independent communication channel for people with severe paralysis. However, they require the presentation of visual stimuli in the field of view of the user. A head-mounted display could allow convenient presentation of visual stimuli in situations, where mounting a conventional monitor might be difficult or not feasible (e.g., at a patient’s bedside). To explore if similar accuracies can be achieved with a virtual reality (VR) headset compared to a conventional flat screen monitor, we conducted an experiment with 18 healthy participants. We also evaluated it with a person in the locked-in state (LIS) to verify that usage of the headset is possible for Edited by: Emanuel Donchin, a severely paralyzed person. Healthy participants performed online spelling with three University of South Florida, USA different display methods. In one condition a 5 × 5 letter matrix was presented on a Reviewed by: conventional 22 inch TFT monitor. Two configurations of the VR headset were tested. In Fabien Lotte, the first (glasses A), the same 5×5 matrix filled the field of view of the user. In the second INRIA (National Institute for Computer Science and Control), France (glasses B), single letters of the matrix filled the field of view of the user. -
Stimulus Frequency and Masking As Determinants of P300 Latency in Event-Related Potentials from Auditory Stimuli *
Biological Psycho&v 21 (1985) 309-318 309 North-Holland STIMULUS FREQUENCY AND MASKING AS DETERMINANTS OF P300 LATENCY IN EVENT-RELATED POTENTIALS FROM AUDITORY STIMULI * John POLICH Department of Neurology, California College of Medicine, University of California, Irvine, CA 92717, U.S.A. Lawrence HOWARD School of Social Sciences, University of California, Irvine, CA 92717, U.S.A Arnold STARR Department of Neurology, California College of Medicine, University of Californra, twine, CA 92717, U.S.A. Accepted for publication 8 May 1985 The effects of target tone frequency, presence of a masking stimulus. and subject sex on the auditory ERP were studied with an ‘oddball’ paradigm. P300 latency became shorter (about 15 msec) as the difference between the standard (1000 Hz) and target tone frequency increased (1500, 2000, 4000 Hz) but became longer (about 10 msec) with the presence of a white noise masking stimulus. Similar results were obtained for both the P3a and P3b subcomponents of the P300 potential. No significant differences between the adult male and female subjects were observed. The role of stimulus parameters in applied testing situations is discussed. 1. Introduction The P300 component of the event-related brain potential (ERP) is a large (5-15 luv), positive-going waveform that occurs with a modal latency of about 300 msec in normal young adults. Although the neurophysiology underlying the P300 is still being explored (Halgren, Squires, Wilson, Rohrbaugh, Bab and Crandall, 1980; Okada, Kaufman and Williamson, 1983), the cognitive events associated with its generation have received considerable attention (Donchin, 1981; Donchin, Ritter and McCallum, 1978; Pritchard, 1981). -
P50 Potential-Associated Gamma Band Activity: Modulation by Distraction
Short communication Acta Neurobiol Exp 2012, 72: 102–109 P50 potential-associated gamma band activity: Modulation by distraction Inga Griskova-Bulanova1, 2 *, Osvaldas Ruksenas3, Kastytis Dapsys1, 3, Valentinas Maciulis1, and Sidse M. Arnfred4 1Department of Electrophysiological Treatment and Investigation Methods, Vilnius Republican Psychiatric Hospital, Vilnius, Lithuania, *Email: [email protected]; 2Department of Psychology, Mykolas Romeris University, Vilnius, Lithuania; 3Department of Biochemistry-Biophysics, Vilnius University, Vilnius, Lithuania; 4Psychiatric Center Ballerup, University Hospital of Copenhagen, Copenhagen, Denmark We aimed to evaluate the effect of changing attentional demands towards stimulation in healthy subjects on P50 potential- related high-frequency beta and gamma oscillatory responses, P50 and N100 peak amplitudes and their gating measures. There are no data showing effect of attention on P50 potential-related beta and gamma oscillatory responses and previous results of attention effects on P50 and N100 amplitudes and gating measures are inconclusive. Nevertheless the variation in the level of attention may be a source of variance in the recordings as well as it may provide additional information about the pathology under study. Nine healthy volunteers participated in the study. A standard paired stimuli auditory P50 potential paradigm was applied. Four stimulation conditions were selected: focused attention (stimuli pair counting), unfocused attention (sitting with open eyes), easy distraction (reading a magazine article), and difficult distraction (searching for Landolt rings with appropriate gap orientation). Time-frequency responses to both S1 and S2 were evaluated in slow beta (13–16 Hz, 45–175 ms window); fast beta (20–30 Hz, 45–105 ms window) and gamma (32–46 Hz, 45–65 ms window) ranges.