An Introduction to the Botanical Type Specimen Register
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ADVISORY BOARDS Each Issue of Herbaigram Is Peer Reviewed by Various Members of Our Advisory Boards Prior to Publication
ADVISORY BOARDS Each issue of HerbaiGram is peer reviewed by various members of our Advisory Boards prior to publication . American Botanical Council Herb Research Dennis V. C. Awang, Ph.D., F.C.I.C., MediPiont Natural Gail B. Mahadr, Ph.D., Research Assistant Professor, Products Consul~ng Services, Ottowa, Ontario, Conodo Deportment o Medical Chemistry &Pharmacognosy, College of Foundation Pharmacy, University of Illinois, Chicago, Illinois Manuel F. Balandrin, R.Ph., Ph.D., Research Scien~st, NPS Rob McCaleb, President Pharmaceuticals, Salt LakeCity , Utah Robin J. Maries, Ph.D., Associate Professor of Botany, Brandon University, Brandon, Manitoba, Conodo Mi(hael J. Balidt, Ph.D., Director of the lns~tute of Econom ic Glenn Appelt, Ph.D., R.Ph., Author and Profess or Botany, the New York Botanical Gorden, Bronx, New York Dennis J. M(Kenna, Ph.D., Consulting Ethnophormocologist, Emeritus, University of Colorado, and with Boulder Beach Joseph M. Betz, Ph.D., Research Chemist, Center for Food Minneapolis, Minnesota Consulting Group Safety and Applied Nutri~on, Division of Natural Products, Food Daniel E. Moerman, Ph.D., William E. Stirton Professor of John A. Beutler, Ph.D., Natural Products Chemist, and Drug Administro~on , Washington, D.C. Anthropology, University of Michigon/ Deorbom, Dearborn, Michigan Notional Cancer Institute Donald J. Brown, N.D., Director, Natural Products Research Consultants; Faculty, Bastyr University, Seattle, Washington Samuel W. Page, Ph.D., Director, Division of Natural Products, Robert A. Bye, Jr., Ph.D., Professor of Ethnobotony, Notional University of Mexico Thomas J. Carlson, M.S., M.D., Senior Director, Center for Food Safety and Applied Nutri~on , Food and Drug Administro~on , Washington, D.C. -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
Unit 5 Ex-Situ Conservation
UNIT 2 EX-SITU CONSERVATION Structure 5.0 Introduction 5.1 Advantage of Ex-situ Conservation 5.2 Objectives 5.3 Ex-situ Conservation : Principles & Practices 5.4 Conventional methods of ex-situ conservation 5.4.1 Gene Bank 5.4.2 Community Seed Bank 5.4.3 Seed Bank 5.4.4 Botanical Garden 5.4.5 Field Gene Bank 5.5 Biotechnological methods of ex-situ conservation 5.4.1 In-vitro Conservation 5.4.2 In-vitro storage of germplasm and cryopreservation 5.4.3 Other method 5.4.4 Germplasm facilities in India 5.6 General Account of Important Institutions 5.4.1 BSI 5.4.2 NBPGR 5.4.3 IARI 5.4.4 SCIR 5.4.5 DBT 5.7 Let us sum up 5.8 Check your progress & the key 5.9 Assignments/ Activities 5.10 References/ Further Reading 44 5.0 INTRODUCTION For much of the time man lived in a hunter-gather society and thus depended entirely on biodiversity for sustenance. But, with the increased dependence on agriculture and industrialisation, the emphasis on biodiversity has decreased. Indeed, the biodiversity, in wild and domesticated forms, is the sources for most of humanity food, medicine, clothing and housing, much of the cultural diversity and most of the intellectual and spiritual inspiration. It is, without doubt, the very basis of life. Further that, a quarter of the earth‟s total biological diversity amounting to a million species, which might be useful to mankind in one way or other, is in serious risk of extinction over the next 2-3 decades. -
Benton County Prairie Species Habitat Conservation Plan
BENTON COUNTY PRAIRIE SPECIES HABITAT CONSERVATION PLAN DECEMBER 2010 For more information, please contact: Benton County Natural Areas & Parks Department 360 SW Avery Ave. Corvallis, Oregon 97333-1192 Phone: 541.766.6871 - Fax: 541.766.6891 http://www.co.benton.or.us/parks/hcp This document was prepared for Benton County by staff at the Institute for Applied Ecology: Tom Kaye Carolyn Menke Michelle Michaud Rachel Schwindt Lori Wisehart The Institute for Applied Ecology is a non-profit 501(c)(3) organization whose mission is to conserve native ecosystems through restoration, research, and education. P.O. Box 2855 Corvallis, OR 97339-2855 (541) 753-3099 www.appliedeco.org Suggested Citation: Benton County. 2010. Prairie Species Habitat Conservation Plan. 160 pp plus appendices. www.co.benton.or.us/parks/hcp Front cover photos, top to bottom: Kincaid’s lupine, photo by Tom Kaye Nelson’s checkermallow, photo by Tom Kaye Fender’s blue butterfly, photo by Cheryl Schultz Peacock larkspur, photo by Lori Wisehart Bradshaw’s lomatium, photo by Tom Kaye Taylor’s checkerspot, photo by Dana Ross Willamette daisy, photo by Tom Kaye Benton County Prairie Species HCP Preamble The Benton County Prairie Species Habitat Conservation Plan (HCP) was initiated to bring Benton County’s activities on its own lands into compliance with the Federal and State Endangered Species Acts. Federal law requires a non-federal landowner who wishes to conduct activities that may harm (“take”) threatened or endangered wildlife on their land to obtain an incidental take permit from the U.S. Fish and Wildlife Service. State law requires a non-federal public landowner who wishes to conduct activities that may harm threatened or endangered plants to obtain a permit from the Oregon Department of Agriculture. -
Hops Humulus Lupulus L
HERB PROFILE Hops Humulus lupulus L. Family: Cannabaceae INTRODUCTION as noted from observations of young women who reportedly often ops is a perennial vine growing vertically to 33 feet experienced early menstrual periods after harvesting the strobiles with dark green, heart-shaped leaves.l,2,3 The male and in hops fields. lB H female flowers grow on separate vines.l.3 Hops are the Traditionally hops were used for nervousness, insomnia, excit dried yellowish-green, cone-like female flowers or fruits (tech ability, ulcers, indigestion, and restlessness associated with tension nically referred to as strobiles).l.4 Originally native to Europe, headache.l3 Additional folk medicine uses include pain relief, Asia, and North America,5 several varieties of hops are now culti improved appetite, and as a tonic.9 A tea made of hops was vated in Germany, the United States, the British Isles, the Czech ingested for inflammation of the bladder.? Native American Republic, South America, and Australia.4,6 Although still wild tribes used hops for insomnia and pain.5,8 Hops are employed in in Europe and North America, commercial hops come exclu Ayurvedic (Indian) medicine for restlessness and in traditional sively from cultivated plants.1,7 The leaves, shoots, female flowers C hinese medicine for insomnia, stomach upset and cramping, (hops), and oil are the parts of the plant used commercially. 8 and lack of appetite.5 Clinical studies in China report promise for the treatment of tuberculosis, leprosy, acute bacterial dysen HISTORY AND CULTURAL SIGNIFICANCE -
WTU Herbarium Specimen Label Data
WTU Herbarium Specimen Label Data Generated from the WTU Herbarium Database October 10, 2021 at 12:52 pm http://biology.burke.washington.edu/herbarium/collections/search.php Specimen records: 8843 Images: 1185 Search Parameters: Label Query: Genus = "Carex" Cyperaceae Cyperaceae Carex interior L.H. Bailey Carex rossii Boott U.S.A., WASHINGTON, FERRY COUNTY: U.S.A., WASHINGTON, KING COUNTY: Colville National Forest: Ward Lake. Trail to Findley Lake. Cascade Mountains of western Washington. Elev. 3638 ft. Elev. 3600 ft. T38N R32E S14 SE; NAD 27, uncertainty: 200 m., Source: T21N R10E S7; NAD 27, uncertainty: 300 m., Source: Georeferenced, Georef'd by WTU Staff Georeferenced, Georef'd by WTU Staff Wet meadow/emergent wetland around Ward Lake - full sun, upland Trail follows Findley Creek through old growth Mt. Hemlock forest to spruce forest. Scattered - some clumps, uncommon. Phenology: the lake. At trailhead, growing on gravelly cut bank. Phenology: Flowers. Origin: Native. Vegetative. Origin: Native. Suzanne Bagshaw 123 10 Jul 1999 Clayton J. Antieau 01-9 14 Jul 2001 with Kelly O'Rourke, Katie Saurer, Allison Colwell Herbarium: WTU Herbarium: WTU Cyperaceae Cyperaceae Carex hoodii Boott Carex mertensii J.D. Prescott ex Bong. U.S.A., WASHINGTON, FERRY COUNTY: Okanogan Valley: On southeast facing slope east of Forest Service U.S.A., WASHINGTON, KING COUNTY: Road 2030 (about 1 mile north of Old Stage trailhead). Cascade Mountains; Sutton Lake. 48° 42' 49" N, 118° 26' 16" W Elev. 3650 ft. Mixed conifer forest (Pseudotsuga menziesii, Pinus contorta) and 47° 17.769' N, 121° 32.05' W; T21N R10E S21 NE 1/4 meadow mixed with rock outcrops. -
Endemism in Recently Diverged Angiosperms Is Associated with Chromosome Set Duplication
Endemism in Recently Diverged Angiosperms Is Associated With Chromosome Set Duplication Sara Villa University of Milan: Universita degli Studi di Milano Matteo Montagna Universita degli Studi di Milano Simon Pierce ( [email protected] ) Università degli Studi di Milano: Universita degli Studi di Milano https://orcid.org/0000-0003-1182- 987X Research Article Keywords: adaptative radiation, apo-endemics, diversity creation, genome doubling, neo-endemism, speciation mechanism Posted Date: June 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-550165/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/22 Abstract Chromosome set duplication (polyploidy) drives instantaneous speciation and shifts in ecology for angiosperms, and is frequently observed in neo-endemic species. However, the extent to which chromosome set duplication is associated with endemism throughout the owering plants has not been determined. We hypothesised that across the angiosperms polyploidy is more frequent and more pronounced (higher evident ploidy levels) for recent endemics. Data on chromosome counts, molecular dating and distribution for 4210 species belonging to the major clades of angiosperms were mined from literature-based databases. As all clades include diploid taxa, with polyploids representing a possible ‘upper limit’ to the number of chromosomes over evolutionary time, upper boundary regression was used to investigate the relationship between the number of chromosomes and time since taxon divergence, both across clades and separately for families, with endemic and non-endemic species compared. A signicant negative exponential relationship between the number of chromosomes and taxon age was 2 evident across angiosperm clades (R adj=0.48 with endemics and non-endemics considered together, 2 2 R adj=0.46 for endemics; R adj=0.44 for non-endemics; p ≤0.0001 in all cases), which was three times stronger for endemics (decay constant=0.12, cf. -
History and Current Status of Systematic Research with Araceae
HISTORY AND CURRENT STATUS OF SYSTEMATIC RESEARCH WITH ARACEAE Thomas B. Croat Missouri Botanical Garden P. O. Box 299 St. Louis, MO 63166 U.S.A. Note: This paper, originally published in Aroideana Vol. 21, pp. 26–145 in 1998, is periodically updated onto the IAS web page with current additions. Any mistakes, proposed changes, or new publications that deal with the systematics of Araceae should be brought to my attention. Mail to me at the address listed above, or e-mail me at [email protected]. Last revised November 2004 INTRODUCTION The history of systematic work with Araceae has been previously covered by Nicolson (1987b), and was the subject of a chapter in the Genera of Araceae by Mayo, Bogner & Boyce (1997) and in Curtis's Botanical Magazine new series (Mayo et al., 1995). In addition to covering many of the principal players in the field of aroid research, Nicolson's paper dealt with the evolution of family concepts and gave a comparison of the then current modern systems of classification. The papers by Mayo, Bogner and Boyce were more comprehensive in scope than that of Nicolson, but still did not cover in great detail many of the participants in Araceae research. In contrast, this paper will cover all systematic and floristic work that deals with Araceae, which is known to me. It will not, in general, deal with agronomic papers on Araceae such as the rich literature on taro and its cultivation, nor will it deal with smaller papers of a technical nature or those dealing with pollination biology. -
Vegetation Classification and Mapping Project Report
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Lewis and Clark National Historic Park Vegetation Classification and Mapping Project Report Natural Resource Report NPS/NCCN/NRR—2012/597 ON THE COVER Benson Beach, Cape Disappointment State Park Photograph by: Lindsey Koepke Wise Lewis and Clark National Historic Park Vegetation Classification and Mapping Project Report Natural Resource Report NPS/NCCN/NRR—2012/597 James S. Kagan, Eric M. Nielsen, Matthew D. Noone, Jason C. van Warmerdam, and Lindsey K. Wise Oregon Biodiversity Information Center Institute for Natural Resources – Portland Portland State University P.O. Box 751 Portland, OR 97207 Gwen Kittel NatureServe 4001 Discovery Dr., Suite 2110 Boulder, CO 80303 Catharine Copass National Park Service North Coast and Cascades Network Olympic National Park 600 E. Park Avenue Port Angeles, WA 98362 December 2012 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. -
The Chinaberry Path with Melia Azedarach Flowering Profusely At
photograph © Jim Ethridge The Chinaberry path with Melia azedarach flowering profusely at Quarryhill Botanical Garden in California, which celebrated its twenty-fifth anniversary in 2012. photograph © Tony Kirkham The view across the valley from the prayer flags at Quarryhill. 138 Quarryhill Botanical Garden, USA In 1987 Jane Davenport Hansen started creating the botanical garden that is Quarryhill in Sonoma Valley, California. TONY KIRKHAM writes about the exceptional collection of wild collected Chinese plants that thrive there 25 years on. 1987 can be remembered in the Dendrological calendar for a number of events in the tree world, particularly the Great Storm in the South-east of England that destroyed over 15 million trees in one night. This storm was a real wakeup call to anyone with even a slight interest in trees and it started a new beginning in the tree world, raising public awareness and generating new planting schemes across the UK. In the same year, in Sonoma Valley, California, Jane Davenport Jansen had a vision that would make significant additions to arboreta across the botanic garden world, and leave a living legacy that is now one of the largest living collections of wild collected temperate Asian plants in North America; it was the creation of Quarryhill Botanical Garden. In 1968, Jane purchased 61 acres in the foothills of the Mayacama Mountains off the Sonoma Highway in Glen Ellen, Sonoma County to be planted with vineyards, but 20 acres of the hillside contained several abandoned stone quarries and in 1987 she decided to create a garden. Unlike many gardens INTERNATIONAL DENDROLOGY SOCIETY GARDENS & ARBORETA that would be planted purely for landscape, aesthetic and floral qualities, Jane had set her sights on something unique to the area that would become her personal drive, a landscape planted with natural source plants derived from her own funded expeditions to targeted countries around the world with an emphasis on the Far East. -
THE HAWAIIAN SILVERSWORDS Systematics, Affinities, and Phytogeographic Problems of the Genus Argyroxiphium
THE HAWAIIAN SILVERSWORDS Systematics, Affinities, and Phytogeographic Problems of the Genus Argyroxiphium By DAVID D. KECK BERNICE P. BISHOP MUSEUM OCCASIONAL PAPERS VOLUME XI, NUMBER 19 HONOLULU, HAWAII PUBLISHED BY THE MuSEUM March 20, 1936 THE HAW AllAN SILVERSWORDS: Systematics, Affinities, and Phytogeographic Problems of the Argyroxiphium By DAVID D. KF;CK Carnegie Institution of Washington, Stanford University, California INTRODUCTION Theories as to the origin of the Hawaiian islands and the deriva tion of their flora and fauna have appeared with frequency and aroused the greatest interest among biologists. Probably no other region in the world has developed so extraordinary a degree of endemism, which, according to Hillebrand (9) 1, for the indigenous vascular plants is 75.93 percent. Much more recent figures for the indigenous flowering plants given by Campbell (5) reach the remark able figure of 9°04 percent! This endemism is directly connected with the fact that the Hawaiian Archipelago is the most isolated area of equal size in the world. There have been many advocates of the theory that the Hawaiian islands are of oceanic origin, that they were elevated from the bottom of the ocean by volcanic action, and that they have always been completely isolated. Others have taken the opposing view that the islands have not always been so isolated, but may even be considered of continental origin. Those with the latter viewpoint believe that the present archipelago represents but the tips of volcanic mountain masses superimposed upon a large block that has undergone sub sidence. For instance, Campbell (4) believes there may have been a more or less direct connection. -
Nuclear Genes, Matk and the Phylogeny of the Poales
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Nuclear genes, matK and the phylogeny of the Poales Hochbach, Anne ; Linder, H Peter ; Röser, Martin Abstract: Phylogenetic relationships within the monocot order Poales have been well studied, but sev- eral unrelated questions remain. These include the relationships among the basal families in the order, family delimitations within the restiid clade, and the search for nuclear single-copy gene loci to test the relationships based on chloroplast loci. To this end two nuclear loci (PhyB, Topo6) were explored both at the ordinal level, and within the Bromeliaceae and the restiid clade. First, a plastid reference tree was inferred based on matK, using 140 taxa covering all APG IV families of Poales, and analyzed using parsimony, maximum likelihood and Bayesian methods. The trees inferred from matK closely approach the published phylogeny based on whole-plastome sequencing. Of the two nuclear loci, Topo6 supported a congruent, but much less resolved phylogeny. By contrast, PhyB indicated different phylo- genetic relationships, with, inter alia, Mayacaceae and Typhaceae sister to Poaceae, and Flagellariaceae in a basally branching position within the Poales. Within the restiid clade the differences between the three markers appear less serious. The Anarthria clade is first diverging in all analyses, followed by Restionoideae, Sporadanthoideae, Centrolepidoideae and Leptocarpoideae in the matK and Topo6 data, but in the PhyB data Centrolepidoideae diverges next, followed by a paraphyletic Restionoideae with a clade consisting of the monophyletic Sporadanthoideae and Leptocarpoideae nested within them. The Bromeliaceae phylogeny obtained from Topo6 is insufficiently sampled to make reliable statements, but indicates a good starting point for further investigations.