A Practical Approach to UML-Based Derivation of Integration Tests

Total Page:16

File Type:pdf, Size:1020Kb

A Practical Approach to UML-Based Derivation of Integration Tests A Practical approach to UML-based derivation of integration tests F. Basanieri, A. Bertolino IEI-CNR, Pisa, Italy Abstract: We present an on-going project for developing a We present here our practical approach for UML- tool supported test methodology based on UML descriptions. based integration testing, that is called Use- The leading criteria of this investigation are that no Interaction testing, as it mainly uses the UML Use additional language or expertise is required more than UML, Case and Interaction diagrams (specifically, the and that the methodology can be easily transferred to Sequence diagram). Indeed, integration testing is industrial contexts. aimed at verifying that the (hopefully pre-tested) system components interact correctly, and UML Keywords: Interaction diagrams can provide the information Category-partition, Integration test strategy, UML, Use- of how the system components should interact. Interaction test. The proposed approach is very simple, and is inspired at large by the well-known Category 1. INTRODUCTION Partition method [OB88]: we first look at the Use In recent years, the object oriented (OO) Case diagram to identify the suitable steps of an paradigm has got widespread use. Software incremental test strategy. For each identified sub- developers need appropriate OO models and Use Case, we then look at the Sequence diagram support tools for describing and analysing the to identify the relevant components, or "Test characteristics of complex distributed systems. OO Units". For each Test Unit, we derive the relevant system models usually involve graphical notations, "Settings" (could be parameters, variables, so that the relationships between the many environmental states) and the relevant elements (objects) forming the system can be "Interactions" (essentially, messages from other easily visualized. Test Units), and identify for them the significant UML, the Unified Modeling Language, is the "Choices" (with the same meaning of the Category emerging graphical notation to model, document Partition method). To do this, we can analyse the and specify OO systems along all the phases of related Class Diagrams, as well as other design the software process. Indeed, there exist now documentation. Hence, by following the many studies about using UML for design, and sequences of messages between the components many tools are available. However, only a little over the Sequence Diagram, we construct the Test part of these studies so far has addressed the usage Cases, whereby each Test Case is characterized by of UML for testing, and none of the available a combination of all suitable choices of the commercial tools provide specific assistance for involved Settings and Interactions. test planning and generation from the UML We have applied the method to a case study, descriptions. Argo/UML [Argo]. Argo/UML is an open source In this paper we address UML-based testing. tool that provide cognitive support to system Specifically, we want to address this task design. We have developed quite a few Test Cases, according to the following two guidelines: (i) we and we have been able to identify a few bugs in aim at a test method that is entirely based on the case study. However, the method is currently UML, so that it can be easily adopted by manual, and still under evaluation. Our short term industries already using UML; and, (ii) we refer to plan is the realization of a tool that support it, by high level descriptions of the system: indeed, we smoothly expanding an existing UML design want to address test planning for the integration tool. test phase starting from the very first stages of The paper is organized in the following way. In system design. the next section, we provide some introductory material to UML and Integration testing. In 1 Section 3, we describe the method in more detail, Sequence diagram: it shows the dynamic explaining it step by step. Then, in Section 4 the collaborations between a certain number of case study Argo/UML is briefly introduced, so objects, highlighting the way in which a particular that in Section 5 some examples of application of scenario1 is realized using the interactions of a Use-Interaction to it are shown. In Section 6 we (sub)set of these objects. More precisely, a also provide a very brief sketch of a UML scenario is described by the set of messages definition of the Use Interaction method itself by exchanged between objects. A Sequence diagram means of the UML extension mechanism of expresses the same information of a Collaboration stereotypes. diagram, whereby the former describes the interactions between the objects during their life- 2. BACKGROUND cycle, while the latter shows the relative UML is a graphical modeling language to distribution of these objects links in the space. visualize, specify, design and document all the phases of a software development process. Born 2.2 Integration Testing and UML-based Testing by the unification of I. Jacobson, J. Rumbaugh The testing goal is to execute the system to verify and G. Booch methods, in 1997 it was declared by its behaviour and to reveal possible failures. OMT the standard for analysis and design of Testing is an important piece of the software Object-Oriented systems. development process, because of its cost and impact on the reliability of final product. In our 2.1 UML diagrams methodology we consider the Integration Testing A UML design consists of an integrated meta- phase, performed to find errors in unit interfaces model composed of many elements representing and to build up the whole structure of software OO common world concepts. Through this meta- system in a systematic way. model we define Views showing different aspects To do this, one could use a non-incremental of the system to be modelled (Logical View, approach (big-bang), where all the modules are Component View, Deployment View, linked together and tested all at once, or Concurrency View and Use Case View). As a preferably, incremental approaches like top-down, whole, these views provide a complete picture of where modules are integrated from the main the system to be built. UML diagrams are graphs, program downto the subordinated ones, or, each describing the content of a view; they can be bottom-up, where tests are constructed from arranged in different combinations to provide modules at the lowest hierarchical level and then several system’s views. are linked together upwards, to construct the We only provide in this section a brief description whole system. of the UML diagrams mainly used in our But, when we consider an object-oriented system, methodology (for more details see [UML97a], the described techniques are not always usable, [UML97b]): because, for example, we cannot identify the Use Case diagram: a use case is the hierarchical structure of control by which it is representation of a functionality (a specific use) possible to define top-down or bottom-up provided by the system. This diagram shows a strategies. In an object-oriented environment we number of external users (actors) and their can test the class interactions by, for example, relationships with the system, when this is used to integrating together those classes used in reply to satisfy a specific functional requirement. a particular input or system event (thread-based Class diagram: it shows the static structure of the testing) or by testing together those classes that system through the representation of its classes contribute to a particular use of the system. In the with their attributes and methods. Moreover it proposed methodology, the classes to be specifies the relations between the classes using integration tested (modules, subsystem, processes) different types of associations. A system can have are those that realize a system functionality more than one Class diagram; in subsequent identified from a Use Case diagram. phases of the software development process, the Class diagram represents objects at different levels 1 A scenario is defined as a specific sequence of actions that of abstraction. illustrates behaviour and may be used to show an interaction. [UML97b] 2 As a matter of fact, even though UML is a Use Cases, since, to obtain a complete system powerful mechanism of description, we have functionality, it is generally necessary to execute found few studies about its use to guide the testing several actions realizing lower level functionalities. phases. In our methodology, Use Case diagrams drive Some researchers have proposed methods to Integration test according to an incremental translate a UML description into another formal strategy. We start analysing low-level description, and then derive the tests from the functionalities that represent a subset of actions latter. For instance, in [JGP98] the authors present described by a sub-Use Case, and then we a tool, UMLAUT, that is used to manipulate the progressively put them together, until the whole UML representation of the system and system described in the main Use Case is automatically transforms it into an intermediate obtained. form, suitable for validation. Another interesting For each selected Use Case we analyse the paper is [OA99], where a method is proposed to corresponding Sequence diagram, composed by generate test data from UML State diagrams. objects and the messages they exchange. The They translate the UML State diagram into formal objects involved in the diagram are those that SRC specifications, from which input data for unit realize and execute the functionality described in testing are automatically generated. Finally, in a the Use Case through elaborations and message recent paper from Siemens Corporate Research exchanges and so they are precisely the [HIM00] UML diagrams are used to components to be tested. In this phase we consider automatically construct test cases as follows. The the Class diagram too, and particularly a Class developers first define the dynamic behaviour of diagram at high level of abstraction.
Recommended publications
  • 07 Requirements What About RFP/RFB/Rfis?
    CMPSCI520/620 07 Requirements & UML Intro 07 Requirements SW Requirements Specification • Readings • How do we communicate the Requirements to others? • [cK99] Cris Kobryn, Co-Chair, “Introduction to UML: Structural and Use Case Modeling,” UML Revision Task Force Object Modeling with OMG UML Tutorial • It is common practice to capture them in an SRS Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea Data, • But an SRS doesn’t need to be a single paper document Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten, Rational Software, Telelogic, Unisys http://www.omg.org/technology/uml/uml_tutorial.htm • Purpose • [OSBB99] Gunnar Övergaard, Bran Selic, Conrad Bock and Morgan Björkande, “Behavioral Modeling,” UML Revision Task Force, Object Modeling with OMG UML • Contractual requirements Tutorial Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea elicitation Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten, Rational • Baseline Software, Telelogic, Unisys http://www.omg.org/technology/uml/uml_tutorial.htm • for evaluating subsequent products • [laM01] Maciaszek, L.A. (2001): Requirements Analysis and System Design. • for change control requirements Developing Information Systems with UML, Addison Wesley Copyright © 2000 by analysis Addison Wesley • Audience • [cB04] Bock, Conrad, Advanced Analysis and Design with UML • Users, Purchasers requirements http://www.kabira.com/bock/ specification • [rM02] Miller, Randy, “Practical UML: A hands-on introduction for developers,”
    [Show full text]
  • OMG Systems Modeling Language (OMG Sysml™) Tutorial 25 June 2007
    OMG Systems Modeling Language (OMG SysML™) Tutorial 25 June 2007 Sanford Friedenthal Alan Moore Rick Steiner (emails included in references at end) Copyright © 2006, 2007 by Object Management Group. Published and used by INCOSE and affiliated societies with permission. Status • Specification status – Adopted by OMG in May ’06 – Finalization Task Force Report in March ’07 – Available Specification v1.0 expected June ‘07 – Revision task force chartered for SysML v1.1 in March ‘07 • This tutorial is based on the OMG SysML adopted specification (ad-06-03-01) and changes proposed by the Finalization Task Force (ptc/07-03-03) • This tutorial, the specifications, papers, and vendor info can be found on the OMG SysML Website at http://www.omgsysml.org/ 7/26/2007 Copyright © 2006,2007 by Object Management Group. 2 Objectives & Intended Audience At the end of this tutorial, you should have an awareness of: • Benefits of model driven approaches for systems engineering • SysML diagrams and language concepts • How to apply SysML as part of a model based SE process • Basic considerations for transitioning to SysML This course is not intended to make you a systems modeler! You must use the language. Intended Audience: • Practicing Systems Engineers interested in system modeling • Software Engineers who want to better understand how to integrate software and system models • Familiarity with UML is not required, but it helps 7/26/2007 Copyright © 2006,2007 by Object Management Group. 3 Topics • Motivation & Background • Diagram Overview and Language Concepts • SysML Modeling as Part of SE Process – Structured Analysis – Distiller Example – OOSEM – Enhanced Security System Example • SysML in a Standards Framework • Transitioning to SysML • Summary 7/26/2007 Copyright © 2006,2007 by Object Management Group.
    [Show full text]
  • PART 3: UML Dynamic Modelling Notations • State Machines/Statecharts • Collaboration Diagrams • Sequence Diagrams • Activity Diagrams
    PART 3: UML Dynamic Modelling Notations • State machines/statecharts • Collaboration diagrams • Sequence diagrams • Activity diagrams. Chapter 19 of the textbook is relevant to this part. 1 State machines • State machines describe dynamic behaviour of objects, show life history of objects over time + object communications. • Used for real-time system design (eg., robotics); GUI design (states represent UI screens/modes). Example shows simple state machine with two states, On and Off and transitions between them. 2 Switch Off swon swoff On Simple state machine 3 State machines Elements of a state machine are: States: Rounded-corner boxes, containing state name. Transitions: Arrows from one state, source of transition, to another, target, labelled with event that causes transition. Default initial state: State of object at start of its life history. Shown as target of transition from initial pseudostate (black filled circle). Termination of state machine can be shown by `bullseye' symbol. 4 State machines UML divides state machines into two kinds: 1. Protocol state machines { describe allowed life histories of objects of a class. Events on transitions are operations of that class, transitions may have pre and post conditions. Transitions cannot have generated actions (although we will allow this). 2. Behaviour state machines { describe operation execution/implementation of object behaviour. Transitions do not have postconditions, but can have actions. State machines describe behaviour of objects of a particular class, or execution processing of an operation. 5 State machines • Class diagrams describe system data, independently of time. • State machines show how system/objects can change over time. • Switch state machine is protocol state machine for objects of Switch class.
    [Show full text]
  • UML Tutorial: Sequence Diagrams
    UML Tutorial: Sequence Diagrams. Robert C. Martin Engineering Notebook Column April, 98 In my last column, I described UML Collaboration diagrams. Collaboration diagrams allow the designer to specify the sequence of messages sent between objects in a collaboration. The style of the diagram emphasizes the relationships between the objects as opposed to the sequence of the messages. In this column we will be discussing UML Sequence diagrams. Sequence diagrams contain the same information as Collaboration diagrams, but emphasize the sequence of the messages instead of the relationships between the objects. The Cellular Phone Revisited Here again is the final collaboration diagram from last column’s Cellular Phone example. (See Figure 1.) 1*:ButtonPressed() :DigitButton Digit:Button 1.1:Digit(code) Adapter 2:ButtonPressed() :SendButton Send:Button :Dialler Adapter 2.1:Send() 1.1.2:EmitTone(code) 2.1.1:Connect(pno) 1.1.1:DisplayDigit(code) 2.1.1.1:InUse() :Cellular display display:Dialler :Speaker Radio :CRDisplay Display Figure 1: Collaboration diagram of Cellular Phone. The Sequence diagram that corresponds to this model is shown in Figure 2. It is pretty easy to see what the diagrams in Figure 2 are telling us, especially when we compare them to Figure 1. Let’s walk through the features. First of all, there are two sequence diagrams present. The first one captures the course of events that takes place when a digit button is pressed. The second captures what happens when the user pushes the ‘send’ button in order to make a call. At the top of each diagram we see the rectangles that represent objects.
    [Show full text]
  • Plantuml Language Reference Guide (Version 1.2021.2)
    Drawing UML with PlantUML PlantUML Language Reference Guide (Version 1.2021.2) PlantUML is a component that allows to quickly write : • Sequence diagram • Usecase diagram • Class diagram • Object diagram • Activity diagram • Component diagram • Deployment diagram • State diagram • Timing diagram The following non-UML diagrams are also supported: • JSON Data • YAML Data • Network diagram (nwdiag) • Wireframe graphical interface • Archimate diagram • Specification and Description Language (SDL) • Ditaa diagram • Gantt diagram • MindMap diagram • Work Breakdown Structure diagram • Mathematic with AsciiMath or JLaTeXMath notation • Entity Relationship diagram Diagrams are defined using a simple and intuitive language. 1 SEQUENCE DIAGRAM 1 Sequence Diagram 1.1 Basic examples The sequence -> is used to draw a message between two participants. Participants do not have to be explicitly declared. To have a dotted arrow, you use --> It is also possible to use <- and <--. That does not change the drawing, but may improve readability. Note that this is only true for sequence diagrams, rules are different for the other diagrams. @startuml Alice -> Bob: Authentication Request Bob --> Alice: Authentication Response Alice -> Bob: Another authentication Request Alice <-- Bob: Another authentication Response @enduml 1.2 Declaring participant If the keyword participant is used to declare a participant, more control on that participant is possible. The order of declaration will be the (default) order of display. Using these other keywords to declare participants
    [Show full text]
  • UML Sequence Diagrams
    CSE 403: Software Engineering, Spring 2015 courses.cs.washington.edu/courses/cse403/15sp/ UML Sequence Diagrams Emina Torlak [email protected] Outline • Overview of sequence diagrams • Syntax and semantics • Examples 2 introan overview of sequence diagrams What is a UML sequence diagram? 4 What is a UML sequence diagram? • Sequence diagram: an “interaction diagram” that models a single scenario executing in a system • 2nd most used UML diagram (behind class diagram) • Shows what messages are sent and when 4 What is a UML sequence diagram? • Sequence diagram: an “interaction diagram” that models a single scenario executing in a system • 2nd most used UML diagram (behind class diagram) • Shows what messages are sent and when • Relating UML diagrams to other design artifacts: • CRC cards → class diagrams • Use cases → sequence diagrams 4 Key parts of a sequence diagram :Client :Server checkEmail sendUnsentEmail newEmail response [newEmail] get deleteOldEmail 5 Key parts of a sequence diagram • Participant: an object or an entity; :Client :Server the sequence diagram actor • sequence diagram starts with an checkEmail unattached "found message" arrow sendUnsentEmail newEmail response [newEmail] get deleteOldEmail 5 Key parts of a sequence diagram • Participant: an object or an entity; :Client :Server the sequence diagram actor • sequence diagram starts with an checkEmail unattached "found message" arrow sendUnsentEmail • Message: communication between newEmail objects response [newEmail] get deleteOldEmail 5 Key parts of a sequence diagram
    [Show full text]
  • Towards Executable UML Interactions Based on Fuml
    Towards Executable UML Interactions based on fUML Marc-Florian Wendland Fraunhofer Institut FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany Keywords: UML Interactions, fUML, UML Activities, Executable UML, Executable Interactions, PSCS. Abstract: Executable specifications for UML currently comprise fUML, precise semantics of composite structures and in future precise semantics for state machines. An executable semantics for UML Interactions is on the roadmap, but has not been addressed by the OMG Executable UML working group so far. Interactions are said to be the second most used diagrams after class diagram of UML, thanks to their comprehensibility and illustrative visualization. Unfortunately, they suffer from fuzzy semantics and technical issues that wastes the potential Interactions could have for engineering activities apart from high-level specifications. In this position paper we present first results from experiments and attempts to map UML Interactions to fUML Activities in order to eventually execute them. 1 INTRODUCTION aforementioned fuzzy semantics of UML Interactions (including but not limited to the lack of data flow UML Interactions, better known as sequence concepts) makes it complicated to exploit their whole diagrams, are a one of the standardized UML (UML, potential. Executable Interactions help to overcome 2015) behavior kinds that describe the exchange of the semantical shortcomings by explicitly stating messages among parts of a system or sub-system, which features of UML Interactions can be used for represented by Lifelines. Interactions are familiar to precise (yet executable) specifications and how these many stakeholders because of their illustrative features are modelled best with the UML Interactions graphical notation that is easy to comprehend.
    [Show full text]
  • TAGDUR: a Tool for Producing UML Sequence, Deployment, and Component Diagrams Through Reengineering of Legacy Systems
    TAGDUR: A Tool for Producing UML Sequence, Deployment, and Component Diagrams Through Reengineering of Legacy Systems Richard Millham, Jianjun Pu, Hongji Yang De Montfort University, England [email protected] & [email protected] Abstract: A further introduction of TAGDUR, a documents this transformed system through a reengineering tool that first transforms a series of UML diagrams. This paper focuses on procedural legacy system into an object-oriented, TAGDUR’s generation of sequence, deployment, event-driven system and then models and and component diagrams. Keywords: UML (Unified Modeling Language), Reengineering, WSL This paper is a second installment in a series [4] accommodate a multi-tiered, Web-based that introduces TAGDUR (Transformation and platform. In order to accommodate this Automatic Generation of Documentation in remodeled platform, the original sequential- UML through Reengineering). TAGDUR is a driven, procedurally structured legacy system reengineering tool that transforms a legacy must be transformed to an object-oriented, event- system’s outmoded architecture to a more driven system. Object orientation, because it modern one and then represents this transformed encapsulates variables and procedures into system through a series of UML (Unified modules, is well suited to this new Web Modeling Language) diagrams in order to architecture where pieces of software must be overcome a legacy system’s frequent lack of encapsulated into component modules with documentation. The architectural transformation clearly defined interfaces. A transfer to a Web- is from the legacy system’s original based architecture requires a real-time, event- procedurally-structured to an object-oriented, driven response rather than the legacy system’s event-driven architecture.
    [Show full text]
  • Real Time UML
    Fr 5 January 22th-26th, 2007, Munich/Germany Real Time UML Bruce Powel Douglass Organized by: Lindlaustr. 2c, 53842 Troisdorf, Tel.: +49 (0)2241 2341-100, Fax.: +49 (0)2241 2341-199 www.oopconference.com RealReal--TimeTime UMLUML Bruce Powel Douglass, PhD Chief Evangelist Telelogic Systems and Software Modeling Division www.telelogic.com/modeling groups.yahoo.com/group/RT-UML 1 Real-Time UML © Telelogic AB Basics of UML • What is UML? – How do we capture requirements using UML? – How do we describe structure using UML? – How do we model communication using UML? – How do we describe behavior using UML? • The “Real-Time UML” Profile • The Harmony Process 2 Real-Time UML © Telelogic AB What is UML? 3 Real-Time UML © Telelogic AB What is UML? • Unified Modeling Language • Comprehensive full life-cycle 3rd Generation modeling language – Standardized in 1997 by the OMG – Created by a consortium of 12 companies from various domains – Telelogic/I-Logix a key contributor to the UML including the definition of behavioral modeling • Incorporates state of the art Software and Systems A&D concepts • Matches the growing complexity of real-time systems – Large scale systems, Networking, Web enabling, Data management • Extensible and configurable • Unprecedented inter-disciplinary market penetration – Used for both software and systems engineering • UML 2.0 is latest version (2.1 in process…) 4 Real-Time UML © Telelogic AB UML supports Key Technologies for Development Iterative Development Real-Time Frameworks Visual Modeling Automated Requirements-
    [Show full text]
  • Fakulta Informatiky UML Modeling Tools for Blind People Bakalářská
    Masarykova univerzita Fakulta informatiky UML modeling tools for blind people Bakalářská práce Lukáš Tyrychtr 2017 MASARYKOVA UNIVERZITA Fakulta informatiky ZADÁNÍ BAKALÁŘSKÉ PRÁCE Student: Lukáš Tyrychtr Program: Aplikovaná informatika Obor: Aplikovaná informatika Specializace: Bez specializace Garant oboru: prof. RNDr. Jiří Barnat, Ph.D. Vedoucí práce: Mgr. Dalibor Toth Katedra: Katedra počítačových systémů a komunikací Název práce: Nástroje pro UML modelování pro nevidomé Název práce anglicky: UML modeling tools for blind people Zadání: The thesis will focus on software engineering modeling tools for blind people, mainly at com•monly used models -UML and ERD (Plant UML, bachelor thesis of Bc. Mikulášek -Models of Structured Analysis for Blind Persons -2009). Student will evaluate identified tools and he will also try to contact another similar centers which cooperate in this domain (e.g. Karlsruhe Institute of Technology, Tsukuba University of Technology). The thesis will also contain Plant UML tool outputs evaluation in three categories -students of Software engineering at Faculty of Informatics, MU, Brno; lecturers of the same course; person without UML knowledge (e.g. customer) The thesis will contain short summary (2 standardized pages) of results in English (in case it will not be written in English). Literatura: ARLOW, Jim a Ila NEUSTADT. UML a unifikovaný proces vývoje aplikací : průvodce ana­lýzou a návrhem objektově orientovaného softwaru. Brno: Computer Press, 2003. xiii, 387. ISBN 807226947X. FOWLER, Martin a Kendall SCOTT. UML distilled : a brief guide to the standard object mode•ling language. 2nd ed. Boston: Addison-Wesley, 2000. xix, 186 s. ISBN 0-201-65783-X. Zadání bylo schváleno prostřednictvím IS MU. Prohlašuji, že tato práce je mým původním autorským dílem, které jsem vypracoval(a) samostatně.
    [Show full text]
  • A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IO PWr e-Informatica Software Engineering Journal, Volume 2, Issue 1, 2008 A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams Philip Samuel∗, Rajib Mall∗ ∗Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur(WB),India-721302 [email protected], [email protected] Abstract We present a novel methodology for test case generation based on UML sequence dia- grams. We create message dependence graphs (MDG) from UML sequence diagrams. Edge marking dynamic slicing method is applied on MDG to create slices. Based on the slice created with respect to each predicate on the sequence diagram, we generate test data. We formulate a test adequacy criterion named slice coverage criterion. Test cases that we generate achieves slice coverage criterion. Our approach achieves slice test coverage with few test cases. We generate effective test cases for cluster level testing. 1 Introduction Ever since Weiser [51] introduced program slicing, researchers have shown considerable interest in this field probably due to its application potential. Slicing is useful in software maintenance and reengineering [15, 35], testing [19, 28, 42], decomposition and integration [23], decompilation [10], program comprehension [38, 20], and debugging [39]. Most of the works reported on slicing concerns improvements and extensions to algorithms for slice construction [37, 21, 33, 14, 6]. Even though dynamic slicing is identified as a powerful tool for software testing [33, 42], reported work on how dynamic slicing can be used in testing is rare in the literature.
    [Show full text]
  • Unified Modeling Language (UML)
    Introduction Use Case Diagram Class Diagram Sequence Diagram Unified Modeling Language (UML) Miaoqing Huang University of Arkansas 1 / 45 Introduction Use Case Diagram Class Diagram Sequence Diagram Outline 1 Introduction 2 Use Case Diagram 3 Class Diagram 4 Sequence Diagram 2 / 45 Introduction Use Case Diagram Class Diagram Sequence Diagram Outline 1 Introduction 2 Use Case Diagram 3 Class Diagram 4 Sequence Diagram 3 / 45 Introduction Use Case Diagram Class Diagram Sequence Diagram What is UML? UML is a modeling language A model is an abstraction describing a system Modeling language is used to express design Use notation for depicting models UML is the de facto modeling language in software engineering Created and managed by the Object Management Group, now at version 2.4.1 (August 2011) Key persons: (three amigos) James Rumbaugh, Grady Booch, Ivar Jacobson UML includes a set of graphical notation techniques to create visual models of software-intensive systems 14 diagrams 7 structural diagrams 7 behavior diagrams 4 / 45 Introduction Use Case Diagram Class Diagram Sequence Diagram UML Diagrams 5 / 45 Introduction Use Case Diagram Class Diagram Sequence Diagram UML Diagrams – Example use case diagram class diagram sequence diagram 6 / 45 Introduction Use Case Diagram Class Diagram Sequence Diagram UML Diagrams – Example Use case diagram Describe the functional behavior of the system as seen by the user Class diagram Describe the static structure of the system: Objects, attributes, associations Sequence diagram Describe the dynamic behavior
    [Show full text]