TAGDUR: a Tool for Producing UML Sequence, Deployment, and Component Diagrams Through Reengineering of Legacy Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
07 Requirements What About RFP/RFB/Rfis?
CMPSCI520/620 07 Requirements & UML Intro 07 Requirements SW Requirements Specification • Readings • How do we communicate the Requirements to others? • [cK99] Cris Kobryn, Co-Chair, “Introduction to UML: Structural and Use Case Modeling,” UML Revision Task Force Object Modeling with OMG UML Tutorial • It is common practice to capture them in an SRS Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea Data, • But an SRS doesn’t need to be a single paper document Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten, Rational Software, Telelogic, Unisys http://www.omg.org/technology/uml/uml_tutorial.htm • Purpose • [OSBB99] Gunnar Övergaard, Bran Selic, Conrad Bock and Morgan Björkande, “Behavioral Modeling,” UML Revision Task Force, Object Modeling with OMG UML • Contractual requirements Tutorial Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea elicitation Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten, Rational • Baseline Software, Telelogic, Unisys http://www.omg.org/technology/uml/uml_tutorial.htm • for evaluating subsequent products • [laM01] Maciaszek, L.A. (2001): Requirements Analysis and System Design. • for change control requirements Developing Information Systems with UML, Addison Wesley Copyright © 2000 by analysis Addison Wesley • Audience • [cB04] Bock, Conrad, Advanced Analysis and Design with UML • Users, Purchasers requirements http://www.kabira.com/bock/ specification • [rM02] Miller, Randy, “Practical UML: A hands-on introduction for developers,” -
Component Diagrams in UML
9. UML Component Diagrams Page 1 of 4 Component Diagrams in UML The previous articles covered two of the three primary areas in which the UML diagrams are categorized (see Article 1)—Static and Dynamic. The remaining two UML diagrams that fall under the category of Implementation are the Component and Deployment diagrams. In this article, we will discuss the Component diagram. Basics The different high-level reusable parts of a system are represented in a Component diagram. A component is one such constituent part of a system. In addition to representing the high-level parts, the Component diagram also captures the inter- relationships between these parts. So, how are component diagrams different from the previous UML diagrams that we have seen? The primary difference is that Component diagrams represent the implementation perspective of a system. Hence, components in a Component diagram reflect grouping of the different design elements of a system, for example, classes of the system. Let us briefly understand what criteria to apply to model a component. First and foremost, a component should be substitutable as is. Secondly, a component must provide an interface to enable other components to interact and use the services provided by the component. So, why would not a design element like an interface suffice? An interface provides only the service but not the implementation. Implementation is normally provided by a class that implements the interface. In complex systems, the physical implementation of a defined service is provided by a group of classes rather than a single class. A component is an easy way to represent the grouping together of such implementation classes. -
Using the UML for Architectural Description?
Using the UML for Architectural Description? Rich Hilliard Integrated Systems and Internet Solutions, Inc. Concord, MA USA [email protected] Abstract. There is much interest in using the Unified Modeling Lan- guage (UML) for architectural description { those techniques by which architects sketch, capture, model, document and analyze architectural knowledge and decisions about software-intensive systems. IEEE P1471, the Recommended Practice for Architectural Description, represents an emerging consensus for specifying the content of an architectural descrip- tion for a software-intensive system. Like the UML, IEEE P1471 does not prescribe a particular architectural method or life cycle, but may be used within a variety of such processes. In this paper, I provide an overview of IEEE P1471, describe its conceptual framework, and investigate the issues of applying the UML to meet the requirements of IEEE P1471. Keywords: IEEE P1471, architectural description, multiple views, view- points, Unified Modeling Language 1 Introduction The Unified Modeling Language (UML) is rapidly maturing into the de facto standard for modeling of software-intensive systems. Standardized by the Object Management Group (OMG) in November 1997, it is being adopted by many organizations, and being supported by numerous tool vendors. At present, there is much interest in using the UML for architectural descrip- tion: the techniques by which architects sketch, capture, model, document and analyze architectural knowledge and decisions about software-intensive systems. Such techniques enable architects to record what they are doing, modify or ma- nipulate candidate architectures, reuse portions of existing architectures, and communicate architectural information to others. These descriptions may the be used to analyze and reason about the architecture { possibly with automated support. -
Guidelines for UML Or Sysml Modelling Within an Enterprise Architecture
Guidelines for UML or SysML modelling within an enterprise architecture Mälardalen University Academy of Innovation, Design and Technology Author: Charlie Höglund Email: [email protected] Bachelor of Science in Computer Science/Basic level, 15hp Date: 2017-06-08 Examiner: Jan Carlson Supervisor: Daniel Sundmark Company supervisor: Fredric Andréasson (Volvo Construction Equipment) Abstract Enterprise Architectures (EA) are used to describe an enterprise’s structure in a standardized way. An Enterprise Architecture also provides decision-support when choosing a direction or making changes at different levels of an enterprise, such as the business architecture or technology architecture level. This can involve decisions such as: What kind of enterprise should this be, what kind of technologies should be used for new system developments etcetera. Therefore, using the Unified Modelling Language (UML) or Systems Modelling Language (SysML) together with standardized guidelines that help you decide what to do before, during, and after modelling could be important for producing correct and useful system models, which later on will be used to develop actual systems. At the moment, standardized guidelines of this kind do not really exist. However, there are a lot of information about why you should use UML or SysML, what kinds of UML or SysML diagrams that exist, or what notations to follow when creating a specific UML or SysML diagram. In this thesis, the objective has been to research about the usefulness and creation of standardized guidelines for UML or SysML modelling in an Enterprise Architecture (i.e. mainly intended for the automotive industry domain). For this reason, the two research questions: “how can you create useful standardized guidelines for UML or SysML modelling?” and “what do useful standardized guidelines for UML or SysML modelling look like?” were chosen. -
OMG Systems Modeling Language (OMG Sysml™) Tutorial 25 June 2007
OMG Systems Modeling Language (OMG SysML™) Tutorial 25 June 2007 Sanford Friedenthal Alan Moore Rick Steiner (emails included in references at end) Copyright © 2006, 2007 by Object Management Group. Published and used by INCOSE and affiliated societies with permission. Status • Specification status – Adopted by OMG in May ’06 – Finalization Task Force Report in March ’07 – Available Specification v1.0 expected June ‘07 – Revision task force chartered for SysML v1.1 in March ‘07 • This tutorial is based on the OMG SysML adopted specification (ad-06-03-01) and changes proposed by the Finalization Task Force (ptc/07-03-03) • This tutorial, the specifications, papers, and vendor info can be found on the OMG SysML Website at http://www.omgsysml.org/ 7/26/2007 Copyright © 2006,2007 by Object Management Group. 2 Objectives & Intended Audience At the end of this tutorial, you should have an awareness of: • Benefits of model driven approaches for systems engineering • SysML diagrams and language concepts • How to apply SysML as part of a model based SE process • Basic considerations for transitioning to SysML This course is not intended to make you a systems modeler! You must use the language. Intended Audience: • Practicing Systems Engineers interested in system modeling • Software Engineers who want to better understand how to integrate software and system models • Familiarity with UML is not required, but it helps 7/26/2007 Copyright © 2006,2007 by Object Management Group. 3 Topics • Motivation & Background • Diagram Overview and Language Concepts • SysML Modeling as Part of SE Process – Structured Analysis – Distiller Example – OOSEM – Enhanced Security System Example • SysML in a Standards Framework • Transitioning to SysML • Summary 7/26/2007 Copyright © 2006,2007 by Object Management Group. -
PART 3: UML Dynamic Modelling Notations • State Machines/Statecharts • Collaboration Diagrams • Sequence Diagrams • Activity Diagrams
PART 3: UML Dynamic Modelling Notations • State machines/statecharts • Collaboration diagrams • Sequence diagrams • Activity diagrams. Chapter 19 of the textbook is relevant to this part. 1 State machines • State machines describe dynamic behaviour of objects, show life history of objects over time + object communications. • Used for real-time system design (eg., robotics); GUI design (states represent UI screens/modes). Example shows simple state machine with two states, On and Off and transitions between them. 2 Switch Off swon swoff On Simple state machine 3 State machines Elements of a state machine are: States: Rounded-corner boxes, containing state name. Transitions: Arrows from one state, source of transition, to another, target, labelled with event that causes transition. Default initial state: State of object at start of its life history. Shown as target of transition from initial pseudostate (black filled circle). Termination of state machine can be shown by `bullseye' symbol. 4 State machines UML divides state machines into two kinds: 1. Protocol state machines { describe allowed life histories of objects of a class. Events on transitions are operations of that class, transitions may have pre and post conditions. Transitions cannot have generated actions (although we will allow this). 2. Behaviour state machines { describe operation execution/implementation of object behaviour. Transitions do not have postconditions, but can have actions. State machines describe behaviour of objects of a particular class, or execution processing of an operation. 5 State machines • Class diagrams describe system data, independently of time. • State machines show how system/objects can change over time. • Switch state machine is protocol state machine for objects of Switch class. -
UML Tutorial: Sequence Diagrams
UML Tutorial: Sequence Diagrams. Robert C. Martin Engineering Notebook Column April, 98 In my last column, I described UML Collaboration diagrams. Collaboration diagrams allow the designer to specify the sequence of messages sent between objects in a collaboration. The style of the diagram emphasizes the relationships between the objects as opposed to the sequence of the messages. In this column we will be discussing UML Sequence diagrams. Sequence diagrams contain the same information as Collaboration diagrams, but emphasize the sequence of the messages instead of the relationships between the objects. The Cellular Phone Revisited Here again is the final collaboration diagram from last column’s Cellular Phone example. (See Figure 1.) 1*:ButtonPressed() :DigitButton Digit:Button 1.1:Digit(code) Adapter 2:ButtonPressed() :SendButton Send:Button :Dialler Adapter 2.1:Send() 1.1.2:EmitTone(code) 2.1.1:Connect(pno) 1.1.1:DisplayDigit(code) 2.1.1.1:InUse() :Cellular display display:Dialler :Speaker Radio :CRDisplay Display Figure 1: Collaboration diagram of Cellular Phone. The Sequence diagram that corresponds to this model is shown in Figure 2. It is pretty easy to see what the diagrams in Figure 2 are telling us, especially when we compare them to Figure 1. Let’s walk through the features. First of all, there are two sequence diagrams present. The first one captures the course of events that takes place when a digit button is pressed. The second captures what happens when the user pushes the ‘send’ button in order to make a call. At the top of each diagram we see the rectangles that represent objects. -
AP42 Section: Reference
AP42 Section: 13.2.1 Reference: 8 Title: Paved Road Particulate Emissions, C. Cowherd, Jr., and P. J. Englehart, EPA-600/7-84-077, U. S. Environmental Protection Agency, Cincinnati, OH, July 1984. United Slates EPA-600 17- 84-077 Environmental Protection Agency July 1984 PAVED ROADS eEPA Research and Ap-42 Section 11.2.51\ Reference Number Development 4 iI J PAVED ROAD PARTICULATE EMISSIONS Source Category Report Prepared for Office of Air Quality Planning and Standards Prepared by Industrial Environmental Research Laboratory Research Triangle Park NC 2771 1 RESEARCH REPORTING SERIES Research reports of the Office of Research and Development, US. Environmental Protection Agency, have been grouped into nine series. These nine broad cate- gories were established to facilitate further development and application of en- vironmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The nine series are: 1. Environmental Health Effects Research 2. Environmental Protection Technology 3. Ecological Research 4. Environmental Monitoring .. 5. Socioeconomic Environmental Studies 6. Scientific and Technical Assessment Reports (STAR) 7. Interagency Energy-Environment Research and Development 8. “Special” Reports 9. Miscellaneous Reports This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT RESEARCH AND DEVELOPMENT series. Reports in this series result from the effort funded under the 17-agency Federal Energy/Environment Research and Development Program. These studies relate to EPA’s mission to protect the public health and welfare from adverse effects of pollutants associated with energy sys- tems. The goal of the Program is to assure the rapid development of domestic energy supplies in an environmentally-compatible manner by providing the nec- essary environmental data and control technology. -
Plantuml Language Reference Guide (Version 1.2021.2)
Drawing UML with PlantUML PlantUML Language Reference Guide (Version 1.2021.2) PlantUML is a component that allows to quickly write : • Sequence diagram • Usecase diagram • Class diagram • Object diagram • Activity diagram • Component diagram • Deployment diagram • State diagram • Timing diagram The following non-UML diagrams are also supported: • JSON Data • YAML Data • Network diagram (nwdiag) • Wireframe graphical interface • Archimate diagram • Specification and Description Language (SDL) • Ditaa diagram • Gantt diagram • MindMap diagram • Work Breakdown Structure diagram • Mathematic with AsciiMath or JLaTeXMath notation • Entity Relationship diagram Diagrams are defined using a simple and intuitive language. 1 SEQUENCE DIAGRAM 1 Sequence Diagram 1.1 Basic examples The sequence -> is used to draw a message between two participants. Participants do not have to be explicitly declared. To have a dotted arrow, you use --> It is also possible to use <- and <--. That does not change the drawing, but may improve readability. Note that this is only true for sequence diagrams, rules are different for the other diagrams. @startuml Alice -> Bob: Authentication Request Bob --> Alice: Authentication Response Alice -> Bob: Another authentication Request Alice <-- Bob: Another authentication Response @enduml 1.2 Declaring participant If the keyword participant is used to declare a participant, more control on that participant is possible. The order of declaration will be the (default) order of display. Using these other keywords to declare participants -
APECS: Polychrony Based End-To-End Embedded System Design and Code Synthesis
APECS: Polychrony based End-to-End Embedded System Design and Code Synthesis Matthew E. Anderson Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Engineering Sandeep K. Shukla, Chair Lamine Mili Alireza Haghighat Chao Wang Yi Deng April 3, 2015 Blacksburg, Virginia Keywords: AADL, CPS, Model-based code synthesis, correct-by-construction code synthesis, Polychrony, code generators, OSATE, Ocarina Copyright 2015, Matthew E. Anderson APECS: Polychrony based End-to-End Embedded System Design and Code Synthesis Matthew E. Anderson (ABSTRACT) The development of high integrity embedded systems remains an arduous and error-prone task, despite the efforts by researchers in inventing tools and techniques for design automa- tion. Much of the problem arises from the fact that the semantics of the modeling languages for the various tools, are often distinct, and the semantics gaps are often filled manually through the engineer's understanding of one model or an abstraction. This provides an op- portunity for bugs to creep in, other than standardising software engineering errors germane to such complex system engineering. Since embedded systems applications such as avionics, automotive, or industrial automation are safety critical, it is very important to invent tools, and methodologies for safe and reliable system design. Much of the tools, and techniques deal with either the design of embedded platforms (hardware, networking, firmware etc), and software stack separately. The problem of the semantic gap between these two, as well as between models of computation used to capture semantics must be solved in order to design safer embedded systems. -
OMG Systems Modeling Language (OMG Sysml™) Tutorial
OMG Systems Modeling Language (OMG SysML™) Tutorial 11 July 2006 Sanford Friedenthal Alan Moore Rick Steiner Copyright © 2006 by Object Management Group. Published and used by INCOSE and affiliated societies with permission. Caveat • This material is based on version 1.0 of the SysML specification (ad-06-03-01) – Adopted by OMG in May ’06 – Going through finalization process • OMG SysML Website – http://www.omgsysml.org/ 11 July 2006 Copyright © 2006 by Object Management Group. 2 Objectives & Intended Audience At the end of this tutorial, you should understand the: • Benefits of model driven approaches to systems engineering • Types of SysML diagrams and their basic constructs • Cross-cutting principles for relating elements across diagrams • Relationship between SysML and other Standards • High-level process for transitioning to SysML This course is not intended to make you a systems modeler! You must use the language. Intended Audience: • Practicing Systems Engineers interested in system modeling – Already familiar with system modeling & tools, or – Want to learn about systems modeling • Software Engineers who want to express systems concepts • Familiarity with UML is not required, but it will help 11 July 2006 Copyright © 2006 by Object Management Group. 3 Topics • Motivation & Background (30) • Diagram Overview (135) • SysML Modeling as Part of SE Process (120) – Structured Analysis – Distiller Example – OOSEM – Enhanced Security System Example • SysML in a Standards Framework (20) • Transitioning to SysML (10) • Summary (15) 11 July 2006 Copyright © 2006 by Object Management Group. 4 Motivation & Background SE Practices for Describing Systems Future Past • Specifications • Interface requirements • System design • Analysis & Trade-off • Test plans Moving from Document centric to Model centric 11 July 2006 Copyright © 2006 by Object Management Group. -
Systems Engineering with Sysml/UML Morgan Kaufmann OMG Press
Systems Engineering with SysML/UML Morgan Kaufmann OMG Press Morgan Kaufmann Publishers and the Object Management Group™ (OMG) have joined forces to publish a line of books addressing business and technical topics related to OMG’s large suite of software standards. OMG is an international, open membership, not-for-profi t computer industry consortium that was founded in 1989. The OMG creates standards for software used in government and corporate environments to enable interoperability and to forge common development environments that encourage the adoption and evolution of new technology. OMG members and its board of directors consist of representatives from a majority of the organizations that shape enterprise and Internet computing today. OMG’s modeling standards, including the Unifi ed Modeling Language™ (UML®) and Model Driven Architecture® (MDA), enable powerful visual design, execution and maintenance of software, and other processes—for example, IT Systems Modeling and Business Process Management. The middleware standards and profi les of the Object Management Group are based on the Common Object Request Broker Architecture® (CORBA) and support a wide variety of industries. More information about OMG can be found at http://www.omg.org/. Related Morgan Kaufmann OMG Press Titles UML 2 Certifi cation Guide: Fundamental and Intermediate Exams Tim Weilkiens and Bernd Oestereich Real-Life MDA: Solving Business Problems with Model Driven Architecture Michael Guttman and John Parodi Architecture Driven Modernization: A Series of Industry Case Studies Bill Ulrich Systems Engineering with SysML/UML Modeling, Analysis, Design Tim Weilkiens Acquisitions Editor: Tiffany Gasbarrini Publisher: Denise E. M. Penrose Publishing Services Manager: George Morrison Project Manager: Mónica González de Mendoza Assistant Editor: Matt Cater Production Assistant: Lianne Hong Cover Design: Dennis Schaefer Cover Image: © Masterfile (Royalty-Free Division) Morgan Kaufmann Publishers is an imprint of Eslsevier.