Radula Development in Abalone Haliotis Discus Hannai from Larva to Adult in Relation to Feeding Transitions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gonad Development in Farmed Male and Female South African Abalone, Haliotis Midae, Fed Artifcial and Natural Diets Under a Range of Husbandry Conditions
Gonad development in farmed male and female South African abalone, Haliotis midae, fed articial and natural diets under a range of husbandry conditions Esther Meusel Vetmeduni Vienna: Veterinarmedizinische Universitat Wien Simon Menanteau-Ledouble ( [email protected] ) Aalborg University https://orcid.org/0000-0002-3435-9287 Matthew Naylor HIK Abalone Farm Horst Kaiser Rhodes University Mansour El-Matbouli Vetmeduni Vienna: Veterinarmedizinische Universitat Wien Research Keywords: abalone, Haliotis midae, articial diet, soya, phytoestrogens, husbandry, gonad bulk index, sexual maturation rate Posted Date: July 27th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-735927/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract Background Growth rate is considered one of the most important factors in the farming of Haliotis midae and somatic growth rates decline after abalone reach sexual maturity. Articial diets are suspected to accelerate maturation, in particular when soya meal is used as a protein source, because of this plant’s high concentration of phytoestrogens. Results We fed two articial diets and a natural diet, kelp. The rst articial diet had shmeal as its main source of protein while the other, Abfeed® S34, replaced some of the sh proteins with soya meal. The effect of diet on the gonad development of 27-month-old farmed Haliotis midae, raised at two stocking densities, was analysed. For each gonad sample the development phase was determined based on both histological criteria and the gonad bulk index (GBIn). The hypothesized link between dietary protein source and gonad development could not be established by either morphological criteria or GBIn. -
Tracking Larval, Newly Settled, and Juvenile Red Abalone (Haliotis Rufescens ) Recruitment in Northern California
Journal of Shellfish Research, Vol. 35, No. 3, 601–609, 2016. TRACKING LARVAL, NEWLY SETTLED, AND JUVENILE RED ABALONE (HALIOTIS RUFESCENS ) RECRUITMENT IN NORTHERN CALIFORNIA LAURA ROGERS-BENNETT,1,2* RICHARD F. DONDANVILLE,1 CYNTHIA A. CATTON,2 CHRISTINA I. JUHASZ,2 TOYOMITSU HORII3 AND MASAMI HAMAGUCHI4 1Bodega Marine Laboratory, University of California Davis, PO Box 247, Bodega Bay, CA 94923; 2California Department of Fish and Wildlife, Bodega Bay, CA 94923; 3Stock Enhancement and Aquaculture Division, Tohoku National Fisheries Research Institute, FRA 3-27-5 Shinhamacho, Shiogama, Miyagi, 985-000, Japan; 4National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Agency of Japan 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan ABSTRACT Recruitment is a central question in both ecology and fisheries biology. Little is known however about early life history stages, such as the larval and newly settled stages of marine invertebrates. No one has captured wild larval or newly settled red abalone (Haliotis rufescens) in California even though this species supports a recreational fishery. A sampling program has been developed to capture larval (290 mm), newly settled (290–2,000 mm), and juvenile (2–20 mm) red abalone in northern California from 2007 to 2015. Plankton nets were used to capture larval abalone using depth integrated tows in nearshore rocky habitats. Newly settled abalone were collected on cobbles covered in crustose coralline algae. Larval and newly settled abalone were identified to species using shell morphology confirmed with genetic techniques using polymerase chain reaction restriction fragment length polymorphism with two restriction enzymes. Artificial reefs were constructed of cinder blocks and sampled each year for the presence of juvenile red abalone. -
Evolution of Large Body Size in Abalones (Haliotis): Patterns and Implications
Paleobiology, 31(4), 2005, pp. 591±606 Evolution of large body size in abalones (Haliotis): patterns and implications James A. Estes, David R. Lindberg, and Charlie Wray Abstract.ÐKelps and other ¯eshy macroalgaeÐdominant reef-inhabiting organisms in cool seasÐ may have radiated extensively following late Cenozoic polar cooling, thus triggering a chain of evolutionary change in the trophic ecology of nearshore temperate ecosystems. We explore this hypothesis through an analysis of body size in the abalones (Gastropoda; Haliotidae), a widely distributed group in modern oceans that displays a broad range of body sizes and contains fossil representatives from the late Cretaceous (60±75 Ma). Geographic analysis of maximum shell length in living abalones showed that small-bodied species, while most common in the Tropics, have a cosmopolitan distribution, whereas large-bodied species occur exclusively in cold-water ecosys- tems dominated by kelps and other macroalgae. The phylogeography of body size evolution in extant abalones was assessed by constructing a molecular phylogeny in a mix of large and small species obtained from different regions of the world. This analysis demonstrates that small body size is the plesiomorphic state and largeness has likely arisen at least twice. Finally, we compiled data on shell length from the fossil record to determine how (slowly or suddenly) and when large body size arose in the abalones. These data indicate that large body size appears suddenly at the Miocene/Pliocene boundary. Our ®ndings support the view that ¯eshy-algal dominated ecosys- tems radiated rapidly in the coastal oceans with the onset of the most recent glacial age. -
Effect of Diet and Sex-Sorting on Growth and Gonad Development in Farmed South African Abalone, Haliotis Midae
Effect of diet and sex-sorting on growth and gonad development in farmed South African abalone, Haliotis midae A thesis submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE of RHODES UNIVERSITY By DEVIN WILLIAM PHILIP AYRES December 2013 ABSTRACT Abalone, Haliotis midae, farmers in South Africa that feed formulated diets reported a periodic drop in abalone growth during periods of increased gonad development. A large drop in abalone biomass was noticed after presumed spawning events. This study was aimed to determine the effect of diet and sex-sorting on gonad development in abalone. Experiments were conducted on a commercial abalone farm from July 2012 to the end of June 2013. Isonitrogenous and isoenergetic diets were formulated with two protein sources. A fishmeal and soybean meal (S-diet) diet and a fishmeal only (F-diet) diet were fed to abalone (50 - 70 g abalone-1) over 12 months. Weight and length gain, gonad bulk index (GBI), visceral index (%) and meat mass index (%) were determined monthly and seasonally. A histological study on the female gonads was conducted. This study also included an experiment to test the effect of sex-sorting (70 - 80 g abalone-1) on growth and body composition with treatments including males (M), females (F) and equal numbers of males and females (MF). Weight gain and length gain were faster in S-diet-fed abalone (RM-ANOVA, F (1, 16) = 7.77, p = 0.01; F (1, 69) = 49.9, p < 0.001, respectively). Gonad development was significantly affected by the inclusion of soybean meal with S-diet-fed abalone showing higher GBI-values than F- diet-fed abalone (RM-ANOVA, F (1, 33) = 16.22, p = 0.0003). -
Localised Population Collapse of the Invasive Brown Alga, Undaria Pinnatifida: Twenty Years of Monitoring on Wellington’S South Coast
Localised population collapse of the invasive brown alga, Undaria pinnatifida: Twenty years of monitoring on Wellington’s south coast By Cody Lorkin A thesis submitted to Victoria University of Wellington in partial fulfilment for the requirements for the degree of Master of Science in Marine Biology Victoria University of Wellington 2019 Abstract Invasive species pose a significant threat to marine environments around the world. Monitoring and research of invasive species is needed to provide direction for management programmes. This thesis is a continuation of research conducted on the invasive alga Undaria pinnatifida following its discovery on Wellington’s south coast in 1997. By compiling the results from previous monitoring surveys (1997- 2000 and 2008) and carrying out additional seasonal surveys in 2018, I investigate the distribution and spread of U. pinnatifida on Wellington’s south coast, how this may have changed over time and what impacts it may have had on native macroalgal and invertebrate grazer communities. Intertidal macroalgal composition and U. pinnatifida abundance was recorded on fifteen occasions between 1997 and 2018 at two sites at Island Bay and two sites at Owhiro Bay. In addition, the subtidal abundance of six invertebrate grazers was recorded eight times within the same sampling period. Microtopography was also measured at each site to determine if topography had an influence on macroalgal composition. From 1997 to 2000 U. pinnatifida abundance gradually increased per year, but its spread remained localised to Island Bay. In 2008 U. pinnatifida had spread westward to Owhiro Bay where it was highly abundant. However, in 2018 no U. pinnatifida was recorded at any of the sites indicating a collapse of the invasion front. -
New Zealand Fisheries Assessment Research Document 8919 Paua
Not to be cited without permission of the author(s) New Zealand Fisheries Assessment Research Document 8919 Paua fishery assessment 1989 D.R. Schiel MAFFish Fisheries Research Centre P 0 Box 297 Wellington May 1989 MAFFish, N.Z. Ministry of Agricultun and Fisheries This series documents the scientific basis for stock assessments and fisheries management advice in New Zealand. It addresses the issues of the day in the current legislative context and in the time frames required. The documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. Paua Fishery Assessment 1989 D. R. Schiel 1. INTRODUCTION 1.1 Overview This paper contains background data and information on paua, Haliotis iris and H. australis. There is not a large literature on these species, and little published information exists on the fishery. What follows represents a summary of the literature, unpublished information available at MAFFish, and conversations with those involved with the paua fishery. 1.2 Description of Fishery Paua (usually called abalone in other countries) are marine molluscs which occur in shallow, rocky habitats throughout the shores of New Zealand. Two species are fished commercially in New Zealand. These are the black-footed H. iris, which is by far the commonest species, and the yellow-footed H. australis. Most of the commercial catch is comprised of H. iris, while only a small amount of H. australis is caught. This document concerns H, iris, as there is more information on this species, and separate fisheries records are not kept for the two species. -
Regulation of Haemocyanin Function in Haliotis Iris 255 Also Matched with Adductor Muscle Haemolymph Samples
The Journal of Experimental Biology 205, 253–263 (2002) 253 Printed in Great Britain © The Company of Biologists Limited 2002 JEB3731 The archaeogastropod mollusc Haliotis iris: tissue and blood metabolites and allosteric regulation of haemocyanin function Jane W. Behrens1,3, John P. Elias2,3, H. Harry Taylor3 and Roy E. Weber1,* 1Department of Zoophysiology, Institute Biological Sciences, University of Aarhus, DK 8000 Aarhus, Denmark, 2School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia and 3Department of Zoology, University of Canterbury, Private Bag 4800, Christchurch, New Zealand *Author for correspondence (e-mail: [email protected]) Accepted 30 October 2001 Summary 2+ 2+ We investigated divalent cation and anaerobic end- Mg and Ca restored the native O2-binding properties product concentrations and the interactive effects of these and the reverse Bohr shift. L- and D-lactate exerted substances and pH on haemocyanin oxygen-binding (Hc- minor modulatory effects on O2-affinity. At in vivo 2+ 2+ O2) in the New Zealand abalone Haliotis iris. During 24 h concentrations of Mg and Ca , the cooperativity is 2+ of environmental hypoxia (emersion), D-lactate and dependent largely on Mg , which modulates the O2 tauropine accumulated in the foot and shell adductor association equilibrium constants of both the high-affinity muscles and in the haemolymph of the aorta, the pedal (KR) and the low-affinity (KT) states (increasing and sinus and adductor muscle lacunae, whereas L-lactate was decreasing, respectively). This allosteric mechanism not detected. Intramuscular and haemolymph D-lactate contrasts with that encountered in other haemocyanins concentrations were similar, but tauropine accumulated and haemoglobins. -
Growth Rates of Haliotis Rufescens and Haliotis Discus Hannai in Tank Culture Systems in Southern Chile (41.5ºS)
Lat. Am. J. Aquat. Res., 41(5): 959-967,Growth 2013 rates of Haliotis rufescens and Haliotis discus hannai 959 DOI: 103856/vol41-issue5-fulltext-14 Research Article Growth rates of Haliotis rufescens and Haliotis discus hannai in tank culture systems in southern Chile (41.5ºS) Alfonso Mardones,1 Alberto Augsburger1, Rolando Vega1 & Patricio de Los Ríos-Escalante2,3 1Escuela de Acuicultura, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile 2Laboratorio de Ecología Aplicada y Biodiversidad, Escuela de Ciencias Ambientales Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile. 3Nucleo de Estudios Ambientales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile ABSTRACT. The increased activity of aquaculture in Chile involves cultivation of salmonids, oysters mussels and other species such, and to a lesser extent species such as red abalone (Haliotis rufescens) and Japanese abalone (Haliotis discus hannai). The aim of this study was to evaluate the growth rate of Haliotis rufescens and Haliotis discus hannai fed with different pellet based diets with Macrocystis sp. and Ulva sp., grown in ponds for 13 months. The results for both species denoted that there was an increase in length and biomass during experimental period, existing low growth rates during the austral winter (July-September) and increase during the austral summer (December-January). Results are consistent with descriptions of literature that there is high rate of growth during the summer and using diet of brown algae. From the economic standpoint abalone farming would be an economically viable activity for local aquaculture, considering the water quality and food requirements. -
Shelled Molluscs
Encyclopedia of Life Support Systems (EOLSS) Archimer http://www.ifremer.fr/docelec/ ©UNESCO-EOLSS Archive Institutionnelle de l’Ifremer Shelled Molluscs Berthou P.1, Poutiers J.M.2, Goulletquer P.1, Dao J.C.1 1 : Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France 2 : Muséum National d’Histoire Naturelle, Paris, France Abstract: Shelled molluscs are comprised of bivalves and gastropods. They are settled mainly on the continental shelf as benthic and sedentary animals due to their heavy protective shell. They can stand a wide range of environmental conditions. They are found in the whole trophic chain and are particle feeders, herbivorous, carnivorous, and predators. Exploited mollusc species are numerous. The main groups of gastropods are the whelks, conchs, abalones, tops, and turbans; and those of bivalve species are oysters, mussels, scallops, and clams. They are mainly used for food, but also for ornamental purposes, in shellcraft industries and jewelery. Consumed species are produced by fisheries and aquaculture, the latter representing 75% of the total 11.4 millions metric tons landed worldwide in 1996. Aquaculture, which mainly concerns bivalves (oysters, scallops, and mussels) relies on the simple techniques of producing juveniles, natural spat collection, and hatchery, and the fact that many species are planktivores. Keywords: bivalves, gastropods, fisheries, aquaculture, biology, fishing gears, management To cite this chapter Berthou P., Poutiers J.M., Goulletquer P., Dao J.C., SHELLED MOLLUSCS, in FISHERIES AND AQUACULTURE, from Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net] 1 1. -
Réponse Transcriptomique Et Cellulaire De L'ormeau Rouge
R´eponse transcriptomique et cellulaire de l'ormeau rouge Haliotis rufescens, cultiv´een ´ecloserieindustrielle face aux stress m´etalliqueset aux pathog`enes: r^oledes probiotiques dans la survie des organismes Fernando Silva Aciares To cite this version: Fernando Silva Aciares. R´eponse transcriptomique et cellulaire de l'ormeau rouge Haliotis rufescens, cultiv´een ´ecloserieindustrielle face aux stress m´etalliqueset aux pathog`enes: r^ole des probiotiques dans la survie des organismes. Zoologie des invert´ebr´es.Universit´ede Bretagne occidentale - Brest, 2013. Fran¸cais. <NNT : 2013BRES0058>. <tel-01089606> HAL Id: tel-01089606 https://tel.archives-ouvertes.fr/tel-01089606 Submitted on 2 Dec 2014 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. THÈSE / UNIVERSITÉ DE BRETAGNE OCCIDENTALE présentée par sous le sceau de l’Université européenne de Bretagne Fernando Silva Aciares pour obtenir le titre de DOCTEUR DE L’UNIVERSITÉ DE BRETAGNE OCCIDENTALE Préparée à L'institut Universitaire Européen Mention :Océanographie biologique de la Mer, Laboratoire des Sciences de École Doctorale Ecole Doctorale des Sciences de La Mer l'Environnement Marin (LEMAR) Thèse soutenue le 22 mars 2013 Devant le jury composé de : Réponse transcriptomique et Nathalie Cochennec Dr. -
D050p145.Pdf
DISEASES OF AQUATIC ORGANISMS Vol. 50: 145–152, 2002 Published July 8 Dis Aquat Org Evaluation of radiography, ultrasonography and endoscopy for detection of shell lesions in live abalone Haliotis iris (Mollusca: Gastropoda) Hendrik H. Nollens1,*, John C. Schofield2, Jonathan A. Keogh1, P. Keith Probert1 1Department of Marine Science, and 2Department of Laboratory Animal Sciences, School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand ABSTRACT: Radiography, ultrasonography and endoscopy were examined for their efficacy as non- destructive techniques for the detection of shell lesions in the marine gastropod Haliotis iris Gmelin. X-rays provided 69% correct diagnoses, with detection being restricted to those lesions which were mineralised. Ultrasound also showed potential to reliably detect lesions (83% correct diagnoses), but only where the lesions demonstrated a clear 3-dimensional relief. Lesion dimensions were under- estimated using ultrasound. Endoscopy, applied to anaesthetised individuals, provided the most accurate method (92% correct diagnoses) for lesion detection and, although invasive, had no dis- cernible effect on survival of the abalone 8 mo after screening. KEY WORDS: Abalone · Haliotis · Gastropoda · Shell lesion · Detection · Radiography · Ultrasono- graphy · Endoscopy Resale or republication not permitted without written consent of the publisher INTRODUCTION Grindley et al. (1998) reported shells in which the lesion had invaded the adductor muscle attachment A range of shell-invading organisms associated with site, potentially resulting in the abalone losing its shell. live abalone has been reported in the literature Aquaculturists also reported this condition to cause (Kojima & Imajima 1982, Clavier 1992, Thomas & Day fatalities to abalone kept in captivity. In addition, it has 1995), although in most cases the effects of such organ- been suggested that wild populations with affected isms on their host remains to be ascertained. -
White Abalone Recovery Plan
FINAL WHITE ABALONE RECOVERY PLAN (Haliotis sorenseni) Prepared by The White Abalone Recovery Team for National Oceanic and Atmospheric Administration National Marine Fisheries Service Office of Protected Resources October 2008 RECOVERY PLAN FOR WHITE ABALONE (Haliotis sovenseni) Prepared by National Marine Fisheries Service Southwest Regional Office ~ationalwarineFisheries Service National Oceanic and Atmospheric Administration White Abalone Recovery Plan DISCLAIMER DISCLAIMER Recovery plans delineate reasonable actions which are believed to be required to recover and/or protect listed species. Plans are published by the National Marine Fisheries Service (NMFS), sometimes prepared with the assistance of recovery teams, contractors, state agencies, and others. Objectives will be obtained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery plans do not necessarily represent the views or the official positions or approval of any individuals or agencies involved in the plan formulation, other than NMFS. They represent the official position of NMFS only after they have been signed by the Assistant Administrator. Approved recovery plans are subject to modification as dictated by new findings, changes in species status and the completion of recovery actions. LITERATURE CITATION SHOULD READ AS FOLLOWS: National Marine Fisheries Service. 2008. White Abalone Recovery Plan (Haliotis sorenseni). National Marine Fisheries Service, Long Beach, CA. ADDITIONAL COPIES MAY BE OBTAINED FROM: United States Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Regional Office 501 W. Ocean Blvd., Suite 4200 Long Beach, CA 90802-4213 On Line: http://swr.nmfs.noaa.gov/ Recovery plans can be downloaded from the National Marine Fisheries Service website: http://www.nmfs.noaa.gov/pr/recovery/plans.htm Cover photograph of a white abalone by John Butler of the NOAA Southwest Fisheries Science Center.