Moisture Problems Can Occur in Many
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use
NISTIR 7238 Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use Steven J. Emmerich Tim McDowell Wagdy Anis NISTIR 7238 Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use Steven J. Emmerich Building and Fire Research Laboratory Timothy P. McDowell TESS, Inc. Wagdy Anis Shepley Bulfinch Richardson and Abbott Prepared for: U.S. Department of Energy Office of Building Technologies June 2005 U.S. Department of Commerce Carlos M. Gutierrez, Secretary Technology Administration Phillip J. Bond, Under Secretary of Commerce for Technology National Institute of Standards and Technology Hratch Semerjian, Acting Director ABSTRACT This report presents a simulation study of the energy impact of improving envelope airtightness in U.S. commercial buildings. Despite common assumptions, measurements have shown that typical U.S. commercial buildings are not particularly airtight. Past simulation studies have shown that commercial building envelope leakage can result in significant heating and cooling loads. To evaluate the potential energy savings of an effective air barrier requirement, annual energy simulations were prepared for three nonresidential buildings (a two-story office building, a one-story retail building, and a four-story apartment building) in 5 U.S. cities. A coupled multizone airflow and building energy simulation tool was used to predict the energy use for the buildings at a target tightness level relative to a baseline level based on measurements in existing buildings. Based on assumed blended national average heating and cooling energy prices, predicted potential annual heating and cooling energy cost savings ranged from 3 % to 36 % with the smallest savings occurring in the cooling-dominated climates of Phoenix and Miami. -
Infiltration Modeling Guidelines for Commercial Building Energy Analysis
PNNL-18898 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 DOCKET 12-BSTD-1 DATE RECD. MAY 15 2012 Infiltration Modeling Guidelines for Commercial Building Energy Analysis K Gowri D Winiarski R Jarnagin September 2009 ii Executive Summary This report presents a methodology for modeling air infiltration in EnergyPlus to account for envelope air barrier characteristics. Based on a review of various infiltration modeling options available in EnergyPlus and sensitivity analysis, the linear wind velocity coefficient based on DOE-2 infiltration model is recommended. The methodology described in this report can be used to calculate the EnergyPlus infiltration input for any given building level infiltration rate specified at known pressure difference. The sensitivity analysis shows that EnergyPlus calculates the wind speed based on zone altitude, and the linear wind velocity coefficient represents the variation in infiltration heat loss consistent with building location and weather data. EnergyPlus infiltration input is calculated to be 0.2016 cfm/sf of exterior wall area, assuming that uncontrolled air leakage through the building envelope can be specified by a baseline leakage rate of 1.8 cfm/sf (@ 0.30 in. w.c) of exterior above grade envelope area (based on ASHRAE SSPC-90.1 Envelope Subcommittee recommendation). iii Contents 1. Introduction ................................................................................................................................ 4 2. Building Infiltration Rate ........................................................................................................... -
Water Vapor Migration and Condensation Control in Buildings 2
HPAC Info-dex 2 Engineering Basics he articles in this section were selected by HPAC’s Engineering Editor based on their generic and fundamental nature. Engineering Basics T is intended to be used by engineers, contractors, and facility managers 2 to brush up on engineering fundamentals across a wide range of subjects pertaining to mechanical systems design, building science, and product selection. This year’s selections are as follows: 72 “Water Vapor Migration and Condensation Control in Buildings”—The basics of psychrometric analysis of moisture conditions, including evaluation of vapor barriers and other construction features, and internal and external moisture sources. Examples help guide the discussion of this complex topic. William G. Acker 89 “BACnet: Answers to Frequently Asked Questions”—Answers to frequently asked questions about BACnetE provide invaluable information for building automation system designers, owners, and operators. A primer on the revolutionary development in the building automation and controls industry. By H. Michael Newman Circle 350 on Reader Service Card June 1998 HPAC Heating/Piping/AirConditioning 71 MOISTURE CONTROL Water Vapor Migration and 2 Condensation Control in Buildings The basics of water vapor analysis and control By WILLIAM G. ACKER, pressure). Thus the water vapor lustrated in Equations 4 and 5. President, diffusion is from inside to outside. The inside and outside vapor Acker & Associates, In warmer climates with short pressures can be determined from Green Bay, Wis. heating seasons, the water vapor test data or by using typical psy- drive is from outside to inside due chrometric data for that region. If ater vapor is the gaseous to the drying effect of indoor air there is concern over the amount form of water and is an in- conditioning. -
Insulation and Your Home: Fact
Insulation And Your Home: Fact Sheet Health Considerations Environmental & Occupational Health Assessment Program September 2014 You may be thinking about adding new insulation to your existing home if your home is drafty, or you are looking for ways to save money on energy costs. There are many different types of insulation products in the market place, and many different ways to insulate a house. The type of insulation you choose and the way it is installed may affect your health. The goal of this fact sheet is to help you to become an informed buyer. You will learn to examine three things that can impact your health: 1. Chemical ingredients 2. How dampness and temperature extremes affect your insulation choices 3. Why using an experienced installer is so important. This fact sheet focuses on the most commonly used insulation products in existing houses in the Northeast: synthetic polymer foams like spray polyurethane foam (SPF), mineral wool or fiberglass batts, and blown in cellulose. If you are building a new house or addition, there may be additional insulation products for you to consider. Connecticut Department of Public Health 410 Capitol Avenue, Hartford, CT 06066 http://www.ct.gov/dph Insulation and Your Home: Health Considerations September 2014 Page 2 Exposure to some insulation products can cause 1. Ingredients certain health effects if the product is mis- Many building materials including thermal handled, mis-applied, or if the wrong product is insulation contain fire retardants. Certain classes used in certain environments. Common of insulation products may also contain symptoms may include irritated, itchy, watery, or chemical additives such as colorants, blowing burning sensation of the eyes, nose, or throat, or agents, catalysts, and binding agents. -
Modeling of Airflow Infiltration Through Building Entrance Doors
Validation of Numerical Modeling of Air Infiltration through Building Entrance Doors Sherif Goubran, Dahai Qi, Wael F. Saleh, Liangzhu (Leon) Wang, Radu Zmeureanu Department of Building, Civil and Environmental Engineering, Concordia University, Quebec, Canada ABSTRACT studies confirm that with the increase of efficiency of equipment and building envelope, the relative percent Air infiltration through building entrance doors has energy loss due to air infiltration is becoming more been the focus of many studies due to the significant significant (in relation to the total energy losses) effect infiltrated air has on the buildings’ energy (Deru, Field, Studer, & Benne, 2011; Ng, Emmerich, performance. Air infiltration models were developed & Persily, 2014). Thus in modern and well insulated for the double swing single and vestibule doors based commercial buildings a larger portion of the heat on previous studies. It was concluded that vestibules losses are contributed to air infiltration; air infiltration doors are effective in reducing air infiltration. is responsible for about 25% of the building heating Currently vestibules are required as an energy saving loads for new buildings (Emmerich & Persily, 1998). measure for most commercial buildings. Our recent With tight building envelopes, the major sources of air studies were focused on investigating the effectiveness infiltration that remain in buildings are the exterior of different entrance doors in reducing air infiltration openings (doors and windows) (Cho, Liu, & Gowri, in buildings. This paper presents the results from a 2010; Emmerich & Persily, 1998; Ng et al., 2014). preliminary effort in our recent studies: the experimental validation of the numerical modeling of Yuill conducted one of the pioneer studies on a 2.44 m air infiltration through single doors (double swing) × 2.44 m × 1.30 m (L × W × H) chamber to estimate using computational fluid dynamics (CFD). -
Influence of Air Infiltration on Combustion Process Changes in A
processes Article Influence of Air Infiltration on Combustion Process Changes in a Rotary Tilting Furnace Róbert Dzur ˇnák 1,* , Augustin Varga 1, Gustáv Jablonský 1 , Miroslav Variny 2 ,Réne Atyafi 1, Ladislav Lukáˇc 1 , Marcel Pástor 1 and Ján Kizek 3 1 Department of Thermal Technology and Gas Industry, Institute of Metallurgy, Faculty of Materials, Metallurgy and Recycling, Technical University of Kosice, Letna 9, 042 00 Kosice, Slovakia; [email protected] (A.V.); [email protected] (G.J.); rene.atyafi@tuke.sk (R.A.); [email protected] (L.L.); [email protected] (M.P.) 2 Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia; [email protected] 3 Department of Process Technique, Faculty of Manufacturing Technologies of the TU of Kosice with a Seat in Presov, Technical University of Kosice, Sturova 31, 080 01 Presov, Slovakia; [email protected] * Correspondence: [email protected] Received: 24 September 2020; Accepted: 13 October 2020; Published: 15 October 2020 Abstract: Air infiltration into the combustion chambers of industrial furnaces is an unwanted phenomenon causing loss of thermal efficiency, fuel consumption increase, and the subsequent increase in operating costs. In this study, a novel design for a rotary tilting furnace door with improved construction features is proposed and tested experimentally in a laboratory-scale furnace, aimed at air infiltration rate reduction by decreasing the gap width between the static furnace door and the rotating body. Temperatures in the combustion chamber and oxygen content in the dry flue gas were measured to document changes in the combustion process with the varying gap width. -
Factors Affecting Indoor Air Quality
Factors Affecting Indoor Air Quality The indoor environment in any building the categories that follow. The examples is a result of the interaction between the given for each category are not intended to site, climate, building system (original be a complete list. 2 design and later modifications in the Sources Outside Building structure and mechanical systems), con- struction techniques, contaminant sources Contaminated outdoor air (building materials and furnishings, n pollen, dust, fungal spores moisture, processes and activities within the n industrial pollutants building, and outdoor sources), and n general vehicle exhaust building occupants. Emissions from nearby sources The following four elements are involved n exhaust from vehicles on nearby roads Four elements— in the development of indoor air quality or in parking lots, or garages sources, the HVAC n loading docks problems: system, pollutant n odors from dumpsters Source: there is a source of contamination pathways, and or discomfort indoors, outdoors, or within n re-entrained (drawn back into the occupants—are the mechanical systems of the building. building) exhaust from the building itself or from neighboring buildings involved in the HVAC: the HVAC system is not able to n unsanitary debris near the outdoor air development of IAQ control existing air contaminants and ensure intake thermal comfort (temperature and humidity problems. conditions that are comfortable for most Soil gas occupants). n radon n leakage from underground fuel tanks Pathways: one or more pollutant pathways n contaminants from previous uses of the connect the pollutant source to the occu- site (e.g., landfills) pants and a driving force exists to move n pesticides pollutants along the pathway(s). -
Quick Start Guide
The Watchdog900 Quick Start Guide Seaira Global • 14021 NC Highway 50 • Surf City, NC 28445 www.seairaglobal.com WatchDog 900 Quick Start Guide • Prepare Crawl Space for Installation • Tips for Dehumidifier Installation • Operating Instructions • Benefits of a Dehumidifier • Common Terms • Parts Diagram • Trouble Shooting • Submit Warranty • Additional Resources While you’re waiting for your new dehumidifier to arrive, here are a few topics to keep in mind. How to Prepare Your Crawl Space for Installation If you decide to install your dehumidifier in a crawl space, there are a few steps you need to take prior to installation. 1. First, you will need clean out any debris that may be cluttering up the crawl space. This will make sure that there are no hidden problems such as cracks in the foundation. It will also ensure that the vapor barrier can be installed properly. In addition, cleaning out any unnecessary items will make it much easier to move around in the crawl space. Being able to move around more easily is useful for a hassle free installation, as well as for future maintenance that may need to be done. 2. After the crawl space is clear, you will need to inspect it for any potential issues so they can be fixed prior to installation. For instance, you may notice signs of pests or rodents in the crawl space. The crawl space could also show signs of structural issues, such as damaged floor joists or girders. Most importantly, you need to ensure that all signs of excess moisture are taken care of. -
Use of Ductless Mini Split Electric Heat Pumps In
/i U.S. Department of Houslng and Urtan Development lr Office of Policy Development and Researcf USE OF DUCTLESS MINI.SPLIT ELECTRIC HEAT PUMPS IN RESIDENCES Phase ll - Final Report -i U.S. Department of Houslng and Urban Development 1r office of Policy Development and Researci USE OF DUCTLESS MINI.SPLIT ELECTRIC HEAT PUMPS IN RESIDENCES Phase ll - Final Report USE OF DUCTLESS MINI.SPLIT ELEGTRIC HEAT PUMPS IN RESIDENCES Phase ll - Final Report Prepared for: U.S. Department of Housing and Urban Development Office of Policy Development and Research Prepared by: NAHB Research Center Upper Marlboro, MD lnstrument No. DUl 00K000005897 July 1994 Notice The U.S. Govemment does not endorse products or manufacturers. Trade or manufacturers' names aPPear herein solely because they are considered essential to the object of this report. The contens of this rcport are the views of the contractor and do not necessarily rcflect the views or policies of the U.S. Departnent of Housing and Urban Development or the U.S. Govemment. Acknowledgements This report was prepared by the NAHB Research Center through funding provided by the U.S. Department of Housing and Urban Development (HUD). The principal author was C. Edward Barbour with technical assistance and review provided by Mark Nowak and Tom Kenney. Data acquisition system installation and operation was provided by Jay Crandell and J. Alben van Overeem. The author acknowledges the contributions and guidance of Mark Gibson and Carol Soble at various times during the project and development of the report. Special appreciation is extended to William Freeborne of HUD for review assistance. -
Oregon Residential Energy Code Rev
Oregon Residential Energy Code Rev. March 2005 • No. 15 Moisture Control Measures This pamphlet is one in a series that describes residential sheets may serve as vapor retarders for unfaced insul- energy conservation requirements of the Oregon ation. Certain paints are formulated to act as vapor Residential Specialty Code and the Structural Specialty retarders. Check with your building official to be sure Code for Group R buildings three stories and less in paints are locally accepted. height. Other pamphlets in this series may be obtained from Oregon Dept of Energy at www.oregon.gov/energy/ Figure 1 shows the diffusion process and how vapor or local building departments or from Oregon Building retarders work. Codes Division. Wall vapor retarders Moisture control measures required by the Oregon Residential Energy Code include vapor retarders in walls, Energy code requires a one-perm vapor retarder in floors, and ceilings without attics and a ground cover in walls. Faced insulation may meet both R-value and vapor crawl spaces and below slabs in heated spaces. Section retarder requirements. When unfaced batts or blown-in drawings or written specifications that accompany the batts are used, a vapor retarder must be provided. Vapor plans must show moisture control measures. retarder paints or polyethylene sheets are common wall vapor retarders. Along with damp-proofing and ventilation requirements, moisture control reduces moisture problems Floor vapor retarders in homes and multifamily buildings. A one-perm formulated vapor retarder is also required on floors. The vapor retarder requirement is often met by Vapor retarder requirements using exterior grade plywood or strand board sheathing Vapor retarders reduce moisture condensation within for the floor. -
Identifying Water and Moisture Infiltration Paths in Building Envelopes
Proceedings: Indoor Air 2002 IDENTIFYING WATER AND MOISTURE INFILTRATION PATHS IN BUILDING ENVELOPES LP Lazure* and J Lavoie Occupational Health and Safety Research Institute Robert-Sauvé, Montréal, Québec, Canada ABSTRACT In the past ten years, fungal contamination of buildings has been linked to many complaints related to indoor air quality. Three elements promote microbial growth in an indoor environment: a) a microbial source, b) nutrients, and 3) water. Controlling the presence of water is generally the most effective means of limiting fungal colonization. The pervasiveness of microbes in our environment and the presence of many nutrient substrates limit the possibilities of rapid and effective intervention at these levels. In order to determine leakage sources and to perform an effective field investigation, the role of building components in preventing moisture intrusion and the mechanisms of moisture migration must be understood. Specialized techniques such as thermography and spray tests can be used to conduct the analysis and the assessment of the integrity of a building enclosure. INDEX TERMS Bioaerosol, Building envelope, Water leakage, Moisture, Microbial contamination INTRODUCTION Studies tend to demonstrate the existence of relationship between mold exposure and the development of some symptoms, particularly respiratory symptoms (Goyer, Lavoie, Lazure et al, 2001). Several of these studies have also noted the presence of high humidity. Among the various elements that contribute to microbial growth in an indoor environment, three are of particular interest: a) a microbial source, b) nutrients, and c) water (ACGIH, 1999). Controlling water accumulation is generally the most effective means of limiting colonization. The pervasiveness of microbes in our environment and the presence of many nutrient substrates such as cellulose, adhesives and other carbon containing materials limit the possibilities of rapid and effective intervention at these levels. -
RREAL's Installation Manual for Solar Thermal Panels (Also Known As “Solar Powered Furnace/SPF”)
SPF Installation Manual Rural Renewable Energy Alliance (RREAL) MADE 2330 Dancing Wind Road SW, Suite 2 IN Pine River, MN 56474, USA MN [email protected] 218-587-4753 www.rreal.org All Rights Reserved 2010 Version 1.10 Table of Contents Figures Safety Warning............................................ 2 1. Fastening Mounting Rails to Structure.... 5 Important Concerns................................... 2 2. SPF Penetration Areas.................................. 6 3. Silicone Location on Starter Collar........... 7 Parts Definitions........................................ 3 4. Installation of Starter Collar....................... 7 Bill of Materials.......................................... 4 5. Installation of Thermistor........................... 7 Additional Materials................................... 4 6. Hang SPF on Mounting Rails..................... 8 1) Select Location........................................ 5 7. Silicone Location on AI Stint..................... 8 2) Hang Mounting Rails.............................. 5 8. Insulation and Back Draft Dampers......... 9 3) Make Penetrations................................... 6 9. Wiring Diagram............................................ 10 10. Extrusion Cut Location............................ 13 4) Prepare to Hang Panel............................ 7 11. Portrait Mounting Rails............................ 14 5) Hang First Panel....................................... 8 12. Landscape Mounting Rails........................ 15 6) Hang Additional Panels.......................... 8 13.