WRA Species Report

Total Page:16

File Type:pdf, Size:1020Kb

WRA Species Report Family: Meliaceae Taxon: Aphanamixis polystachya Synonym: Aglaia polystachya Wall. (basionym) Common Name: shan lian Amoora rohituka (Roxb.) Wight & Arn. amoora Andersonia rohituka Roxb. Pithraj tree Ricinocarpodendron polystachyum (Wall.) Ma Questionaire : current 20090513 Assessor: Chuck Chimera Designation: EVALUATE Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 3 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 ? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see n Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 405 Toxic to animals y=1, n=0 406 Host for recognized pests and pathogens y=1, n=0 407 Causes allergies or is otherwise toxic to humans y=1, n=0 408 Creates a fire hazard in natural ecosystems y=1, n=0 n 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 y Print Date: 8/23/2012 Aphanamixis polystachya (Meliaceae) Page 1 of 7 410 Tolerates a wide range of soil conditions (or limestone conditions if not a volcanic island) y=1, n=0 y 411 Climbing or smothering growth habit y=1, n=0 n 412 Forms dense thickets y=1, n=0 n 501 Aquatic y=5, n=0 n 502 Grass y=1, n=0 n 503 Nitrogen fixing woody plant y=1, n=0 n 504 Geophyte (herbaceous with underground storage organs -- bulbs, corms, or tubers) y=1, n=0 n 601 Evidence of substantial reproductive failure in native habitat y=1, n=0 n 602 Produces viable seed y=1, n=-1 y 603 Hybridizes naturally y=1, n=-1 604 Self-compatible or apomictic y=1, n=-1 y 605 Requires specialist pollinators y=-1, n=0 n 606 Reproduction by vegetative fragmentation y=1, n=-1 n 607 Minimum generative time (years) 1 year = 1, 2 or 3 years = 0, 4+ years = -1 701 Propagules likely to be dispersed unintentionally (plants growing in heavily trafficked y=1, n=-1 n areas) 702 Propagules dispersed intentionally by people y=1, n=-1 y 703 Propagules likely to disperse as a produce contaminant y=1, n=-1 n 704 Propagules adapted to wind dispersal y=1, n=-1 n 705 Propagules water dispersed y=1, n=-1 n 706 Propagules bird dispersed y=1, n=-1 y 707 Propagules dispersed by other animals (externally) y=1, n=-1 708 Propagules survive passage through the gut y=1, n=-1 y 801 Prolific seed production (>1000/m2) y=1, n=-1 802 Evidence that a persistent propagule bank is formed (>1 yr) y=1, n=-1 n 803 Well controlled by herbicides y=-1, n=1 804 Tolerates, or benefits from, mutilation, cultivation, or fire y=1, n=-1 805 Effective natural enemies present locally (e.g. introduced biocontrol agents) y=-1, n=1 Designation: EVALUATE WRA Score 3 Print Date: 8/23/2012 Aphanamixis polystachya (Meliaceae) Page 2 of 7 Supporting Data: 101 2005. CAB International. Forestry Compendium. [Is the species highly domesticated? No evidence] "Aphanamixis polystachya is a CAB International, Wallingford, UK moderate sized (up to 18 m height and 50 cm dbh), evergreen tree with a spreading crown, of wide distribution throughout south and southeast Asia. It is adaptable to a broad range of environmental conditions and can tolerate drought, water-logging, wind, and shade. More research is needed on provenance selection and tree improvement (Troup and Joshi, 1981)." 102 2012. WRA Specialist. Personal Communication. NA 103 2012. WRA Specialist. Personal Communication. NA 201 2008. Wu, Z.Y./Raven,P.H./Hong, D.Y. (eds.). [Species suited to tropical or subtropical climate(s) 2-High] "Dense or sparse Flora of China. Vol. 11 (Oxalidaceae through mixed evergreen broad leaved and deciduous forests in mountainous regions; low Aceraceae). Science Press & Missouri Botanical to middle elevations. Fujian, Guangdong, Guangxi, Hainan, Taiwan (Lan Yu), Garden Press, Beijing & St. Louis Yunnan [Bhutan, India, Indonesia, Laos, Malaysia, Papua New Guinea, Philippines, Sri Lanka, Thailand, Vietnam; Pacific islands (Solomon Islands)]." 201 2012. USDA ARS National Genetic Resources [Species suited to tropical or subtropical climate(s) 2-High] "Native: ASIA- Program. Germplasm Resources Information TEMPERATE China: China [tropical] ASIA-TROPICAL Indian Network - (GRIN). http://www.ars-grin.gov/cgi- Subcontinent: Bhutan; India [peninsula & n.e.]; Sri Lanka Indo-China: bin/npgs/html/index.pl Indochina; Myanmar; Thailand Malesia: Indonesia; Malaysia; Papua New Guinea; Philippines" 202 2012. USDA ARS National Genetic Resources [Quality of climate match data 2-High] Program. Germplasm Resources Information Network - (GRIN). http://www.ars-grin.gov/cgi- bin/npgs/html/index.pl 203 2005. CAB International. Forestry Compendium. [Broad climate suitability (environmental versatility)? Yes] "- Altitude range: 0 - CAB International, Wallingford, UK 1800 m - Mean annual rainfall: 2000 - 5000 mm - Rainfall regime: summer; uniform - Dry season duration: 0 - 4 months - Mean annual temperature: 21 - 24ºC - Mean maximum temperature of hottest month: 37 - 41ºC - Mean minimum temperature of coldest month: 18 - 22ºC - Absolute minimum temperature: 3 - 6ºC" 203 2012. Biodiversity Informatics & co-Operation in [Broad climate suitability (environmental versatility)? Yes. Elevation range Taxonomy for Interactive shared Knowledge bas exceeds 1000 m] "Understorey to subcanopy trees in evergreen forests, up to (BIOTIK). Aphanamixis polystachya (Wall.) 1300 m." Parker - Meliaceae [Accessed 22 Aug 2012]. http://www.biotik.org/india/species/a/aphapoly/aph apoly_en.html 204 2012. USDA ARS National Genetic Resources [Native or naturalized in regions with tropical or subtropical climates? Yes] Program. Germplasm Resources Information "Native: ASIA-TEMPERATE China: China [tropical] ASIA-TROPICAL Network - (GRIN). http://www.ars-grin.gov/cgi- Indian Subcontinent: Bhutan; India [peninsula & n.e.]; Sri Lanka Indo-China: bin/npgs/html/index.pl Indochina; Myanmar; Thailand Malesia: Indonesia; Malaysia; Papua New Guinea; Philippines" 205 2005. CAB International. Forestry Compendium. [Does the species have a history of repeated introductions outside its natural CAB International, Wallingford, UK range?] "Brazil planted" 205 2005. Staples, G.W./Herbst, D.R.. A Tropical [Does the species have a history of repeated introductions outside its natural Garden Flora - Plants Cultivated in the Hawaiian range? Hawaii] "…rarely grown as an ornamental in Hawaii." Islands and Other Tropical Places. Bishop Museum Press, Honolulu, HI 301 2012. Randall, R.P.. A Global Compendium of [Naturalized beyond native range? Possibly] "nc - unconfirmed naturalisation" Weeds. 2nd Edition. Department of Agriculture [Mozambique] and Food, Western Australia 302 2012. Randall, R.P.. A Global Compendium of [Garden/amenity/disturbance weed? No evidence] Weeds. 2nd Edition. Department of Agriculture and Food, Western Australia 303 2012. Randall, R.P.. A Global Compendium of [Agricultural/forestry/horticultural weed? No evidence] Weeds. 2nd Edition. Department of Agriculture and Food, Western Australia 304 2012. Randall, R.P.. A Global Compendium of [Environmental weed? No evidence] Weeds. 2nd Edition. Department of Agriculture and Food, Western Australia Print Date: 8/23/2012 Aphanamixis polystachya (Meliaceae) Page 3 of 7 305 2012. Randall, R.P.. A Global Compendium of [Congeneric weed? No evidence] Weeds. 2nd Edition. Department of Agriculture and Food, Western Australia 401 2008. Wu, Z.Y./Raven,P.H./Hong, D.Y. (eds.). [Produces spines, thorns or burrs? No] "Trees or shrubs, (2–)20–30 m tall. Flora of China. Vol. 11 (Oxalidaceae through Leaves odd- or evenpinnate, 30–60(–90) cm; leaflets (5–)9–21, opposite; Aceraceae). Science Press & Missouri Botanical petiolules (2–)6–12 mm; leaflet blades oblong elliptic, elliptic, or ovate, (7–)17–26 Garden Press, Beijing & St. Louis × 4–10 cm with basal pair smallest, membranous when young, subleathery to leathery when mature, with visible transparent tiny spots under sunlight, both surfaces glabrous, secondary veins (8–)11–20 on each side of midvein and slender, base oblique and cuneate to broadly cuneate or sometimes one side rounded, margin entire, apex caudateacuminate to obtuse." 402 2012. WRA Specialist. Personal Communication. [Allelopathic? Unknown] 403 2008. Wu, Z.Y./Raven,P.H./Hong, D.Y. (eds.). [Parasitic? No] "Trees or shrubs, (2–)20–30 m tall." Flora of China. Vol. 11 (Oxalidaceae through Aceraceae). Science Press & Missouri Botanical Garden Press, Beijing & St. Louis 404 2003. Islam, S.S.. State of forest genetic [Unpalatable to grazing animals? Unknown. Of all the uses for trees of resources conservation and management in Bangladesh in the following Appendix, Aphanamixis is
Recommended publications
  • Stigmast-5(6)-En-3Β-Ol from the Bark of Chisocheton Lasiocarpus (Meliaceae) Nurlelasari*, Akbar S., Harneti D., Maharani R
    Research Journal of Chemistry and Environment_______________________________Vol. 22 (Special Issue I) January (2018) Res. J. Chem. Environ. Stigmast-5(6)-en-3β-ol from the Bark of Chisocheton lasiocarpus (Meliaceae) Nurlelasari*, Akbar S., Harneti D., Maharani R. and Supratman U. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor 45363, INDONESIA *[email protected] Abstract In this communication, we describe the isolation and Chisocheton lasiocarpus is one of species from structural elucidation of stigmast-5(6)-en-3β-ol from the Meliaceae family. Investigation on secondary bark of C. lasiocarpus. Their structures were elucidated by 1 13 metabolites of C. lasiocarpus, grown in Indonesia, has spectroscopic methods including IR, 1D-NMR ( H, and C) and 1H-1H COSY. not been reported. In this study, a stigmast-5(6)-en-3β- ol compound has been successfully isolated from the Material and Methods bark of C. lasiocarpus by using methods of extraction, Material: The bark C. lasiocarpus was collected in Bogor partition, and chromatography. Methanolic extract of Botanical Garden, Bogor, West Java Province, Indonesia in C. lasiocarpus was partitioned successively to give n- April 2017. The plant was identified by the Staff of the hexane, ethyl acetate and n-butanol extracts. Bogoriense Herbarium, Bogor, Indonesia and was deposited at the herbarium.Melting points were measured on a Mettler The n-hexane extract was separated and purified by Toledo micro melting point apparatus and are uncorrected. chromatography methods to obtain the pure isolate. The IR spectra were recorded on a Perkin-Elmer spectrum- The chemical structure of stigmast-5(6)-en-3β-ol was 100 FT-IR in KBr.
    [Show full text]
  • Fusarium Proliferatum, an Endophytic Fungus from Dysoxylum Binectariferum Hook.F, Produces Rohitukine, a Chromane Alkaloid Possessing Anti-Cancer Activity
    Antonie van Leeuwenhoek DOI 10.1007/s10482-011-9638-2 ORIGINAL PAPER Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity Patel Mohana Kumara • Sebastian Zuehlke • Vaidyanathan Priti • Bheemanahally Thimmappa Ramesha • Singh Shweta • Gudasalamani Ravikanth • Ramesh Vasudeva • Thankayyan Retnabai Santhoshkumar • Michael Spiteller • Ramanan Uma Shaanker Received: 13 June 2011 / Accepted: 23 August 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Rohitukine is a chromane alkaloid pos- Schumanniophyton problematicum (Rubiaceae). sessing anti-inflammatory, anti-cancer and immuno- Flavopiridol, a semi-synthetic derivative of rohitukine modulatory properties. The compound was first is a potent CDK inhibitor and is currently in Phase III reported from Amoora rohituka (Meliaceae) and later clinical trials. In this study, the isolation of an from Dysoxylum binectariferum (Meliaceae) and endophytic fungus, Fusarium proliferatum (MTCC 9690) from the inner bark tissue of Dysoxylum binectariferum Hook.f (Meliaceae) is reported. The P. Mohana Kumara Á V. Priti Á B. T. Ramesha Á endophytic fungus produces rohitukine when cultured & S. Shweta Á G. Ravikanth Á R. Uma Shaanker ( ) in shake flasks containing potato dextrose broth. The School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore 560065, India yield of rohitukine was 186 lg/100 g dry mycelial e-mail: [email protected] weight, substantially lower than that produced by the host tissue. The compound from the fungus was P. Mohana Kumara Á V. Priti Á B. T. Ramesha Á authenticated by comparing the LC–HRMS and LC– S. Shweta Á G. Ravikanth Á R. Uma Shaanker Department of Crop Physiology, University of HRMS/MS spectra with those of the reference stan- Agricultural Sciences, GKVK, Bangalore 560065, India dard and that produced by the host plant.
    [Show full text]
  • The Framework Species Approach to Forest Restoration: Using Functional Traits As Predictors of Species Performance
    - 1 - The Framework Species Approach to forest restoration: using functional traits as predictors of species performance. Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Hannah Betts July 2013 - 2 - - 3 - Abstract Due to forest degradation and loss, the use of ecological restoration techniques has become of particular interest in recent years. One such method is the Framework Species Approach (FSA), which was developed in Queensland, Australia. The Framework Species Approach involves a single planting (approximately 30 species) of both early and late successional species. Species planted must survive in the harsh conditions of an open site as well as fulfilling the functions of; (a) fast growth of a broad dense canopy to shade out weeds and reduce the chance of forest fire, (b) early production of flowers or fleshy fruits to attract seed dispersers and kick start animal-mediated seed distribution to the degraded site. The Framework Species Approach has recently been used as part of a restoration project in Doi Suthep-Pui National Park in northern Thailand by the Forest Restoration Research Unit (FORRU) of Chiang Mai University. FORRU have undertaken a number of trials on species performance in the nursery and the field to select appropriate species. However, this has been time-consuming and labour- intensive. It has been suggested that the need for such trials may be reduced by the pre-selection of species using their functional traits as predictors of future performance. Here, seed, leaf and wood functional traits were analysed against predictions from ecological models such as the CSR Triangle and the pioneer concept to assess the extent to which such models described the ecological strategies exhibited by woody species in the seasonally-dry tropical forests of northern Thailand.
    [Show full text]
  • Isolation and Characterization of Phytoconstituents from Fruits of Aphanamixis Polystachya
    International Journal of Research p-ISSN: 2348-6848 e-ISSN: 2348-795X Available at https://edupediapublications.org/journa ls Volume 06 Issue 11 October 2019 Isolation And Characterization Of Phytoconstituents From Fruits Of Aphanamixis Polystachya 1.K.Ashwini, 2.A.Navya jyoth, 3.Dr.G.krishna mohan, 4.Dr.M.Sandhya,5.A.Srivani Institute of science of technology, jntuHyderabad,JOURNAL:IJR(International Journal of Research) DEPARTMENT:Pharmacognosy&Phytochemistry,[email protected] Abstract:s The meliaceaeous plants are rich source of limuloids and used as pesticide in agriculture. Aphanamixis polystachya R.N. Parker (Wall.) belongs to the family Meliaceae and it is a traditional plantnative to Asia, especially China and India. It is extensively used in folklore medicine of Bangladesh, for the treatment of various ailments like in liver and spleen disorders, tumors, ulcer, dyspepsia, intestinal worms, skin diseases, leprosy, diabetes, eye diseases, jaundice, hemorrhoids, burning sensation, arthritis and leucorrhoea. According to previous studies, A.polystachya has been extensively investigated since the 1960s because of the anticancer, antimicrobial and antifungal, anti-inflammatory, anti-oxidant, anti-diabetic, insecticidal and hepato protective properties of the plant extracts. A. polystachya well known source of limonoids and terpenoids with the wide range of biological activity. A.polystachya have led to the isolation of many structurally active constituents like terpenoids and limuloids with a pharmacological properties such as anti-feed ant, insecticidal and antioxidant activities. In our present study Photochemical investigation of fruits of hexane extract of Aphanamixispolystachya led to isolation of active constituents. The resulted active constituents were determined on the basis of HRMS, IR, 1D and 2D NMR data.
    [Show full text]
  • Diversity and Composition of Plant Species in the Forest Over Limestone of Rajah Sikatuna Protected Landscape, Bohol, Philippines
    Biodiversity Data Journal 8: e55790 doi: 10.3897/BDJ.8.e55790 Research Article Diversity and composition of plant species in the forest over limestone of Rajah Sikatuna Protected Landscape, Bohol, Philippines Wilbert A. Aureo‡,§, Tomas D. Reyes|, Francis Carlo U. Mutia§, Reizl P. Jose ‡,§, Mary Beth Sarnowski¶ ‡ Department of Forestry and Environmental Sciences, College of Agriculture and Natural Resources, Bohol Island State University, Bohol, Philippines § Central Visayas Biodiversity Assessment and Conservation Program, Research and Development Office, Bohol Island State University, Bohol, Philippines | Institute of Renewable Natural Resources, College of Forestry and Natural Resources, University of the Philippines Los Baños, Laguna, Philippines ¶ United States Peace Corps Philippines, Diosdado Macapagal Blvd, Pasay, 1300, Metro Manila, Philippines Corresponding author: Wilbert A. Aureo ([email protected]) Academic editor: Anatoliy Khapugin Received: 24 Jun 2020 | Accepted: 25 Sep 2020 | Published: 29 Dec 2020 Citation: Aureo WA, Reyes TD, Mutia FCU, Jose RP, Sarnowski MB (2020) Diversity and composition of plant species in the forest over limestone of Rajah Sikatuna Protected Landscape, Bohol, Philippines. Biodiversity Data Journal 8: e55790. https://doi.org/10.3897/BDJ.8.e55790 Abstract Rajah Sikatuna Protected Landscape (RSPL), considered the last frontier within the Central Visayas region, is an ideal location for flora and fauna research due to its rich biodiversity. This recent study was conducted to determine the plant species composition and diversity and to select priority areas for conservation to update management strategy. A field survey was carried out in fifteen (15) 20 m x 100 m nested plots established randomly in the forest over limestone of RSPL from July to October 2019.
    [Show full text]
  • Evolutionary Consequences of Dioecy in Angiosperms: the Effects of Breeding System on Speciation and Extinction Rates
    EVOLUTIONARY CONSEQUENCES OF DIOECY IN ANGIOSPERMS: THE EFFECTS OF BREEDING SYSTEM ON SPECIATION AND EXTINCTION RATES by JANA C. HEILBUTH B.Sc, Simon Fraser University, 1996 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 2001 © Jana Heilbuth, 2001 Wednesday, April 25, 2001 UBC Special Collections - Thesis Authorisation Form Page: 1 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. The University of British Columbia Vancouver, Canada http://www.library.ubc.ca/spcoll/thesauth.html ABSTRACT Dioecy, the breeding system with male and female function on separate individuals, may affect the ability of a lineage to avoid extinction or speciate. Dioecy is a rare breeding system among the angiosperms (approximately 6% of all flowering plants) while hermaphroditism (having male and female function present within each flower) is predominant. Dioecious angiosperms may be rare because the transitions to dioecy have been recent or because dioecious angiosperms experience decreased diversification rates (speciation minus extinction) compared to plants with other breeding systems.
    [Show full text]
  • Angiospermic Flora of Gafargaon Upazila of Mymensingh District Focusing on Medicinally Important Species
    Bangladesh J. Plant Taxon. 26(2): 269‒283, 2019 (December) © 2019 Bangladesh Association of Plant Taxonomists ANGIOSPERMIC FLORA OF GAFARGAON UPAZILA OF MYMENSINGH DISTRICT FOCUSING ON MEDICINALLY IMPORTANT SPECIES 1 M. OLIUR RAHMAN , NUSRAT JAHAN SAYMA AND MOMTAZ BEGUM Department of Botany, University of Dhaka, Dhaka 1000, Bangladesh Keywords: Angiosperm; Taxonomy; Vegetation analysis; Medicinal Plants; Distribution; Conservation. Abstract Gafargaon upazila has been floristically explored to identify and assess the angiospermic flora that resulted in occurrence of 203 taxa under 174 genera and 75 families. Magnoliopsida is represented by 167 taxa under 140 genera and 62 families, while Liliopsida is constituted by 36 taxa belonging to 34 genera and 13 families. Vegetation analysis shows that herbs are represented by 106 taxa, shrubs 35, trees 54, and climbers by 8 species. In Magnoliopsida, Solanaceae is the largest family possessing 10 species, whereas in Liliopsida, Poaceae is the largest family with 12 species. The study has identified 45 medicinal plants which are used for treatment of over 40 diseases including diabetes, ulcer, diarrhoea, dysentery, fever, cold and cough, menstrual problems, blood pressure and urinary disorders by the local people. Some noticeable medicinal plants used in primary healthcare are Abroma augusta (L.) L.f., Coccinia grandis (L.) Voigt., Commelina benghalensis L., Cynodon dactylon (L.) Pers., Holarrhena antidysenterica Flem., Glycosmis pentaphylla (Retz.) A. DC., Mikania cordata (Burm. f.) Robinson, Ocimum tenuiflorum L. and Rauvolfia serpentina (L.) Benth. A few number of species are also employed in cultural festivals in the study area. Cardamine flexuosa With., Oxystelma secamone (L.) Karst., Phaulopsis imbricata (Forssk.) Sweet, Piper sylvaticum Roxb., Stephania japonica (Thunb.) Miers and Trema orientalis L.
    [Show full text]
  • Chapter 6 ENUMERATION
    Chapter 6 ENUMERATION . ENUMERATION The spermatophytic plants with their accepted names as per The Plant List [http://www.theplantlist.org/ ], through proper taxonomic treatments of recorded species and infra-specific taxa, collected from Gorumara National Park has been arranged in compliance with the presently accepted APG-III (Chase & Reveal, 2009) system of classification. Further, for better convenience the presentation of each species in the enumeration the genera and species under the families are arranged in alphabetical order. In case of Gymnosperms, four families with their genera and species also arranged in alphabetical order. The following sequence of enumeration is taken into consideration while enumerating each identified plants. (a) Accepted name, (b) Basionym if any, (c) Synonyms if any, (d) Homonym if any, (e) Vernacular name if any, (f) Description, (g) Flowering and fruiting periods, (h) Specimen cited, (i) Local distribution, and (j) General distribution. Each individual taxon is being treated here with the protologue at first along with the author citation and then referring the available important references for overall and/or adjacent floras and taxonomic treatments. Mentioned below is the list of important books, selected scientific journals, papers, newsletters and periodicals those have been referred during the citation of references. Chronicles of literature of reference: Names of the important books referred: Beng. Pl. : Bengal Plants En. Fl .Pl. Nepal : An Enumeration of the Flowering Plants of Nepal Fasc.Fl.India : Fascicles of Flora of India Fl.Brit.India : The Flora of British India Fl.Bhutan : Flora of Bhutan Fl.E.Him. : Flora of Eastern Himalaya Fl.India : Flora of India Fl Indi.
    [Show full text]
  • The Bioket Biodiversity Data Warehouse: Data and Knowledge Integration and Extraction Somsack Inthasone, Nicolas Pasquier, Andrea G
    The BioKET Biodiversity Data Warehouse: Data and Knowledge Integration and Extraction Somsack Inthasone, Nicolas Pasquier, Andrea G. B. Tettamanzi, Célia da Costa Pereira To cite this version: Somsack Inthasone, Nicolas Pasquier, Andrea G. B. Tettamanzi, Célia da Costa Pereira. The BioKET Biodiversity Data Warehouse: Data and Knowledge Integration and Extraction. Advances in Intelli- gent Data Analysis XIII - 13th International Symposium, IDA 2014, Leuven, Belgium, October 30 - November 1, 2014. Proceedings, Oct 2014, Leuven, Belgium. pp.131 - 142, 10.1007/978-3-319-12571- 8_12. hal-01084440 HAL Id: hal-01084440 https://hal.archives-ouvertes.fr/hal-01084440 Submitted on 19 Nov 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The BioKET Biodiversity Data Warehouse: Data and Knowledge Integration and Extraction Somsack Inthasone, Nicolas Pasquier, Andrea G. B. Tettamanzi, and C´elia da Costa Pereira Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06903 Sophia Antipolis, France {somsacki,pasquier}@i3s.unice.fr,{andrea.tettamanzi,celia.pereira}@unice.fr Abstract. Biodiversity datasets are generally stored in different for- mats. This makes it difficult for biologists to combine and integrate them to retrieve useful information for the purpose of, for example, efficiently classify specimens.
    [Show full text]
  • In Vitro and in Vivo Antioxidant Activity of Aphanamixis Polystachya Bark
    American Journal of Infectious Diseases 5 (2): 60-67, 2009 ISSN 1553-6203 © 2009 Science Publications In vitro and In vivo Antioxidant Activity of Aphanamixis polystachya Bark Alluri V. Krishnaraju, Chirravuri V. Rao, Tayi V.N. Rao, K.N. Reddy and Golakoti Trimurtulu Laila Impex R and D Centre, Unit-I, Phase-III, Jawahar Autonagar Vijayawada-520007, India Abstract: Problem statement: Free radical stress leads to tissue injury and progression of disease conditions such as arthritis, hemorrhagic shock, atherosclerosis, diabetes, hepatic injury, aging and ischemia, reperfusion injury of many tissues, gastritis, tumor promotion, neurodegenerative diseases and carcinogenesis. Safer antioxidants suitable for long term use are needed to prevent or stop the progression of free radical mediated disorders. Approach: Many plants possess antioxidant ingredients that provided efficacy by additive or synergistic activities. A. polystachya bark was a strong astringent, used for the treatment of liver and spleen diseases, rheumatism and tumors. Antioxidant activity of the crude extracts of bark of A. polystachya were assessed using NBT, DPPH, ABTS and FRAP assays. The potent fraction (AP-110/82C) was tested for in vivo efficacy Results: The methanol, aqueous methanol and water extracts exhibited potent antioxidant activity compared to known antioxidants. In vivo studies on potent fraction AP-110/82C demonstrated dose dependent reduction in hepatic − malondialdehyde (320.6, 269.3 and 373.69 µM mg 1 protein) with simultaneous improvement in − hepatic glutathione (6.9, 17.1 and 5.8 µg mg 1 protein) and catalase levels (668.9, 777.0 and − − 511.94 µg mg 1 protein) respectively for 50, 100 mg kg 1 doses and control) compared to control group.
    [Show full text]
  • Evaluation of Aphanamixis Polystachya (Wall.) R. Parker As a Potential Source of Biodiesel
    J Biochem Tech (2012) 3(5): S128-S133 ISSN: 0974-2328 Evaluation of Aphanamixis polystachya (Wall.) R. Parker as a potential source of biodiesel K Rajesh Kumar, Channarayappa, K T Prasanna, Balakrishna Gowda* Received: 5 May 2012 / Received in revised form: 6 August 2012, Accepted: 10 August 2012, Published online: 28 December 2012, © Sevas Educational Society 2008-2012 Abstract Aphanamixis polystachya (Wall.) R. Parker (amoora), a promising In India use of edible oils for biodiesel production is not oil yielding tree has been evaluated as a potential source for recommended, since there is big gap between supply and demand biodiesel. Amoora seeds contain 40-44 % oil with 63.4 % (Anonymous 2008; Singh and Dipti 2010; Sarvesh et al. 2008). unsaturated fatty acids and 4.62 % Free Fatty Acids (FFA). A two However, India has very diverse plant resources that produce non- stage process has been standardized and adopted for biodiesel edible oils and can be harnessed for biodiesel production. More than production during the investigations. In acid pretreatment step, 400 oil yielding plant species across various agro-ecological regions amoora oil was treated with 5 % H2SO4 based on FFA and 40:1 of India have been reported (Anonymous 2008; Gowda et al. 2009). methanol to FFA by molar ratio in order to reduce FFA content. The The annual estimate of tree borne oil seeds are more than 20 million second stage involved methanol and NaOH for alkali catalyzed tons (Ghadge and Raheman 2006). The cost of raw material transesterification. The maximum biodiesel yield was 96 % (v/v) accounts for more than 60 % of the total cost of biodiesel (Ma and with 1 h reaction time at 60 °C temperature and 1: 6 oil to methanol Hanna 1999).
    [Show full text]
  • Biogeography and Ecology in a Pantropical Family, the Meliaceae
    Gardens’ Bulletin Singapore 71(Suppl. 2):335-461. 2019 335 doi: 10.26492/gbs71(suppl. 2).2019-22 Biogeography and ecology in a pantropical family, the Meliaceae M. Heads Buffalo Museum of Science, 1020 Humboldt Parkway, Buffalo, NY 14211-1293, USA. [email protected] ABSTRACT. This paper reviews the biogeography and ecology of the family Meliaceae and maps many of the clades. Recently published molecular phylogenies are used as a framework to interpret distributional and ecological data. The sections on distribution concentrate on allopatry, on areas of overlap among clades, and on centres of diversity. The sections on ecology focus on populations of the family that are not in typical, dry-ground, lowland rain forest, for example, in and around mangrove forest, in peat swamp and other kinds of freshwater swamp forest, on limestone, and in open vegetation such as savanna woodland. Information on the altitudinal range of the genera is presented, and brief notes on architecture are also given. The paper considers the relationship between the distribution and ecology of the taxa, and the interpretation of the fossil record of the family, along with its significance for biogeographic studies. Finally, the paper discusses whether the evolution of Meliaceae can be attributed to ‘radiations’ from restricted centres of origin into new morphological, geographical and ecological space, or whether it is better explained by phases of vicariance in widespread ancestors, alternating with phases of range expansion. Keywords. Altitude, limestone, mangrove, rain forest, savanna, swamp forest, tropics, vicariance Introduction The family Meliaceae is well known for its high-quality timbers, especially mahogany (Swietenia Jacq.).
    [Show full text]