PIERRE VARIGNON and the CALCULUS of MOTION Michael S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Calcul Différentiel Et Intégral De Leibniz Et Newton
Master de Mathématiques – Sorbonne Université (M1) UE 4M039 : Histoire des mathématiques (Alexandre Guilbaud et Laurent Mazliak) Semaine 4 La naissance du calcul différentiel et intégral : un pas décisif vers l’émergence du concept de fonction Le jeudi 15 février 2018 M1 - Histoire des mathématiques 1 Prologue (1/3) – Les académies Jean-Baptiste Colbert présentant les membres de l'Académie royale des sciences à Louis XIV (H. Testelin, d'après une gravure de Lebrun) Le jeudi 15 février 2018 M1 - Histoire des mathématiques 2 Prologue (1/3) – Les académies § Les académies qui naissent au XVIIe siècle signent l'abandon du travail solitaire. § Les savants s'y réunissent de leur plein gré et de façon informelle pour : échanger des idées et réfléchir de façon collective sur un certain nombre de sujets / soumettre leurs travaux à la critique des autres membres / réaliser des observations et les commenter. § Les « académies privées » : ü L'Académie dei Lincei, fondée à Rome en 1603 (Galilée en est membre à partir de 1611) ü L'Académie del Cimento à la brève existence (1657-1667) ü L'académie napolitaine des Investiganti (1663-1670) ü L'Académie par correspondance de Marin Mersenne (1588-1648) met en relation une quarantaine de savants (dont Descartes, Fermat, Galilée, Gassendi, Roberval, Huygens) ü etc. Le jeudi 15 février 2018 M1 - Histoire des mathématiques 3 Prologue (1/3) – Les académies § La Royal Society de Londres : existe depuis 1661, elle ne reçoit aucun financement de la couronne et vit des cotisations de ses membres (qui devinrent fort nombreux). § L'Académie royale des sciences de Paris, créée par Colbert en 1666 : - l'Observatoire de Paris naît en 1667 sous l'impulsion de l'Académie. -
Le Calcul Différentiel Et Intégral Dans L'analyse Démontrée De Charles
Recherches sur Diderot et sur l'Encyclopédie 38 | avril 2005 La formation de D'Alembert Le calcul différentiel et intégral dans l’Analyse démontrée de Charles René Reyneau Jean-Pierre Lubet Édition électronique URL : https://journals.openedition.org/rde/304 DOI : 10.4000/rde.304 ISSN : 1955-2416 Éditeur Société Diderot Édition imprimée Date de publication : 1 juin 2005 ISBN : 2-9520892-4-8 ISSN : 0769-0886 Référence électronique Jean-Pierre Lubet, « Le calcul différentiel et intégral dans l’Analyse démontrée de Charles René Reyneau », Recherches sur Diderot et sur l'Encyclopédie [En ligne], 38 | avril 2005, mis en ligne le 30 mars 2009, consulté le 30 juillet 2021. URL : http://journals.openedition.org/rde/304 ; DOI : https:// doi.org/10.4000/rde.304 Propriété intellectuelle 151-176 21/06/05 16:07 Page 151 Jean-Pierre LUBET Le calcul différentiel et intégral dans l’Analyse démontrée de Charles René Reyneau Le premier mémoire envoyé par Jean Le Rond D’Alembert à l’Académie royale des sciences avait pour objectif essentiel de rectifier une erreur contenue dans l’Analyse démontrée de Charles René Reyneau. Avec d’autres travaux de D’Alembert sur le calcul intégral, cette question1 a été présentée en détail par Christian Gilain dans un article récent . Nous proposons de revenir ici sur l’ensemble du traité de Reyneau, pour essayer de caractériser les éléments de calcul différentiel et intégral qu’il contient. Publié pour la première fois en 1708, l’ouvrage a été largement diffusé au point qu’une seconde édition, comportant peu de modifications, a été nécessaire en 1736-1738. -
0.999… = 1 an Infinitesimal Explanation Bryan Dawson
0 1 2 0.9999999999999999 0.999… = 1 An Infinitesimal Explanation Bryan Dawson know the proofs, but I still don’t What exactly does that mean? Just as real num- believe it.” Those words were uttered bers have decimal expansions, with one digit for each to me by a very good undergraduate integer power of 10, so do hyperreal numbers. But the mathematics major regarding hyperreals contain “infinite integers,” so there are digits This fact is possibly the most-argued- representing not just (the 237th digit past “Iabout result of arithmetic, one that can evoke great the decimal point) and (the 12,598th digit), passion. But why? but also (the Yth digit past the decimal point), According to Robert Ely [2] (see also Tall and where is a negative infinite hyperreal integer. Vinner [4]), the answer for some students lies in their We have four 0s followed by a 1 in intuition about the infinitely small: While they may the fifth decimal place, and also where understand that the difference between and 1 is represents zeros, followed by a 1 in the Yth less than any positive real number, they still perceive a decimal place. (Since we’ll see later that not all infinite nonzero but infinitely small difference—an infinitesimal hyperreal integers are equal, a more precise, but also difference—between the two. And it’s not just uglier, notation would be students; most professional mathematicians have not or formally studied infinitesimals and their larger setting, the hyperreal numbers, and as a result sometimes Confused? Perhaps a little background information wonder . -
Understanding Student Use of Differentials in Physics Integration Problems
PHYSICAL REVIEW SPECIAL TOPICS - PHYSICS EDUCATION RESEARCH 9, 020108 (2013) Understanding student use of differentials in physics integration problems Dehui Hu and N. Sanjay Rebello* Department of Physics, 116 Cardwell Hall, Kansas State University, Manhattan, Kansas 66506-2601, USA (Received 22 January 2013; published 26 July 2013) This study focuses on students’ use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., dr, dq). In this paper we aim to explore students’ reasoning about the differential concept in physics problems. We conducted group teaching or learning interviews with 13 engineering students enrolled in a second- semester calculus-based physics course. We amalgamated two frameworks—the resources framework and the conceptual metaphor framework—to analyze students’ reasoning about differential concept. Categorizing the mathematical resources involved in students’ mathematical thinking in physics provides us deeper insights into how students use mathematics in physics. Identifying the conceptual metaphors in students’ discourse illustrates the role of concrete experiential notions in students’ construction of mathematical reasoning. These two frameworks serve different purposes, and we illustrate how they can be pieced together to provide a better understanding of students’ mathematical thinking in physics. DOI: 10.1103/PhysRevSTPER.9.020108 PACS numbers: 01.40.Àd mathematical symbols [3]. For instance, mathematicians I. INTRODUCTION often use x; y asR variables and the integrals are often written Mathematical integration is widely used in many intro- in the form fðxÞdx, whereas in physics the variables ductory and upper-division physics courses. -
Leonhard Euler: His Life, the Man, and His Works∗
SIAM REVIEW c 2008 Walter Gautschi Vol. 50, No. 1, pp. 3–33 Leonhard Euler: His Life, the Man, and His Works∗ Walter Gautschi† Abstract. On the occasion of the 300th anniversary (on April 15, 2007) of Euler’s birth, an attempt is made to bring Euler’s genius to the attention of a broad segment of the educated public. The three stations of his life—Basel, St. Petersburg, andBerlin—are sketchedandthe principal works identified in more or less chronological order. To convey a flavor of his work andits impact on modernscience, a few of Euler’s memorable contributions are selected anddiscussedinmore detail. Remarks on Euler’s personality, intellect, andcraftsmanship roundout the presentation. Key words. LeonhardEuler, sketch of Euler’s life, works, andpersonality AMS subject classification. 01A50 DOI. 10.1137/070702710 Seh ich die Werke der Meister an, So sehe ich, was sie getan; Betracht ich meine Siebensachen, Seh ich, was ich h¨att sollen machen. –Goethe, Weimar 1814/1815 1. Introduction. It is a virtually impossible task to do justice, in a short span of time and space, to the great genius of Leonhard Euler. All we can do, in this lecture, is to bring across some glimpses of Euler’s incredibly voluminous and diverse work, which today fills 74 massive volumes of the Opera omnia (with two more to come). Nine additional volumes of correspondence are planned and have already appeared in part, and about seven volumes of notebooks and diaries still await editing! We begin in section 2 with a brief outline of Euler’s life, going through the three stations of his life: Basel, St. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
Infinitesimal Calculus
Infinitesimal Calculus Δy ΔxΔy and “cannot stand” Δx • Derivative of the sum/difference of two functions (x + Δx) ± (y + Δy) = (x + y) + Δx + Δy ∴ we have a change of Δx + Δy. • Derivative of the product of two functions (x + Δx)(y + Δy) = xy + Δxy + xΔy + ΔxΔy ∴ we have a change of Δxy + xΔy. • Derivative of the product of three functions (x + Δx)(y + Δy)(z + Δz) = xyz + Δxyz + xΔyz + xyΔz + xΔyΔz + ΔxΔyz + xΔyΔz + ΔxΔyΔ ∴ we have a change of Δxyz + xΔyz + xyΔz. • Derivative of the quotient of three functions x Let u = . Then by the product rule above, yu = x yields y uΔy + yΔu = Δx. Substituting for u its value, we have xΔy Δxy − xΔy + yΔu = Δx. Finding the value of Δu , we have y y2 • Derivative of a power function (and the “chain rule”) Let y = x m . ∴ y = x ⋅ x ⋅ x ⋅...⋅ x (m times). By a generalization of the product rule, Δy = (xm−1Δx)(x m−1Δx)(x m−1Δx)...⋅ (xm −1Δx) m times. ∴ we have Δy = mx m−1Δx. • Derivative of the logarithmic function Let y = xn , n being constant. Then log y = nlog x. Differentiating y = xn , we have dy dy dy y y dy = nxn−1dx, or n = = = , since xn−1 = . Again, whatever n−1 y dx x dx dx x x x the differentials of log x and log y are, we have d(log y) = n ⋅ d(log x), or d(log y) n = . Placing these values of n equal to each other, we obtain d(log x) dy d(log y) y dy = . -
Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14
Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time. -
Arxiv:1404.5658V1 [Math.LO] 22 Apr 2014 03F55
TOWARD A CLARITY OF THE EXTREME VALUE THEOREM KARIN U. KATZ, MIKHAIL G. KATZ, AND TARAS KUDRYK Abstract. We apply a framework developed by C. S. Peirce to analyze the concept of clarity, so as to examine a pair of rival mathematical approaches to a typical result in analysis. Namely, we compare an intuitionist and an infinitesimal approaches to the extreme value theorem. We argue that a given pre-mathematical phenomenon may have several aspects that are not necessarily captured by a single formalisation, pointing to a complementar- ity rather than a rivalry of the approaches. Contents 1. Introduction 2 1.1. A historical re-appraisal 2 1.2. Practice and ontology 3 2. Grades of clarity according to Peirce 4 3. Perceptual continuity 5 4. Constructive clarity 7 5. Counterexample to the existence of a maximum 9 6. Reuniting the antipodes 10 7. Kronecker and constructivism 11 8. Infinitesimal clarity 13 8.1. Nominalistic reconstructions 13 8.2. Klein on rivalry of continua 14 arXiv:1404.5658v1 [math.LO] 22 Apr 2014 8.3. Formalizing Leibniz 15 8.4. Ultrapower 16 9. Hyperreal extreme value theorem 16 10. Approaches and invitations 18 11. Conclusion 19 References 19 2000 Mathematics Subject Classification. Primary 26E35; 00A30, 01A85, 03F55. Key words and phrases. Benacerraf, Bishop, Cauchy, constructive analysis, con- tinuity, extreme value theorem, grades of clarity, hyperreal, infinitesimal, Kaestner, Kronecker, law of excluded middle, ontology, Peirce, principle of unique choice, procedure, trichotomy, uniqueness paradigm. 1 2 KARINU. KATZ, MIKHAILG. KATZ, ANDTARASKUDRYK 1. Introduction German physicist G. Lichtenberg (1742 - 1799) was born less than a decade after the publication of the cleric George Berkeley’s tract The Analyst, and would have certainly been influenced by it or at least aware of it. -
Deux Moments De La Critique Du Calcul Infinitésimal
Séminaire de philosophie et mathématiques MICHEL BLAY Deux moments de la critique du calcul infinitésimal Séminaire de Philosophie et Mathématiques, 1987, fascicule 12 « Deux moments de la critique du calcul infinitésimal », , p. 1-32 <http://www.numdam.org/item?id=SPHM_1987___12_A1_0> © École normale supérieure – IREM Paris Nord – École centrale des arts et manufactures, 1987, tous droits réservés. L’accès aux archives de la série « Séminaire de philosophie et mathématiques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Deux moments de la critique du calcul infinitésimal: Michel Rolle et George Berkeley par Michel BLAY 1) La critique de Michel Rolle 1-1) La critique des concepts et des principes fondamentaux. 1-2) Le nouveau calcul conduit à l'erreur. 1-2-1) Le cadre général de l'argumentation. 1-2-2) Le privilège accordé à la méthode de Hudde. 1-2-3) La construction des exemples. 2) La critique de George Berkeley 2-1) L'absence de rigueur. 2-2) L'heureuse compensation des erreurs. 2-2-1) Première détermination de la sous-tangente. 2-2-2) Deuxième détermination de la sous-tangente. Deux moments de la critique du calcul infinitésimal: Michel Rolle et George Berkeley C'est en 1684, dans le tout nouveau périodique des Acta Eruditorum, que Leibniz publie son texte fondateur du nouveau calcul différentiel: "Nova Methodus pro Maximis et Minimis, itemque, Tangentibus, quae nec Fractas nec Irrationales Quantitates moratur, et singulare pro illis calculi genus" (1). -
Infinitesimal: How a Dangerous Mathematical Theory Shaped the Modern World Reviewed by Slava Gerovitch
BOOK REVIEW Infinitesimal: How a Dangerous Mathematical Theory Shaped the Modern World Reviewed by Slava Gerovitch Infinitesimal: How a Dangerous Mathematical Theory ing, from the chaos of imprecise analogies to the order Shaped the Modern World of disciplined reasoning. Yet, as Amir Alexander argues Amir Alexander in his fascinating book Infinitesimal: How a Dangerous Scientific American/Farrar, Straus and Giroux, April 2014 Mathematical Theory Shaped the Modern World, it was US$27.00/US$16.00, 368 pages precisely the champions of offensive infinitesimals who Hardcover ISBN-13: 978-0-37-417681-5 propelled mathematics forward, while the rational critics Paperback ISBN-13: 978-0-37-453499-8 slowed the development of mathematical thought. More- over, the debate over infinitesimals reflected a larger clash From today’s perspective, a mathematical technique that in European culture between religious dogma and intellec- lacks rigor or leads to paradoxes is a contradiction in tual pluralism and between the proponents of traditional terms. It must be expelled from mathematics, lest it dis- order and the defenders of new liberties. credit the profession, sow chaos, and put a large stain on Known since antiquity, the concept of indivisibles gave the shining surface of eternal truth. This is precisely what rise to Zeno’s paradoxes, including the famous “Achilles the leading mathematicians of the most learned Catholic and the Tortoise” conundrum, and was subjected to scath- order, the Jesuits, said about the “method of indivisibles”, ing philosophical critique by Plato and Aristotle. Archime- a dubious procedure of calculating areas and volumes by des used the method of indivisibles with considerable suc- representing plane figures or solids as a composition of in- cess, but even he, once a desired volume was calculated, divisible lines or planes, “infinitesimals”. -
3.5 Leibniz's Fundamental Theorem of Calculus
3.5 Leibniz’s Fundamental Theorem of Calculus 133 spherical surface on top of the ice-cream cone. You may use knowledge of the surface area of the entire sphere, which Archimedes had determined. Exercise 3.24: Imagine boring a round hole through the center of a sphere, leaving a spherical ring. Use the result of Exercise 3.23 to find the volume of the ring. Hint: Amazingly, your answer should depend only on the height of the ring, not the size of the original sphere. Also obtain your result directly from Cavalieri’s Principle by comparing the ring with a sphere of diameter the height of the ring. 3.5 Leibniz’s Fundamental Theorem of Calculus Gottfried Wilhelm Leibniz and Isaac Newton were geniuses who lived quite different lives and invented quite different versions of the infinitesimal calculus, each to suit his own interests and purposes. Newton discovered his fundamental ideas in 1664–1666, while a student at Cambridge University. During a good part of these years the Univer- sity was closed due to the plague, and Newton worked at his family home in Woolsthorpe, Lincolnshire. However, his ideas were not published until 1687. Leibniz, in France and Germany, on the other hand, began his own breakthroughs in 1675, publishing in 1684. The importance of publication is illustrated by the fact that scientific communication was still sufficiently uncoordinated that it was possible for the work of Newton and Leibniz to proceed independently for many years without reciprocal knowledge and input. Disputes about the priority of their discoveries raged for centuries, fed by nationalistic tendencies in England and Germany.