<I>Rhodiola Rosea</I>
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biotechnological Approaches to Enhance Salidroside, Rosin and Its Derivatives Production in Selected Rhodiola Spp. in Vitro Cultures
Phytochem Rev DOI 10.1007/s11101-014-9368-y Biotechnological approaches to enhance salidroside, rosin and its derivatives production in selected Rhodiola spp. in vitro cultures Marta Grech-Baran • Katarzyna Sykłowska-Baranek • Agnieszka Pietrosiuk Received: 10 April 2013 / Accepted: 7 June 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Rhodiola (Crassulaceae) an arctic-alpine CCR Cinnamoyl-CoA reductase plant, is extensively used in traditional folk medicine CNS Central Nervous System in Asian and European countries. A number of DW Dry weight investigations have demonstrated that Rhodiola prep- IAA Indole-3-acetic acid arations exhibit adaptogenic, neuroprotective, anti- IBA Indole-3-butyric acid tumour, cardioprotective, and anti-depressant effects. KT Kinetin The main compounds responsible for these activities MS Murashige and Skoog (1962) medium are believed to be salidroside, rosin and its derivatives NAA Naphthaleneacetic acid which became the target of biotechnological investi- PAL Phenylalanine ammonia-lyase gations. This review summarizes the results of the Phe L-Phenylalanine diverse biotechnological approaches undertaken to SA Salicylic acid enhance the production of salidroside, rosin and its TDZ Thidiazuron derivatives in callus, cell suspension and organ in vitro Trp L-Tryptophan cultures of selected Rhodiola species. TGase Tyrosol-glucosyltransferase 2,4-D 2,4-Dichlorophenoxyacetic acid Keywords Biotransformation Á In vitro cultures Á 4CL Hydroxycinnamic acid CoA-ligase Rhodiola spp. Á Rosin derivatives Á Salidroside 4-HPAA 4-Hydroxyphenylacetaldehyde Tyr L-Tyrosine TyrDC Tyrosine decarboxylase Abbreviations UDP UDP-glucose:tyrosol glucosyltransferase BA 6-Benzylaminopurine UGT Uridine diphosphate dependent CA Cinnamyl alcohol glucosyltransferase CAD Cinnamyl alcohol dehydrogenase CCA Compact callus aggregates M. -
Production of Cinnamyl Alcohol Glycosides by Biotransformation in Roseroot Callus Cells
Plant Cell, Tissue and Organ Culture (PCTOC) (2019) 139:29–37 https://doi.org/10.1007/s11240-019-01659-7 ORIGINAL ARTICLE Production of cinnamyl alcohol glycosides by biotransformation in roseroot callus cells Iman Mirmazloum1,2 · Attila Kiss2 · Márta Ladányi3 · Zsuzsanna György4 Received: 16 May 2019 / Accepted: 29 July 2019 / Published online: 1 August 2019 © The Author(s) 2019 Abstract Cinnamyl alcohol glycosides (CAGs) are the signature compounds of all roseroot preparations. The rapid growth in the market of roseroot-based products and the increasing demand for its raw material is causing serious threat for wild growing roseroot populations worldwide, which promotes the extensive studies to come up with alternative production resources. In this study the biotransformation of several precursors for the production of CAGs (rosin, rosavin, rosarin) in in vitro roseroot callus culture has been surveyed. Phenylalanine, trans-cinnamic acid, cinnamaldehyde and cinnamyl alcohol; the proposed precursors of CAGs, were added one by one to roseroot liquid callus cultures in 2 mM concentration. Samples were harvested and analysed by HPLC after 24, 48 and 96 h along with controls. All of the studied compounds, except phenylalanine, pro- moted the formation of CAGs. It was found that the closer the position of precursors to the fnal product in the biosynthesis pathway the more efective was the biotransformation into the fnal CAGs, both in terms of time and fnal product quantities. Addition of 2 mM trans-cinnamic acid and Cinnamyl alcohol resulted in 80-fold increase after 24 h and 130-fold increase after 96 h in callus samples, respectively. Rosin was the only compound which was released into the medium from the cal- lus cells during the experiment and only in the cinnamyl alcohol-fed callus cells. -
Qualitative and Quantitative Analysis of Different Rhodiola Rosea
Scientia Pharmaceutica Article Qualitative and Quantitative Analysis of Different Rhodiola rosea Rhizome Extracts by UHPLC-DAD-ESI-MSn Fabian Alperth 1, Ivana Turek 1, Sandra Weiss 1, Dietmar Vogt 2 and Franz Bucar 1,* 1 Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 4, 8010 Graz, Austria; [email protected] (F.A.); [email protected] (I.T.); [email protected] (S.W.) 2 Phytagoras, 9020 Klagenfurt, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-316-380-5531 Received: 14 February 2019; Accepted: 26 March 2019; Published: 29 March 2019 Abstract: Rhodiola rosea has been used in folk medicine as ethanolic macerates for a long time. This study aims to provide a quantitative and qualitative analysis and comparison of different ethanolic Rhodiola rosea rhizome macerates (35%, 70%, and 96% v/v) and accelerated solvent extraction (ASE) extracts prepared with 85% methanol, in order to shed light on the effectivity of different extraction methods. Extract samples were analyzed by UHPLC-DAD-ESI-MSn on a ZORBAX SB-C18 column (100 2.1 mm, 1.8 µm) with a mobile phase consisting of water + × 0.1% formic acid and acetonitrile. Qualitative analysis lead to the tentative identification of 18 compounds: Two cyanogenic glycosides (rhodiocyanoside A, lotaustralin), three phenylethanoids (salidroside, viridoside, 2-phenylethyl-vicianoside), two procyanidin and catechin derivatives (epigallocatechin-epigallocatechin gallate, epigallocatechin-3-O-gallate), five phenylpropanoids (cinnamyl alcohol, rosarin, rosavin, rosin, cinnamyl-(6’-O-β-d-xylopyranosyl)-O-β-glucopyranoside), two monoterpene alcohols (rhodioloside E, rosiridin) and four flavonols (rhodionidin, rhodiosin, rhodionin, kaempferol). -
Chemical Investigations of Biotransformed Rhodiola Rosea Callus Tissue 77
Chemical investigations of biotransformed Rhodiola rosea callus tissue 77 Chemical investigations of biotransformed Rhodiola rosea callus tissue aNNa KrajewsKa-PataN1*, mariola Dreger1, aNNa ŁowiCKa1, maŁgorzata górsKa-PauKszta1, aliNa mśCisz1, sebastiaN mielCareK1, mareK baraNiaK1, walDemar buChwalD1, mirosŁawa FurmaNowa2, PrzemysŁaw m. mroziKiewiCz1 1research institute of medicinal Plants libelta 27 61-707 Poznań, Poland 2Department of biology and Pharmaceutical botany medical university banacha 1 02-097 warsaw, Poland *corresponding author: tel.: +4861 6659540, e-mail: [email protected] s u m m a r y the main aim of this study was to search the influence of exogenous addition of rosavin precursor: cinnamyl alcohol on the enhancing of rosavins content in callus culture of R. rosea, cultured on solid and liquid media (CCa). this is the first report – according to available literature – which concerns its biotransformation on solid medium conditions. the two strains of R. rosea tissue cultures showed different ability of cinnamyl alcohol gly- cosides production: both of them produced rosin (with or without supplementation), but the obtained level of rosavin production was notable higher in case of supplementation of the strain induced from axially buds of R. rosea. the exogenous cinnamyl alcohol was added into medium at concentration of 2.5 mm/l or 5 mm/l in the day of the inoculation. the application of 2.5 mm cinnamyl alcohol resulted in the increase of rosin content in the callus started from hypocotyle to very high levels: 1056.183 mg/100 g on solid medium and 776.330 mg/100 g in liquid medium. the content of rosavin showed the same growing tendency, but the final concentration of this phenylopropanoid in the supplemented callus tissue was about 7 times lower as compared to the roots of intact plant (63.603 mg/100 g). -
Attenuation of Long-Term Rhodiola Rosea Supplementation on Exhaustive Swimming-Evoked Oxidative Stress in the Rat
Chinese Journal of Physiology 52(5): 316-324, 2009 DOI: 10.4077/CJP.2009.AMH029 Attenuation of Long-Term Rhodiola rosea Supplementation on Exhaustive Swimming-Evoked Oxidative Stress in the Rat Shih-Chung Huang1, Fang-Tsai Lee2, Tz-Yin Kuo3, 4, Joan-Hwa Yang3, and Chiang-Ting Chien4 1Departments of Cardiology and 2Orthopaedic Surgery, Kuang-Tien General Hospital, Taichung 3Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih-Chien University College of Human Ecology, Taipei and 4Department of Medical Research, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China Abstract Rhodiola rosea improves exercise endurance and fatigue. We hypothesized that ingredients in Rhodiola rosea may increase antioxidant capability against swimming induced oxidative stress. In this study, we have identified the Rhodiola rosea ingredients, p-tyrosol, salidroside, rosin, rosavin and –. rosarin by high performance liquid chromatography-mass spectrometer and evaluated their O2 , H2O2, and HOCl scavenging activities by a chemiluminescence analyzer. We next explored the effect and mechanism of Rhodiola rosea on 90-min swimming-induced oxidative stress in male Wistar rats fed with three doses of Rhodiola rosea extracts in drinking water (5, 25, 125 mg/day/rat) for 4 weeks. Our results showed that the 4 major ingredients (salidroside, rosin, rosavin and rosarin) from Rhodiola rosea –. extracts scavenged O2 , H2O2, and HOCl activity in a dose-dependent manner. The ninety-min –. swimming exercise increased the O2 production in the order: liver > skeletal muscle > blood, indicating that liver is the most sensitive target organ. The level of plasma malonedialdehyde, a lipid peroxidation product, was also increased after exercise.