Spacelike Submanifolds, Their Umbilical Properties and Applications to Gravitational Physics

Total Page:16

File Type:pdf, Size:1020Kb

Spacelike Submanifolds, Their Umbilical Properties and Applications to Gravitational Physics Spacelike submanifolds, their umbilical properties and applications to gravitational physics Spacelike submanifolds, their umbilical properties and applications to gravitational physics Nastassja Cipriani Department of Mathematics KU Leuven Department of Theoretical Physics and History of Science University of the Basque Country October 2017 (c)2017 NASTASSJA CIPRIANI Supervisors: Prof. dr. José María Martín Senovilla Prof. dr. Joeri Van der Veken Thesis committee: Prof. dr. Stefaan Poedts, KU Leuven (president) Prof. dr. José María Martín Senovilla, University of the Basque Country (supervisor) Prof. dr. Joeri Van der Veken, KU Leuven (supervisor) Prof. dr. Keti Tenenblat, University of Brasília Prof. dr. Antoine Van Proeyen, KU Leuven Prof. dr. Raül Vera, University of the Basque Country Prof. dr. Luc Vrancken, KU Leuven and Université de Valenciennes et du Hainaut-Cambrésis Dedico questa tesi alle mie nonne Angela Boccabella e Lina Cherubini per essere state, a loro insaputa, un esempio. “You can’t easily fit women into a structure that is already coded as male, you have got to change the structure.” Mary Beard, University of Cambridge Lecture delivered at the British Museum on 3 March 2017 Acknowledgments I would like to thank the Department of Mathematics of KU Leuven, my supervisor pro- fessor Joeri Van der Veken and all current members of the geometry section, in particular Marco Zambon and my first officemate Paco. I would also like to thank Alberto, who joined me since the very first week and is now one of my best friends; and then Luca, Margherita, Akos, Gabor and Reka, Tomer, Madison, Elisa and Marta. Quiero agradecer al Departamento de Física Teórica e Historia de la Ciencia de la Uni- versidad del País Vasco, a mi director de tesis profesor José María Martín Senovilla, a Raül Vera y a todas aquellas personas que en la UPV/EHU me han hecho sentir como en casa. En particular a Borja, Pablo y João, mis frescas Olatz, María, Naiara y Laura, Charlotte, Kepa, Raúl: sois para mí como una familia. Y también a Iagoba, Fran, Asier, Iker, Aitziber, Julen, Santi, Nuria, Mikel, Nora, Elena, Cristina. Ringrazio i miei genitori per non avermi mai imposto limiti; le compagne del Piccolo di Pietralata ed Elisa. Ringrazio infine Vito, per essere stato presente sempre ed avermi dato così tanto. i Abstract We give a characterization theorem for umbilical spacelike submanifolds of arbitrary di- mension and co-dimension immersed in a semi-Riemannian manifold. Letting the co- dimension arbitrary implies that the submanifold may be umbilical with respect to some subset of normal directions. This leads to the definition of umbilical space and to the study of its dimension. The trace-free part of the second fundamental form, called total shear tensor in this thesis, plays a central role in the characterization theorems. It allows us to define shear objects (shear operators, shear tensors and shear scalars) that deter- mine the umbilical properties of the spacelike submanifold with respect to a given normal vector field. Given a group of conformal motions G acting on a semi-Riemannian manifold and an orbit S, we apply the characterization results in order to find necessary and sufficient conditions for S to have a non-empty umbilical space. We prove that if the isotropy subgroup of G is trivial, then the umbilical condition depends on the scalar products of a set of generating conformal Killing vector fields. If the isotropy subgroup of G is non-trivial, we argue that, under specific assumptions, it is possible to prove that the umbilical condition is automatically satisfied so that the umbilical space is non-trivial. The assumptions would depend on the co-dimension of S, the dimension of the isotropy subgroup and the ranks of specific matrices defined in terms of the structure constants of G. In the last part of the thesis we consider Lorentzian warped products M = M ×f Y and we analyse a particular class of spacelike submanifolds S. We find a sufficient con- dition that allows us to prove, on one hand, the existence of focal points along timelike or null geodesics normal to S and, on the other hand, the null geodesic incompleteness of M under additional reasonable conditions. By assuming that we can split the immersion as S! Σ !M, where Σ is either M ×fqg or fqg×Y, we find that the Galloway-Senovilla condition [29] can be written in terms of the warping function f and the Riemann ten- sor of either only M or Y. This means that, for instance, in order to prove singularity theorems one can restrict the study to just one of the two manifolds defining the warped product rather than considering the warped product manifold itself. We translate the con- dition found to some specific situations, such as positive and constant sectional curvature, Einstein and Ricci-flat spaces and to a few subcases in terms of the co-dimension of S. The same has been done in direct products (f = 1). iii Beknopte samenvatting We geven een karakterisatiestelling voor ombilicale ruimtelijke deelvariëteiten met wil- lekeurige dimensie en codimensie van een semi-Riemannse variëteit. Omdat de codi- mensie willekeurig is, kan de deelvariëteit ombilicaal zijn ten opzichte van een deel van de normale richtingen. Dit leidt tot de definitie van ombilicale ruimte en tot de studie van de dimensie ervan. Het spoorvrije deel van het tweede fundamentaalvorm, dat we in dit proefschrift de totale sheartensor noemen, speelt een centrale rol in de karakter- isatiestellingen. Het stelt ons in staat om objecten te definiëren die gerelateerd zijn aan de totale sheartensor (shearoperatoren, sheartensoren en sheargetallen) en die de ombili- cale eigenschappen van de ruimtelijke deelvariëteit bepalen ten opzichte van een normaal vectorveld. Gegeven een groep G van conforme transformaties van een semi-Riemannse variëteit en een orbiet S, passen we de karakterisatieresultaten toe om nodige en voldoende voor- waarden te vinden opdat S een niet-triviale ombilicale ruimte zou hebben. We bewi- jzen dat als de isotropiedeelgroep van G triviaal is, de voorwaarde om ombilicaal te zijn afhangt van de onderlinge scalaire producten van een verzameling van voortbrengende conforme Killingvectorvelden. Als de isotropiedeelgroep van G niet triviaal is, dan dan kunnen we, onder bepaalde aannames over de codimensie van S, de dimensie van de isotropiedeelgroep en de rangen van bepaalde matrices gedefinieerd in termen van de structuurconstanten van G, bewijzen dat de voorwaarde om ombilicaal te zijn automa- tisch voldaan is, i.e., dat de ombilicale ruimte niet triviaal is. In het laatste deel van het proefschrift beschouwen we Lorentziaanse gekruiste pro- ducten M = M ×f Y en bestuderen we een bepaalde klasse van ruimtelijke deel- variëteiten S. We vinden een voldoende voorwaarde voor, enerzijds, het bestaan van brandpunten langs tijd- of lichtgeodeten die loodrecht op S vertrekken en, anderzijds, de lichtgeodetische onvolledigheid van M onder enkele bijkomende redelijke voorwaarden. Door aan te nemen dat we de immersie kunnen opsplitsen in een samenstelling van im- mersies S! Σ !M, waarbij Σ ofwel M × fqg ofwel fqg × Y is, vinden we dat de voorwaarde van Galloway en Senovilla [29] kan worden geschreven in termen van de functie f en de krommingstensor van enkel M of Y. Dit betekent bijvoorbeeld dat we de studie kunnen beperken tot slechts één van de factoren van het gekruist product, in plaats van het gekruist product als geheel te beschouwen. We vertalen de gevonden voorwaarde naar enkele specifieke situaties, zoals ruimten met positieve en constante sec- tionele kromming, Einsteinruimten en Ricci-platte ruimten en naar enkele deelgevallen afhankelijk van de codimensie van S. De resultaten impliceren analoge resultaten voor directe producten (f = 1). v Resumen Hasta aproximadamente el siglo dieciocho los científicos eran expertos tanto en los as- pectos matemáticos como en los aspectos físicos de su investigación y de sus descubrim- ientos. Cabe sostener que muy probablemente estos no distinguían mucho entre la física teórica y la física experimental, por ejemplo, puesto que a menudo eran al mismo tiempo matemáticos, astrónomos, geómetras, ingenieros, físicos e incluso, a veces, filósofos. A partir del siglo diecinueve las fronteras que habrán de delimitar estos campos comien- zan a ser más definidas y desde el siglo veinte matemáticos y físicos, por lo general, han trabajado en dos áreas de investigación separadas en la ciencia. Hoy en día, debido a la rápida especialización de los campos científicos y al nacimiento de nuevas disciplinas, la distancia entre las matemáticas y la física se ha hecho aún más grande. En particular, el uso de diferentes lenguajes ha empezado a impedir que los cien- tíficos se comuniquen entre ellos y compartan sus resultados. Aun así, la historia de la ciencia nos ha mostrado cómo el intercambio de conocimiento entre estos dos campos, las matemáticas y la física, ha sido clave en el pasado para superar obstáculos, para producir cambios de paradigma, para abrir nuevas perspectivas y para impulsar una revolución científica. Dos ejemplos destacables de este proceso en estas dos ramas científicas han sido los desarrollos producidos por la teoría de la mecánica cuántica y por la teoría de la relativi- dad general. Los avances requeridos por la mecánica cuántica en el análisis funcional y la no conmutatividad de los operadores que representan los observables cuánticos, han con- ducido a un campo completamente nuevo, y ahora independiente dentro de las matemáti- cas llamado geometría no conmutativa. Por lo que concierne a la relatividad general, la equivalencia de la curvatura con el campo gravitacional, que representa uno de los fun- damentos de la teoría, es una manifestación evidente de la conexión profunda entre la geometría diferencial y la física gravitacional. En ambos casos, las matemáticas proveen a los físicos de bases sólidas y marcos para construir una nueva teoría física, mientras que la física motiva e indica a los matemáticos el camino hacia áreas inexploradas y problemas irresolutos.
Recommended publications
  • Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E
    BOOK REVIEW Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E. Rowe Einstein’s Italian modern Italy. Nor does the author shy away from topics Mathematicians: like how Ricci developed his absolute differential calculus Ricci, Levi-Civita, and the as a generalization of E. B. Christoffel’s (1829–1900) work Birth of General Relativity on quadratic differential forms or why it served as a key By Judith R. Goodstein tool for Einstein in his efforts to generalize the special theory of relativity in order to incorporate gravitation. In This delightful little book re- like manner, she describes how Levi-Civita was able to sulted from the author’s long- give a clear geometric interpretation of curvature effects standing enchantment with Tul- in Einstein’s theory by appealing to his concept of parallel lio Levi-Civita (1873–1941), his displacement of vectors (see below). For these and other mentor Gregorio Ricci Curbastro topics, Goodstein draws on and cites a great deal of the (1853–1925), and the special AMS, 2018, 211 pp. 211 AMS, 2018, vast secondary literature produced in recent decades by the world that these and other Ital- “Einstein industry,” in particular the ongoing project that ian mathematicians occupied and helped to shape. The has produced the first 15 volumes of The Collected Papers importance of their work for Einstein’s general theory of of Albert Einstein [CPAE 1–15, 1987–2018]. relativity is one of the more celebrated topics in the history Her account proceeds in three parts spread out over of modern mathematical physics; this is told, for example, twelve chapters, the first seven of which cover episodes in [Pais 1982], the standard biography of Einstein.
    [Show full text]
  • Witold Roter (1932-2015)
    COLLOQUIUMMATHEMATICUM Online First version WITOLD ROTER (1932–2015) BY ANDRZEJ DERDZIŃSKI (Columbus, OH) Witold Roter was born on September 20th, 1932 and died on June 19th, 2015. He authored or co-authored 40 papers in differential geometry, pub- lished between 1961 and 2010. His nine Ph.D. advisees, listed here along with the year of receiving the degree, are: Czesław Konopka (1972), Edward Głodek (1973), Andrzej Gębarowski (1975), Andrzej Derdziński (1976), Zbig- niew Olszak (1978), Ryszard Deszcz (1980), Marian Hotloś (1980), Wiesław Grycak (1984), and Marek Lewkowicz (1989). Also, for many years, he ran the Wrocław seminar on differential geome- try, first started by Władysław Ślebodziński, who had been Witold Roter’s Ph.D. advisor. For more biographical information (in Polish), see Zbigniew Olszak’s article [44]. This is a brief summary of Witold Roter’s selected results, divided into four sections devoted to separate topics. Since he repeatedly returned to questions he had worked on earlier, our presentation is not chronological. 1. Parallel Weyl tensor in the Riemannian case. The curvature tensor R of a given n-dimensional pseudo-Riemannian manifold (M; g) is naturally decomposed into the sum R = S + E + W of its irreducible com- ponents [41, p. 47]. The first two correspond to the scalar curvature and Einstein tensor (the traceless part of the Ricci tensor). The third component is the Weyl tensor W , also known as the conformal curvature tensor, which is of interest only in dimensions n ≥ 4 since, for algebraic reasons, W = 0 whenever n ≤ 3. Viewed as a (1; 3) tensor field, so that it sends three vector fields trilin- early to a vector field, W is a conformal invariant: it remains unchanged when the metric g is replaced by the product φg, where φ is any smooth positive function.
    [Show full text]
  • 226 NAW 5/2 Nr. 3 September 2001 Honderdjaarslezing Dirk Struik Dirk Struik Honderdjaarslezing NAW 5/2 Nr
    226 NAW 5/2 nr. 3 september 2001 Honderdjaarslezing Dirk Struik Dirk Struik Honderdjaarslezing NAW 5/2 nr. 3 september 2001 227 Afscheid van Dirk Struik Honderdjaarslezing Op 21 oktober 2000 overleed Dirk Struik in kringen. Zij ging een heel andere richting uit vriend Klaas Kooyman, de botanist die later zijn huis in Belmont (Massachusetts). Een In dan Anton en ik. Ik heb natuurlijk in die hon- bibliothecaris in Wageningen is geworden, La- Memoriam verscheen in het decembernum- derd jaar zoveel meegemaakt, dat ik in een tijn en Grieks geleerd bij meneer De Vries in mer van het Nieuw Archief. Ter afscheid van paar kwartier dat niet allemaal kan vertellen. Den Haag. We gingen daarvoor op en neer met deze beroemde wetenschapper van Neder- Ik zal een paar grepen doen uit mijn leven, het electrische spoortje van Rotterdam naar landse afkomst publiceren we in dit nummer mensen die me bijzonder hebben geboeid en Den Haag. We hebben er alleen maar het een- vijf artikelen over Dirk Struik. Het eerste ar- gebeurtenissen die me hebben be¨ınvloed. voudigste Latijn en Grieks geleerd, Herodo- tikel is van Struik zelf. In oktober 1994 orga- Mijn vroegste herinnering is aan de Boe- tus, Caesar — De Bello Gallico: “Gallia divisa niseerde het CWI een symposium ter ere van renoorlog, omstreeks 1900.2 Ik was een jaar est in partes tres ...” Dat heeft me heel wei- de honderdste verjaardag van Dirk Struik. Ter of vijf, zes en vroeg aan mijn vader: “Vader, nig geholpen bij de studie van de wiskunde. afsluiting heeft Struik toen zelf de volgen- wat betekent toch dat woord oorlog?” — dat Je kunt heel goed tensors doen zonder Latijn de redevoering gehouden, met als geheugen- hoef je tegenwoordig niet meer uit te leggen- te kennen, hoewel het wel goed is om te we- steun enkel wat aantekeningen op een velle- aan zesjarigen.
    [Show full text]
  • Emil De Souza Sбnchez Filho
    Emil de Souza Sánchez Filho Tensor Calculus for Engineers and Physicists Tensor Calculus for Engineers and Physicists Emil de Souza Sa´nchez Filho Tensor Calculus for Engineers and Physicists Emil de Souza Sa´nchez Filho Fluminense Federal University Rio de Janeiro, Rio de Janeiro Brazil ISBN 978-3-319-31519-5 ISBN 978-3-319-31520-1 (eBook) DOI 10.1007/978-3-319-31520-1 Library of Congress Control Number: 2016938417 © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland To Sandra, Yuri, Natalia and Lara Preface The Tensor Calculus for Engineers and Physicist provides a rigorous approach to tensor manifolds and their role in several issues of these professions.
    [Show full text]
  • On the History of Levi-Civita's Parallel Transport
    On the history of Levi-Civita’s parallel transport Giuseppe Iurato University of Palermo, Palermo, IT E-mail: [email protected] Abstract In this historical note, we wish to highlight the crucial conceptual role played by the prin- ciple of virtual work of analytical mechanics, in working out the fundamental notion of parallel transport on a Riemannian manifold, which opened the way to the theory of con- nections and gauge theories. Moreover, after a detailed historical-technical reconstruction of the original Levi-Civita’s argument, a further historiographical deepening and a related critical discussion of the question, are pursued1,2,3. 1 Introduction The role of the principle of virtual works of analytical mechanics, in formulating Levi-Civita’s parallel transport of Riemannian geometry, has already been emphasized in [29], to which we refer for the first prolegomena to the question as well as for a wider and comprehensive historical contextualization of it. In this note, which falls into the intersection area among history of mechanics, history of differential geometry and history of theoretical physics, we would like to deepen this aspect regarding the genesis of one of the most important ideas of modern mathematics and its applications to theoretical physics (above all, field theory), enlarging the framework of investigation with the introduction and critical discussion of further, new historiographical elements of the question, after having reconstructed technically the original argument of Levi-Civita. In what follows, therefore, we briefly recall, as a minimal historical introduction, some crucial biographical moments of the Levi-Civita, which will help us to better lay out the question here treated.
    [Show full text]
  • Arxiv:1911.04535V2
    Linear Transformations on Affine-Connections Damianos Iosifidis Institute of Theoretical Physics, Department of Physics Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece∗ We state and prove a simple Theorem that allows one to generate invariant quantities in Metric- Affine Geometry, under a given transformation of the affine connection. We start by a general functional of the metric and the connection and consider transformations of the affine connection possessing a certain symmetry. We show that the initial functional is invariant under the aforemen- tioned group of transformations iff its Γ-variation produces tensor of a given symmetry. Conversely if the tensor produced by the Γ-variation of the functional respects a certain symmetry then the functional is invariant under the associated transformation of the affine connection. We then apply our results in Metric-Affine Gravity and produce invariant actions under certain transformations of the affine connection. Finally, we derive the constraints put on the hypermomentum for such invariant Theories. I. INTRODUCTION restrictions on the hypermomentum. The most common example of the later being the projective invariance of the The geometric structure of a manifold, of a generic di- Einstein-Hilbert action [7, 10, 14–16] which implies that mension n, is specified once a metric g and an affine con- the hypermomentum has an identically vanishing trace nection are given. Then, the manifold is denoted as when contracted in its first two indices. Therefore we ( , g, ∇) and in general possesses curvature, torsion and see that connection transformations are very interesting non-metricity.M ∇ Setting both torsion and non-metricity to and Gravitational actions that are invariant under cer- zero, one recovers the so-called Riemannian Geometry[1] tain groups of transformations of the affine connection which is completely characterized by the metric alone will have associated matter actions that should also re- 1.
    [Show full text]
  • A Pictorial Introduction to Differential Geometry, Leading to Maxwell's
    A pictorial introduction to differential geometry, leading to Maxwell’s equations as three pictures. Dr Jonathan Gratus Physics Department, Lancaster University and the Cockcroft Institute of accelorator Science. [email protected] http://www.lancaster.ac.uk/physics/about-us/people/jonathan-gratus September 26, 2017 Abstract I hope that this document may give anyone enthusiastic enough to get a feel for differen- In this article we present pictorially the foun- tial geometry with only a minimal mathemat- dation of differential geometry which is a cru- ical or physics education. However it helps cial tool for multiple areas of physics, notably having a good imagination, to picture things general and special relativity, but also me- in 3 dimension (and possibly 4 dimension) chanics, thermodynamics and solving differ- and a good supply of pipe cleaners. ential equations. As all the concepts are pre- I teach a masters course in differential sented as pictures, there are no equations in geometry to physicists and this document this article. As such this article may be read should help them to get some intuition be- by pre-university students who enjoy physics, fore embarking on the heavy symbol bashing. mathematics and geometry. However it will also greatly aid the intuition of an undergrad- uate and masters students, learning general Contents relativity and similar courses. It concentrates on the tools needed to understand Maxwell’s 1 Introduction 3 equations thus leading to the goal of present- ing Maxwell’s equations as 3 pictures. 2 Manifolds, scalar and vector fields 5 2.1 Manifolds.. 5 2.2 Submanifolds.
    [Show full text]
  • Arxiv:2106.13716V1 [Math.DG] 25 Jun 2021 H Svr Co Rgam O Ete Feclec Nrd (CE R&D’ in Author Excellence Third of the Centres EUR2020-112265
    NON-KAHLER¨ CALABI-YAU GEOMETRY AND PLURICLOSED FLOW MARIO GARCIA-FERNANDEZ, JOSHUA JORDAN, AND JEFFREY STREETS Abstract. Hermitian, pluriclosed metrics with vanishing Bismut-Ricci form give a natu- ral extension of Calabi-Yau metrics to the setting of complex, non-K¨ahler manifolds, and arise independently in mathematical physics. We reinterpret this condition in terms of the Hermitian-Einstein equation on an associated holomorphic Courant algebroid, and thus refer to solutions as Bismut Hermitian-Einstein. This implies Mumford-Takemoto slope stabil- ity obstructions, and using these we exhibit infinitely many topologically distinct complex manifolds in every dimension with vanishing first Chern class which do not admit Bismut Hermitian-Einstein metrics. This reformulation also leads to a new description of pluri- closed flow in terms of Hermitian metrics on holomorphic Courant algebroids, implying new global existence results, in particular on all complex non-K¨ahler surfaces of Kodaira dimension κ 0. On complex manifolds which admit Bismut-flat metrics we show global existence and≥ convergence of pluriclosed flow to a Bismut-flat metric, which in turn gives a classification of generalized K¨ahler structures on these spaces. 1. Introduction The Calabi-Yau Theorem [69] gives a definitive answer to the questions of existence and uniqueness of K¨ahler, Ricci-flat metrics on a given complex manifold, showing that when c1(M) = 0, there exists a unique such metric in every K¨ahler class. Later Cao [18] proved this theorem using K¨ahler-Ricci flow, showing global existence and convergence to a Ricci- flat metric with arbitrary initial data. These profound results have applications throughout mathematics and physics, and in recent years there has been interest in extending this theory beyond K¨ahler manifolds to more general settings in complex geometry.
    [Show full text]
  • Emil De Souza Sбnchez Filho
    Emil de Souza Sánchez Filho Tensor Calculus for Engineers and Physicists Tensor Calculus for Engineers and Physicists Emil de Souza Sa´nchez Filho Tensor Calculus for Engineers and Physicists Emil de Souza Sa´nchez Filho Fluminense Federal University Rio de Janeiro, Rio de Janeiro Brazil ISBN 978-3-319-31519-5 ISBN 978-3-319-31520-1 (eBook) DOI 10.1007/978-3-319-31520-1 Library of Congress Control Number: 2016938417 © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland To Sandra, Yuri, Natalia and Lara Preface The Tensor Calculus for Engineers and Physicist provides a rigorous approach to tensor manifolds and their role in several issues of these professions.
    [Show full text]
  • On the Role of Virtual Work in Levi-Civita's Parallel Transport 1 Introduction
    On the role of virtual work in Levi-Civita’s parallel transport Giuseppe Iurato, University of Palermo, Italy; e-mail: [email protected] Giuseppe Ruta, Sapienza University, Rome, Italy; e-mail: [email protected] Abstract The current literature on history of science reports that Levi-Civita’s parallel transport was motivated by his attempt to provide the covariant derivative of absolute differential calculus with a geometrical interpretation.1 Levi-Civita’s memoir on the subject was ex- plicitly aimed at simplifying the geometrical computation of the curvature of a Riemannian manifold. In the present paper we wish to point out the possible role implicitly played by the principle of virtual work in Levi-Civita’s conceptual reasoning to formulate parallel transport. 1 Introduction Tullio Levi-Civita (1873-1941) was one of the leading Italian mathematicians of his time. He showed his attitude towards mathematics and mathematical physics since his high-school days, when he offered an ingenious attempt to prove Euclid’s fifth postulate on parallel lines under the supervision of his teacher in mathematics, Paolo Gazzaniga (1853-1930), a scholar in num- ber theory.2 Levi-Civita took a degree in mathematics from the university of Padua, where among his teachers he had Giuseppe Veronese (1853-1917),3 Francesco Flores d’Arcais (1849- 1927),4 Gregorio Ricci-Curbastro (1853-1925),5 and Ernesto Padova (1845-1896).6 Both Ricci- Curbastro and Padova provided Levi-Civita with a strong training in mathematical physics and mechanics. Ricci-Curbastro, in particular, provided him with firsthand absolute differen- tial calculus methods, which were the inheritance of Beltrami’s investigations on Riemannian manifolds [16, 38].
    [Show full text]
  • From Schouten to Mackenzie: Notes on Brackets
    From Schouten to Mackenzie: notes on brackets∗ Yvette Kosmann-Schwarzbach In Memory of Kirill Mackenzie (1951–2020) Abstract In this paper, dedicated to the memory of Kirill Mackenzie, I relate the origins and early development of the theory of graded Lie brackets, first in the pu- blications on differential geometry of Schouten, Nijenhuis, and Fr¨olicher–Nijenhuis, then in the work of Gerstenhaber and Nijenhuis–Richardson in cohomology theory. Keywords: graded Lie algebra, Schouten bracket, Nijenhuis torsion, Fr¨olicher– Nijenhuis bracket, Nijenhuis–Richardson bracket, Gerstenhaber algebra, Macken- zie theory. Introduction Many aspects of the contributions of Kirill Mackenzie to the theory of Lie groupoids and Lie algebroids, in particular to that of the double and multiple structures, are already classical and often cited. As a tribute to his memory, arXiv:2105.14828v1 [math.HO] 31 May 2021 I shall survey the history of the emergence of some theories that were tools – among many others – in the development and description of his mathematics. In his General Theory of Lie Groupoids and Lie Algebroids, in 2005, Mackenzie inserted a section of “Notes” at the end of each chapter. Yet he ad- vised his readers that his notes were “not comprehensive historical surveys”. After the chapter “Cohomology and Schouten calculus for Lie algebroids”, he wrote: “The Schouten bracket of multivector fields on a manifold goes back to Schouten [1954] and Nijenhuis [1955]. The same alge- braic structures on the cohomology of associative algebras were introduced by Gerstenhaber [1963].” ∗To appear in the Journal of Geometric Mechanics, 2021. 1 I shall try to expand on these elements of a story, and survey some of the early developments in the theory of the various graded brackets that Mackenzie cited and used1.
    [Show full text]
  • On Levi-Civita's Alternating Symbol, Schouten's Alternating Unit Tensors
    Mathematics Faculty Works Mathematics 2012 On Levi-Civita’s Alternating Symbol, Schouten’s Alternating Unit Tensors, CPT, and Quantization Evert Jan Post University of Houston Stan Sholar The Boeing Company Hooman Rahimizadeh Loyola Marymount University Michael Berg Loyola Marymount University, [email protected] Follow this and additional works at: https://digitalcommons.lmu.edu/math_fac Part of the Geometry and Topology Commons, and the Quantum Physics Commons Recommended Citation Sholar, S., H. Rahimizadeh, E. J. Post,“On Levi-Civita’s Alternating Symbol, Schouten’s Alternating Unit Tensors, CPT, and Quantization.” International Journal of Pure and Applied Mathematics, 78(6), 2012, 895-907. This Article is brought to you for free and open access by the Mathematics at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Mathematics Faculty Works by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact [email protected]. International Journal of Pure and Applied Mathematics Volume 78 No. 6 2012, 895-907 AP ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu ijpam.eu ON LEVI-CIVITA’S ALTERNATING SYMBOL, SCHOUTEN’S ALTERNATING UNIT TENSORS, CPT, AND QUANTIZATION Evert Jan Post1, Stan Sholar2, Hooman Rahimizadeh3, Michael Berg4 § 1The University of Houston 4800, Calhoun Road, Houston, Texas, 77004, USA 2The Boeing Company 3Department of Mathematics Loyola Marymount University 1 LMU Drive, Los Angeles, CA 90045, USA Abstract: The purpose of the present article is to demonstrate that by adopt- ing a unifying differential geometric perspective on certain themes in physics one reaps remarkable new dividends in both microscopic and macroscopic domains.
    [Show full text]