University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2013 On Chlorine Salts: Their etD ection, Stability and Implications for Water on Mars and Europa Jennifer Hanley University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Inorganic Chemistry Commons, Stars, Interstellar Medium and the Galaxy Commons, and the The unS and the Solar System Commons Recommended Citation Hanley, Jennifer, "On Chlorine Salts: Their eD tection, Stability and Implications for Water on Mars and Europa" (2013). Theses and Dissertations. 696. http://scholarworks.uark.edu/etd/696 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact
[email protected],
[email protected]. ON CHLORINE SALTS: THEIR DETECTION, STABILITY AND IMPLICATIONS FOR WATER ON MARS AND EUROPA ON CHLORINE SALTS: THEIR DETECTION, STABILITY AND IMPLICATIONS FOR WATER ON MARS AND EUROPA A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Space and Planetary Sciences By Jennifer Hanley Cornell University Bachelor of Arts in Science of Earth Systems, 2006 May 2013 University of Arkansas ABSTRACT Chlorine salts (e.g. chlorides, chlorates and perchlorates) are an important factor in the stability of water on the surfaces of planetary bodies. Here we have shown that perchlorate and chlorate salts will lower the freezing point of water, allowing it to be liquid down to ~204 K. These salts will also slow down the evaporation rate, extending the lifetime of the liquid water solution.