SUPPLEMENTARY ONLINE MATERIAL for Julien Louys And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Lungfish Survivor of the End-Devonian Extinction and an Early Carboniferous Dipnoan
1 A Lungfish survivor of the end-Devonian extinction and an Early Carboniferous dipnoan 2 radiation. 3 4 Tom J. Challands1*, Timothy R. Smithson,2 Jennifer A. Clack2, Carys E. Bennett3, John E. A. 5 Marshall4, Sarah M. Wallace-Johnson5, Henrietta Hill2 6 7 1School of Geosciences, University of Edinburgh, Grant Institute, James Hutton Road, Edinburgh, 8 EH9 3FE, UK. email: [email protected]; tel: +44 (0) 131 650 4849 9 10 2University Museum of Zoology Cambridge, Downing Street, Cambridge CB2 3EJ, UK. 11 12 3Department of Geology, University of Leicester, Leicester LE1 7RH, UK. 13 14 4School of Ocean & Earth Science, University of Southampton, National Oceanography Centre, 15 European Way, University Road, Southampton, SO14 3ZH , UK. 16 17 5Sedgwick Museum, Department of Earth Sciences, University of Cambridge, Downing St., 18 Cambridge CB2 3EQ, UK 1 19 Abstract 20 21 Until recently the immediate aftermath of the Hangenberg event of the Famennian Stage (Upper 22 Devonian) was considered to have decimated sarcopterygian groups, including lungfish, with only 23 two taxa, Occludus romeri and Sagenodus spp., being unequivocally recorded from rocks of 24 Tournaisian age (Mississippian, Early Carboniferous). Recent discoveries of numerous 25 morphologically diverse lungfish tooth plates from southern Scotland and northern England indicate 26 that at least ten dipnoan taxa existed during the earliest Carboniferous. Of these taxa, only two, 27 Xylognathus and Ballgadus, preserve cranial and post-cranial skeletal elements that are yet to be 28 described. Here we present a description of the skull of a new genus and species of lungfish, 29 Limanichthys fraseri gen. -
Lungfish As Environmental Indicators
Mesozoic Fishes 5 – Global Diversity and Evolution, G. Arratia, H.-P. Schultze & M. V. H. Wilson (eds.): pp. 499-508, 5 figs. © 2013 by Verlag Dr. Friedrich Pfeil, München, Germany – ISBN 978-3-89937-159-8 Lungfi sh as environmental indicators Anne KEMP and Rodney W. BERRELL Abstract Lungfish fossil material is widespread, and the records are almost continuous in some continents, from the time that lungfish first appeared. Lungfish live for a long time, and the dentition is never replaced during the life of the fish. Tooth plates, the parts most often preserved in lungfish, can provide information about how the fish lived, what it could have eaten, and how good the environment was. For many reasons, lungfish are good indicators of environmental health. However, analysis of the diseases present in fossil populations over time shows that the story is not positive for the future survival of the Australian lungfish. Mesozoic lungfish tooth plates show only a few examples of caries, and the range of diseases present in the dentitions of Cenozoic and living populations includes erosion, caries, abscesses, hyperplasia, parasitic invasion and osteopenia. Some lungfish tooth plates from Cenozoic environments show attrition, as do specimens from living lungfish, suggesting that the fish did not have enough food. Comparison of Mesozoic material with specimens from younger deposits suggests that the condition of lungfish populations and their environments has deteriorated over time. Introduction Analysis of ancient environments explains far more than the conditions under which animals lived in the past. It has implications for living animals, and for the potential survival of groups that are at risk, such as the living Australian lungfish, Neoceratodus forsteri. -
A New Species of the Genus Atlantoceratodus
Brazilian Geographical Journal: Geosciences and Humanities research medium, Uberlândia, v. 1, n. 2, p. 162-210, jul./dec. 2010 Brazilian Geographical Journal: Geosciences and Humanities research medium UFU ARTICLES /A RTIGOS /A RTÍCULOS /A RTICLES A new species of the genus Atlantoceratodus (Dipnoiformes: Ceratodontoidei) from the Uppermost Cretaceous of Patagonia and a brief overview of fossil dipnoans from the Cretaceous and Paleogene of South America Federico Agnolin Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”; Fundación de Historia Natural “Félix de Azara”. Departamento de Ciencias Naturales y Antropología, Buenos Aires, Argentina E-mail: [email protected] BSTRACT ARTICLE HISTORY A A new species of the genus Atlantoceratodus is Received: 30 August 2010 diagnosed and described on the basis of isolated tooth Accepeted: 16 December 2010 plates from several localities of the Allen Formation (Campanian-Maastrichtian), Río Negro province, northern Patagonia, Argentina. The new species belongs to the genus Atlantoceratodus Cione et al., KEY WORDS : 2007 (senior synonym of Ameghinoceratodus South America Apesteguía; Agnolin; Claeson, 2007) together with A. Cretaceous iheringi and A. elliotti nov. comb. A new phylogenetic Paleogene analysis including tooth plates and calvarian Dipnoi morphology has been conducted in order to evaluate Atlantoceratodus . the relationships among post-Paleozoic dipnoans of the clade Ceratodontoidei. The first ceratodontoid dichotomy includes, on one hand the Neodipnoi nov. (Lepidosirenidae + Neoceratodontidae) and on the other side the “High Crowned Dipnoans” clade (Ceratodontidae + (Asiatoceratodontidae + Ptychoceratodontidae)). Based on this analysis, all South American ptychoceratodontid remains are included within the genus Ferganoceratodus. The ceratodontid genus Metaceratodus is restricted to include the single species M. -
The Westernmost Occurrence of Gnathorhiza in the Triassic, with a Discussion of the Stratigraphic and Palaeogeographic Distribution of the Genus
Foss. Rec., 19, 17–29, 2016 www.foss-rec.net/19/17/2016/ doi:10.5194/fr-19-17-2016 © Author(s) 2016. CC Attribution 3.0 License. The westernmost occurrence of Gnathorhiza in the Triassic, with a discussion of the stratigraphic and palaeogeographic distribution of the genus P. Skrzycki Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland Correspondence to: P. Skrzycki ([email protected]) Received: 18 August 2015 – Revised: 4 December 2015 – Accepted: 9 December 2015 – Published: 15 January 2016 Abstract. The paper refines the taxonomic assignment of USA (Dalquest et al., 1989), Germany (Boy and Schindler, the only representative of the dipnoan genus Gnathorhiza 2000) and Oman (Schultze et al., 2008). In the Late Permian, from the Lower Triassic of Poland. It is assigned here to Gnathorhiza occurred in Russia (Minikh, 1989; Minikh and Gnathorhiza otschevi on the basis of morphological and bio- Minikh, 2006) and Brazil (Toledo and Bertini, 2005). The metrical similarity with the tooth plates from coeval strata of youngest fossils of Gnathorhiza are known from the Lower the European part of Russia. The material is comprised solely Triassic freshwater sediments of Russia (Minikh, 1977, of tooth plates, both the upper and the lower ones. It comes 2000; Minikh and Minikh, 2006; Newell et al., 2010) and from karst deposits of the Czatkowice 1 locality (southern Poland (Borsuk-Białynicka et al., 2003). Poland) dated to late Olenekian, Lower Triassic. The pres- The Polish findings of Gnathorhiza come from karst de- ence of G. otschevi in southern Poland widens its palaeo- posits of the Czatkowice 1 locality situated near Cracow, biogeographic Triassic record by more than 2000 km to the southern Poland. -
Proposal for Approval of a Wildlife Trade Operation to Export Australian Lungfish
PROPOSAL FOR APPROVAL OF A WILDLIFE TRADE OPERATION 1. INTRODUCTION The applicant would like his operation to be considered for approval as a Wildlife Trade Operation (WTO) under the provisions of the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) to enable the commercial export of specimens of Australian Lungfish (Neoceratodus forsteri). The Australian Lungfish is listed as a vulnerable species under the EPBC Act and is also listed on Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). An EPBC Act listed threatened species can only be commercially exported if the specimen is obtained from an approved captive breeding, aquaculture or artificial propagation program. For specimens listed on Appendix II to CITES an export permit for commercial purposes can only be issued if the specimen is obtained from an approved captive breeding program, WTO or wildlife trade management plan. The applicants operation does not meet the requirements for a captive breeding program as they have not bred Australian Lungfish to second-generation. Approval as an aquaculture program (AQ) will satisfy the EPBC Act requirement for an EPBC Act listed threatened species, whilst approval as a WTO will satisfy the EPBC Act requirement for a species listed on Appendix II to CITES. The Australian Lungfish stock owned by the applicant were purchased from [a third party] in 2009. [The third party] was approved as both a WTO and an AQ under the EPBC Act from 2002 to 2009. The applicant does not intend to harvest any more Australian Lungfish from the wild, nor would he be permitted to by Queensland authorities. -
Family-Group Names of Fossil Fishes
European Journal of Taxonomy 466: 1–167 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.466 www.europeanjournaloftaxonomy.eu 2018 · Van der Laan R. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:1F74D019-D13C-426F-835A-24A9A1126C55 Family-group names of fossil fishes Richard VAN DER LAAN Grasmeent 80, 1357JJ Almere, The Netherlands. Email: [email protected] urn:lsid:zoobank.org:author:55EA63EE-63FD-49E6-A216-A6D2BEB91B82 Abstract. The family-group names of animals (superfamily, family, subfamily, supertribe, tribe and subtribe) are regulated by the International Code of Zoological Nomenclature. Particularly, the family names are very important, because they are among the most widely used of all technical animal names. A uniform name and spelling are essential for the location of information. To facilitate this, a list of family- group names for fossil fishes has been compiled. I use the concept ‘Fishes’ in the usual sense, i.e., starting with the Agnatha up to the †Osteolepidiformes. All the family-group names proposed for fossil fishes found to date are listed, together with their author(s) and year of publication. The main goal of the list is to contribute to the usage of the correct family-group names for fossil fishes with a uniform spelling and to list the author(s) and date of those names. No valid family-group name description could be located for the following family-group names currently in usage: †Brindabellaspidae, †Diabolepididae, †Dorsetichthyidae, †Erichalcidae, †Holodipteridae, †Kentuckiidae, †Lepidaspididae, †Loganelliidae and †Pituriaspididae. Keywords. Nomenclature, ICZN, Vertebrata, Agnatha, Gnathostomata. -
Australian Lungfish, Neoceratodus Forsteri, Threatened by a New Dam
Environ Biol Fish (2009) 84:211–221 DOI 10.1007/s10641-008-9414-y Australian lungfish, Neoceratodus forsteri, threatened by a new dam Angela H. Arthington Received: 11 February 2008 /Accepted: 13 August 2008 / Published online: 5 September 2008 # The Author(s) 2008. This article is published with open access at Springerlink.com Abstract The Australian lungfish, Neoceratodus stream, and translocation of hatchery-reared juvenile forsteri, exists as remnant natural populations in two lungfish into suitable natural habitats. These mitigation rivers of south-east Queensland, Australia, and several efforts may not be sufficient to secure the genetic translocated populations. Lungfish habitats have been diversity and long-term viability of lungfish populations impacted by agriculture and forestry, alien plants and in the Mary River. fish and by river impoundment and regulation of flows. The species has been listed as vulnerable under Keywords Lungfish . Threatening processes . Australian Commonwealth legislation. A proposal to Traveston Crossing Dam . Queensland construct Traveston Crossing Dam on the free-flowing main channel of the upper Mary River could seriously threaten the lungfish. The dam can be stopped by Introduction Commonwealth legislation if important populations of lungfish in the Mary River are likely to be significantly Neoceratodus forsteri, commonly called the Australian impacted by the new dam. This paper assembles or Queensland lungfish (Fig. 1), has attracted tremen- evidence that impoundment of the Mary River and dous scientific interest since Australian Museum regulation of river flows are likely to decrease and biologist Gerard Krefft first described it as a ‘gigantic fragment important lungfish populations, disrupt the amphibian’ (Krefft 1870). -
A New Genus of Dipnoiformes from the Cretaceous of Brazil
“main” — 2011/10/18 — 12:41 — page 1181 — #1 Anais da Academia Brasileira de Ciências (2011) 83(4): 1181-1192 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc A new genus of Dipnoiformes from the Cretaceous of Brazil CARLOS E.V. TOLEDO1, ELIANE P. DE SOUSA2, MANUEL A.A. MEDEIROS3 and REINALDO J. BERTINI4 1USP/IGC/GSA, Rua do Lago, 562, Cidade Universitária, Butantã, 05508-080 São Paulo, SP, Brasil 2UEMA/CECEN, Cidade Universitária Paulo VI, Bairro Tirirical, Caixa Postal 09, 65000-000 São Luís, MA, Brasil 3Departamento de Biologia, Universidade Federal do Maranhão, Campus do Bacanga, Avenida dos Portugueses, s/n, 65085-580 São Luís, MA, Brasil 4UNESP/IGCE/DGA/NEPV, Avenida 24-A, 1515, Campus Rio Claro, Bairro Bela Vista, 13506-900 Rio Claro, SP, Brasil Manuscript received on November 13, 2009; accepted for publication on March 1, 2011 ABSTRACT The Alcântara Formation, an important stratigraphic unit from the early Cenomanian of Brazil, was deposited under transitional (estuarine) conditions, and its fossil record includes fragmentary remains of plants, fishes, crocodylomorphs, pterosaurs and dinosaurs, with a noteworthy diversity of dipnoiformes tooth plates. The dipnoiformes material reported here comprises a new taxon, Equinoxiodus alcantarensis, gen. et sp. nov. Most of the identified morphotypes of continental vertebrates collected in the Alcântara Formation are similar to chronocorrelative faunas from Northern Africa, but this new genus of Dipnoiformes indicates some degree of paleogeographic isolation and endemism. This was probably caused by the widening of the equatorial Atlantic Ocean during the early Cenomanian, which may have selectively affected some species. -
Approved Conservation Advice for Neoceratodus Forsteri (Australian Lungfish)
This Conservation Advice was approved by the Delegate of the Minister on 11 April 2014 Approved Conservation Advice for Neoceratodus forsteri (Australian lungfish) (s266B of the Environment Protection and Biodiversity Conservation Act 1999) This Conservation Advice has been developed based on the best available information at the time this Conservation Advice was approved; this includes existing and draft plans, records or management prescriptions for this species. Description Neoceratodus forsteri (Australian lungfish), family Ceratodontidae, also known as the Queensland lungfish, is a large, stout and elongate bodied freshwater fish reaching a maximum length of approximately 150 cm and a maximum weight of 48 kg (Grigg, 1975; Allen et al., 2002). Adults are generally brown to olive in colour on the back, tending to white to yellow-orange on the underside, and are covered by large, obvious scales (Grigg, 1975; Allen et al., 2002). Australian lungfish have large, fleshy and flipper-like pectoral and pelvic fins (Allen et al., 2002). The Australian lungfish is one of only six extant species of lungfishes in the world, along with four species (genus Protopterus) found only in Africa and one species (Lepidosiren paradoxa) found only in South America (Kemp, 1986; Hart et al., 2008). Other species of lungfish have paired lungs, while the Australian lungfish has a single lung located dorsally to the gut, which is divided internally into two distinct lobes that interconnect along its length (Grigg, 1975; Berra, 2007; Hart et al., 2008). The lung is highly vascularised and compartmentalised to provide increased surface area for gaseous exchange, and is connected to the oesophagus ventrally just as in other air-breathing vertebrates (Berra, 2007). -
Occurrence of Lungfish in the Brisbane River, Queensland, Australia Dates Back to 3850 Yr BP
Occurrence of lungfish in the Brisbane River, Queensland, Australia dates back to 3850 yr BP Author Kemp, Anne, Huynen, Leon Published 2014 Journal Title Journal of Archaeological Science Version Accepted Manuscript (AM) DOI https://doi.org/10.1016/j.jas.2014.08.021 Copyright Statement © 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited. Downloaded from http://hdl.handle.net/10072/140881 Griffith Research Online https://research-repository.griffith.edu.au Occurrence of lungfish in the Brisbane River, Queensland, Australia dates back to 3850 yr BP ANNE KEMP and LEON HUYNEN Griffith School of Environment and the School of Biomolecular and Physical Sciences, Griffith University, 170 Kessels Road, Nathan, Qld 4111 Australia. [email protected] [email protected] RH: Ancient lungfish in the Brisbane River Key words: conservation of threatened species, DNA analysis, bone morphology, lungfish from archaeological deposit, Brisbane River Corresponding author: ANNE KEMP, Griffith School of Environment and the School of Biomolecular and Physical Sciences, Griffith University, 170 Kessels Road, Nathan, Qld 4111 Australia. [email protected] 1 Abstract Bone fragments collected from the Platypus Rock Shelter in southeast Queensland, on the banks of the Brisbane River, can be compared with bone from the living Australian lungfish, Neoceratodus forsteri, and suggest that this species, which was widely distributed in Queensland in Pliocene and Pleistocene deposits, was also found in the Brisbane River as recently as 3850 years before the present, based on current 14C dates. -
Family-Group Names of Fossil Fishes
© European Journal of Taxonomy; download unter http://www.europeanjournaloftaxonomy.eu; www.zobodat.at European Journal of Taxonomy 466: 1–167 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.466 www.europeanjournaloftaxonomy.eu 2018 · Van der Laan R. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:1F74D019-D13C-426F-835A-24A9A1126C55 Family-group names of fossil fi shes Richard VAN DER LAAN Grasmeent 80, 1357JJ Almere, The Netherlands. Email: [email protected] urn:lsid:zoobank.org:author:55EA63EE-63FD-49E6-A216-A6D2BEB91B82 Abstract. The family-group names of animals (superfamily, family, subfamily, supertribe, tribe and subtribe) are regulated by the International Code of Zoological Nomenclature. Particularly, the family names are very important, because they are among the most widely used of all technical animal names. A uniform name and spelling are essential for the location of information. To facilitate this, a list of family- group names for fossil fi shes has been compiled. I use the concept ‘Fishes’ in the usual sense, i.e., starting with the Agnatha up to the †Osteolepidiformes. All the family-group names proposed for fossil fi shes found to date are listed, together with their author(s) and year of publication. The main goal of the list is to contribute to the usage of the correct family-group names for fossil fi shes with a uniform spelling and to list the author(s) and date of those names. No valid family-group name description could be located for the following family-group names currently in usage: †Brindabellaspidae, †Diabolepididae, †Dorsetichthyidae, †Erichalcidae, †Holodipteridae, †Kentuckiidae, †Lepidaspididae, †Loganelliidae and †Pituriaspididae. -
Fishes of the World
Fishes of the World Fishes of the World Fifth Edition Joseph S. Nelson Terry C. Grande Mark V. H. Wilson Cover image: Mark V. H. Wilson Cover design: Wiley This book is printed on acid-free paper. Copyright © 2016 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with the respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be createdor extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation.