Ultracold Neutrons: Their Role in Studies of Condensed Matter

Total Page:16

File Type:pdf, Size:1020Kb

Ultracold Neutrons: Their Role in Studies of Condensed Matter Ultracold neutrons: Their role in studies of condensed matter R. Golub Hahn Meitner Institut, 14109 Berlin, Germany Ultracold neutrons, that is, neutrons whose energy is so low that they can be contained for long periods of time in material and magnetic bottles, provide the basis for the currently most sensitive experiments seeking to detect the neutron electric dipole moment and to measure the neutron lifetime. The goal of this article is to review the work that has been done to date in applying ultracold neutrons to the study of condensed matter and to discuss the future prospects for this type of research. [S0034-6861(96)00202-4] CONTENTS decay lifetime. Pendlebury (1993) gives a review of the current situation with detailed references. I. Introduction 329 In the present article we should like to address the A. Short history of ultracold neutron research 329 issue of the application of ultracold neutrons to studies B. Ultracold neutrons and condensed matter 331 of condensed matter. In comparison with the applica- II. Reflection and Tunneling from Surfaces and More tions mentioned above, the use of UCN scattering as a Complex Structures 331 tool to study condensed matter is still in its infancy. We A. UCN reflectometry 333 shall review what has already been done in this field and III. Elastic Scattering 334 give a few pointers to possible future developments. A. Scattering from homogeneous substances 334 In order to be totally reflected at all angles of inci- B. Scattering from static inhomogeneities 335 dence from an appropriate surface, and hence to have IV. Inelastic Scattering 336 the ability to be stored for long periods of time, neutrons V. Quasielastic Scattering 340 must have a velocity of the order of 5 m/s. Although this VI. Upscattering 341 is very small in comparison to typical velocities of neu- VII. The Future of Ultracold Neutron Scattering 343 trons thermalized at room temperature (v;2200 m/s), A. Future instrumentation 343 or even at the temperature of a liquid hydrogen or deu- B. Future ultracold neutron sources 344 terium cold source (v;700 m/s) all UCN sources to date VIII. Conclusion 345 have operated by extracting neutrons from the low en- Acknowledgments 345 ergy tail of the distribution in the source. The strongest Appendix: Phase Space Limitations existing source is the source installed at the Institut to Inelastic Scattering Experiments: Laue-Langevin (ILL) in Grenoble (Steyerl et al., 1986; The Advantage of Longer Wavelengths 345 Steyerl and Malik, 1989). Other sources currently in op- References 346 eration and the prospects for improved sources have been discussed by Golub et al. (1991). (See also Sec. et al. I. INTRODUCTION VII.B and Serebrov , 1994.) The phenomenon of total reflection of neutrons at Until the early seventies free neutrons could be stud- grazing incidence, first demonstrated experimentally by Fermi and Zinn (1946) and by Fermi and Marshall ied only under conditions in which they spent no more (1947), has found extensive application in the construc- than a brief moment within the experimental apparatus. tion of neutron guide tubes (Maier-Leibnitz and Even ‘‘long-wavelength’’ neutrons with l;10 Å, Springer, 1963) at many installations around the world. v;400 m/s take only 2.5 ms to travel 1 m. When diffus- ing through matter, neutrons have average lifetimes of, A. Short history of ultracold neutron research for example, 0.2 ms (H 2O) or 130 ms (D 2O). However, the development, since the midseventies, of ultracold It is customary to denote as ultracold neutrons those neutron (UCN) technology has now reached the point neutrons having total energies where neutrons can be stored in material and magnetic 2p\2 bottles, for times that are essentially limited by the neu- E,V5 Niai6mW BW , (1) m (i • tron’s b-decay lifetime (tb;900 s) (Mampe et al. 1989a, 1989b). This has opened up the possibility of a wide where Ni is the number density of nuclei of species i in range of new applications, some of which have reached a the material, ai is the coherent scattering length of a comparatively advanced stage of development while species i nucleus, and V is the effective potential for the others are only taking their first tentative steps. neutrons in the medium. In practical units The UCN applications that have shown the greatest V5157r 3a /A66.03B ~neV!, (2) success to date are those relating to the fundamental g/cm fermis kilogauss 3 properties of the neutron: the search for the time- where rg/cm3 denotes the density, measured in g/cm , reversal violating electric dipole moment of the neutron and A the atomic mass of the element in the medium; and the most accurate measurement of the neutron b a is measured in fm and B in kG. Reviews of Modern Physics, Vol. 68, No. 2, April 1996 0034-6861/96/68(2)/329(19)/$12.85 © 1996 The American Physical Society 329 330 R. Golub: Ultracold neutrons The idea that these neutrons will be totally reflected trons so far from the peak of the Maxwell distribution for any angle of incidence and, as a result, could be did indeed exist inside the reactor, and that they could stored in closed containers has been attributed by many be extracted without crippling losses of intensity. That people to Fermi himself. However, the first person to both groups, at Dubna and Munich, were successful al- take the idea seriously enough to put it into print was most simultaneously is one of those coincidences which Zeldovitch (1959) who discussed the possibility of UCN seem to be so common in the history of physics. As was storage in a graphite bottle and estimated the storage already noted, the motivations of the two groups were time due to absorption in the walls as well as the UCN somewhat different, the Dubna group following the lead densities to be expected. Zeldovich estimated that a of Shapiro’s article on electric dipole moments, while thermal neutron flux of 1012 n/cm 2/s cooled to3Kin the Munich group seems to have been more interested liquid helium would produce a UCN density of 50 in pioneering the sorts of UCN applications to 23 cm . It is interesting to note that such densities have condensed-matter studies that will be the main subject now been achieved at the Institut Laue-Langevin, of this review. 15 Grenoble, using a reactor with a thermal flux of 10 The Dubna group under Shapiro (Luschikov et al., 2 n/cm /s cooled to 20 K in a deuterium-filled cold source. 1968, 1969) extracted ultracold neutrons from a very Zeldovich suggested it would be interesting to study the low-power pulsed reactor by means of a curved horizon- interactions of the stored ultracold neutrons with sub- tal channel 9.4 cm inner diameter and 10.5 m long. stances introduced into the cavity, such as (n,g) absorb- Counting rates of 0.8 counts per 102 s (background ers. ;0.4 counts per 102 s) were obtained. By admitting a gas This work was followed by several other proposals. of 4He to the extraction pipe the authors attempted to Vladimirskii (1961) suggested the use of inhomogeneous estimate the storage time in the pipe. The idea is that magnetic field gradients for confining ultracold neutrons. He also suggested extraction of ultracold neutrons from when the average lifetime of a neutron for collisions a reactor core by means of a vertical channel and with the helium 21 pointed out the widening in solid angle as the neutrons tHe5@NHesHev¯ He# (3) travel up the guide. He noted that the effects of the moderator potential on the energy distribution of the is equal to the average lifetime for wall losses the count- ultracold neutrons leaving the moderator could be elimi- ing rate should be reduced by 1/2 with respect to that in nated by vertical extraction. the absence of helium. This first attempt to measure Doroshkevich (1962) suggested beryllium as a storage storage times gave a result of 200 s, which is to be com- material and discussed the temperature dependence of pared to 12 s obtained later from more detailed mea- the loss rate. surements (Groshev et al., 1971), the discrepancy being Foldy (1966) suggested the use of liquid helium attributable to possible impurities in the helium. (V51.131028 eV) as a wall-coating material for a UCN Working at Munich, Steyerl (1969) obtained ultracold bottle. However, this potential is rather low compared neutrons by vertical extraction from a steady-state reac- to those achieved with other materials (V*1027 eV). tor. The beam was pulsed by a rotating chopper con- In 1966 Maier-Leibnitz published some remarks con- structed out of 13 boron silicate glass plates located deep cerning the utility of slow neutrons for measuring neu- within the reactor swimming pool two meters above the tron scattering at low values of v and Q (see the appen- core, allowing time-of-flight measurements of neutron dix). Shortly afterwards, in 1968, Shapiro published a spectra. The counting rate showed a steep drop below 10 review article on the electric dipole moment of elemen- m/s, probably due to absorption in the aluminum win- tary particles. In this article he pointed out the advan- dows, to reflection losses, and to the limited acceptance tages of ultracold neutrons in the search for a neutron angle of the detector. However, total cross sections were electric dipole moment, in particular the greatly in- measured for neutron velocities down to 7 m/s for gold creased observation time and the reduction of the and 5 m/s for aluminum.
Recommended publications
  • NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS and POLARIZED 3He
    NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS AND POLARIZED 3He R. GOLUB~and Steve K. LAMOREAUXb aHahfl_Mejtfler Institut, Postfach 390128, Glienicker Strasse 100, 14109 Berlin, Germany b University of Washington, Department of Physics FM-15, Seattle, WA 98195, USA NORTH-HOLLAND PHYSICS REPORTS (Review Section of Physics Letters) 237, No. 1(1994)1—62. PHYSICS REPORTS North-Holland Neutron electric-dipole moment, ultracold neutrons and polarized 3He R. Goluba and Steve K. Lamoreauxb aHahnMeitner Institut, Postfach 390128, Glienicker Strasse 100, 14109 Berlin, Germany buniversily of Washington, Department of Physics FM-15, Seattle, WA 98195, USA Received May 1993; editor: J. Eichler Contents: 1. Introduction 4 5.3. Solution by use of the secular approximation 38 1.1. Historical background 4 5.4. Elimination of the pseudomagnetic field 2. Current experimental technique 8 suppression by feedback to w~ 39 2.1. Ultracold neutrons (UCN) 8 5.5. Effects of the z component of the pseudomagnetic 2.2. Neutron EDM measurements with stored UCN 10 field 42 2.3. Recent EDM experiments using UCN 13 5,6. Effects of offsets in the first-harmonic signal 44 3. Superfluid He neutron EDM with 3He 6. Noise analysis 45 comagnetometer 19 6.1. Model of the system for noise analysis 45 3.1. Introduction 19 6.2. Initial polarization and UCN density 45 3.2. Production of UCN in superfluid 4He 20 6.3. Analysis of harmonically modulated dressing 46 3.3. Polarization of UCN 21 6.4. Evolution of the UCN polarization and density 3.4. Polarization of 3He 22 under modulated dressing 46 3.5.
    [Show full text]
  • Neutron Scattering Facilities in Europe Present Status and Future Perspectives
    2 ESFRI Physical Sciences and Engineering Strategy Working Group Neutron Landscape Group Neutron scattering facilities in Europe Present status and future perspectives ESFRI scrIPTa Vol. 1 ESFRI Scripta Volume I Neutron scattering facilities in Europe Present status and future perspectives ESFRI Physical Sciences and Engineering Strategy Working Group Neutron Landscape Group i ESFRI Scripta Volume I Neutron scattering facilities in Europe - Present status and future perspectives Author: ESFRI Physical Sciences and Engineering Strategy Working Group - Neutron Landscape Group Scientific editors: Colin Carlile and Caterina Petrillo Foreword Technical editors: Marina Carpineti and Maddalena Donzelli ESFRI Scripta series will publish documents born out of special studies Cover image: Diffraction pattern from the sugar-binding protein Gal3c with mandated by ESFRI to high level expert groups, when of general interest. lactose bound collected using LADI-III at ILL. Picture credits should be given This first volume reproduces the concluding report of an ad-hoc group to D. Logan (Lund University) and M. Blakeley (ILL) mandated in 2014 by the Physical Science and Engineering Strategy Design: Promoscience srl Work Group (PSE SWG) of ESFRI, to develop a thorough analysis of the European Landscape of Research Infrastructures devoted to Neutron Developed on behalf of the ESFRI - Physical Sciences and Engineering Strategy Scattering, and its evolution in the next decades. ESFRI felt the urgency Working Group by the StR-ESFRI project and with the support of the ESFRI of such analysis, since many reactor-based neutron sources will be closed Secretariat down in the next years due to national decisions, while the European The StR-ESFRI project has received funding from the European Union’s Spallation Source (ESS) in Lund will be fully operative only in the mid Horizon 2020 research and innovation programme under grant agreement or late 2020s.
    [Show full text]
  • Signa Ture Redacted' Signature Redacted
    Ultracold Neutron Storage Simulation Using the MASSACUTS ILNSTITUTE Kassiopeia Software Package OF TECHNOLOGY by JUL 2 4 2019 Zachary Bogorad LIBRARIES Submitted to the Department of Physics ARCHIVES in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2019 Massachusetts Institute of Technology 2019. All rights reserved. Signa ture redacted' A uthor ............................ D 4 tment of Physics May 10, 2019 Signature redacted_ C ertified by ....................... ose . Formaggio rofessor of Physics Thesis Supervisor Signature redacted Accepted by ................ Nergis Mavalvala Associate Department Head, Department of Physics 2 Ultracold Neutron Storage Simulation Using the Kassiopeia Software Package by Zachary Bogorad Submitted to the Department of Physics on May 10, 2019, in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics Abstract The Kassiopeia software package was originally developed to simulate electromagnetic fields and charged particle trajectories for neutrino mass measurement experiments. Recent additions to Kassiopeia also allow it to simulate neutral particle trajectories in magnetic fields based on their magnetic moments. Two different methods were implemented: an exact method that can work for arbitrary fields and an adiabatic method that is limited to slowly-varying fields but is much faster for large precession frequencies. Additional interactions to simulate reflection of ultracold neutrons from material walls and to allow spin-flip pulses were also added. These tools were used to simulate neutron precession in the Paul Scherrer Institute's neutron electric dipole moment experiment and predict the values of the longitudinal and transverse relax- ation times as well as the trapping lifetime.
    [Show full text]
  • Facilities and Methods Ultracold Neutrons—Physics and Production
    facilities and methods Ultracold Neutrons—Physics and Production Introduction Free neutrons are the most funda- mental ones of the easily accessible, electrically neutral spin-1/2 systems. They take part in all the four known interactions: they strongly interact with nucleons and nuclear matter, they undergo weak β-decay, they have magnetic moments and gravitational mass. Although the neutron itself is a composite system, and thus, strictly speaking, not a fundamental particle, it is one of the finest probes for funda- mental physics. Neutrons can be and are used to study all interactions, to search for new interactions, to test fundamental quantum mechanics and symmetries of nature. Over the past five decades the field of slow neutron Figure 1. Dispersion relation of superfluid helium (c) and free neutron (a). precision physics developed and Neutrons with E » 1meV can excite a single phonon q » 0.7Å-1 with same energy could usually make major advance- and are thus down-scattered to the UCN energy range. The UCN production ments when new and more powerful rate (b) (circles) [16] shows the dominance of this single phonon process with neutron sources became available. respect to multiphonon processes. Very often experiments benefit from using slower neutrons and, thus, longer de Broglie wavelengths λ=2πh/(m · v), for example, thermal Besides numerous reviews, two new schemes for the production of neutrons at about 2,200 m/s average text books have been written on UCN UCN that have been studied in detail velocity have wavelengths of the typi- [2, 3]. For an update on the status of recently and are presently being real- cal atomic scale of about 1 Å.
    [Show full text]
  • TRIUMF Ultracold Neutron Source
    TRIUMF Ultracold Neutron Source J.W. Martin (Spokesperson)1, L. Buchmann2, J.D. Bowman3, L. Clarke4, C. Davis2, B.W. Filippone5, M. Gericke6, R. Golub4, K. Hatanaka7, M. Hayden8, T.M. Ito9, S. Jeong10, I. Kato2, S. Komamiya11, E. Korobkina4, E. Korkmaz12, L. Lee6, Y. Masuda9, K. Matsuta13, A. Micherdzinska1, W.D. Ramsay6, S.A. Page6, B. Plaster14, I. Tanihata7, W.T.H. van Oers6, Y. Watanabe10, S. Yamashita11, and T. Yoshioka11 1University of Winnipeg, Winnipeg, MB 2TRIUMF, Vancouver, BC 3Oak Ridge National Laboratory, Oak Ridge, TN, USA 4North Carolina State University, Raleigh, NC, USA 5California Institute of Technology, Pasadena, CA, USA 6University of Manitoba, Winnipeg, MB 7Research Center for Nuclear Physics, Osaka University, Osaka, Japan 8Simon Fraser University, Burnaby, BC 9Los Alamos National Laboratory, Los Alamos, NM, USA 10KEK, 1-1 Oho, Tsukuba, Ibaraki, Japan 11The University of Tokyo, Tokyo, Japan 12University of Northern British Columbia, Prince George, BC 13Osaka University, Toyonaka, Osaka, Japan 14University of Kentucky, Lexington, KY, USA March 17, 2008 1 Executive Summary We propose the construction of the world’s highest density source of ultracold neutrons (UCN) at TRIUMF. The truly high density that could be obtained at TRIUMF would allow a class of precision measurements to be conducted with significantly improved statistical and systematic uncertainties, and thus more significant results. This source would therefore make a major impact on studies of fundamental physics with UCN that would complement and enhance the ISAC program. A window of opportunity exists to capitalize on the successes of Y. Masuda’s group at KEK and at RCNP, thereby allowing the TRIUMF project to surpass other proposed sources elsewhere.
    [Show full text]
  • Neutron Phase Spin Echo
    PHYSICAL REVIEW C 93, 045501 (2016) Neutron phase spin echo Florian M. Piegsa,1,* Patrick Hautle,2 and Christian Schanzer3 1ETH Zurich,¨ Institute for Particle Physics, CH-8093 Zurich,¨ Switzerland 2Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland 3SwissNeutronics AG, CH-5313 Klingnau, Switzerland (Received 25 January 2016; revised manuscript received 11 February 2016; published 8 April 2016) A novel neutron spin resonance technique is presented based on the well-known neutron spin echo method. In a first proof-of-principle measurement using a monochromatic neutron beam, it is demonstrated that relative velocity changes of down to a precision of 4 × 10−7 can be resolved, corresponding to an energy resolution of better than 3 neV. Currently, the sensitivity is only limited by counting statistics and not by systematic effects. An improvement by another two orders of magnitude can be achieved with a dedicated setup, allowing energy resolutions in the 10 peV regime. The new technique is ideally suited for investigations in the field of precision fundamental neutron physics, but will also be beneficial in scattering applications. DOI: 10.1103/PhysRevC.93.045501 I. INTRODUCTION the neutron spins in and out of their plane of precession.1 Here, γ =−2π × 29.165 MHz/T is the gyromagnetic ratio of the The neutron spin echo (NSE) technique was first proposed n neutron [27]. Detailed theoretical descriptions of the spin flip by Mezei in 1972 [1]. It describes a very sensitive method process, NSE, and NRSE can be found in Refs. [28–30]. to determine small changes in the neutron velocity caused by inelastic scattering in a sample [2].
    [Show full text]
  • New Search for Mirror Neutron Regeneration
    New Search for Mirror Neutron Regeneration L. J. Broussard1;∗, K. M. Bailey1, W. B. Bailey1, J. L. Barrow2, K. Berry1, A. Blose3, C. Crawford3, L. Debeer-Schmitt1, M. Frost1;2, A. Galindo-Uribarri1, F. X. Gallmeier1, C. E. Gilbert1;2, L. Heilbronn2, E. B. Iverson1, A. Johnston2, Y. Kamyshkov2, P. Lewiz2, I. Novikov4, S. I. Penttilä1, S. Vavra2, and A. R. Young5 1Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 2University of Tennessee, Knoxville, TN 37996 USA 3University of Kentucky, Lexington, KY 40506 USA 4Western Kentucky University, Bowling Green, KY 42101 USA 5North Carolina State University, Raleigh, NC 27695 USA Abstract. The possibility of relatively fast neutron oscillations into a mirror neutron state is not excluded experimentally when a mirror magnetic field is considered. Direct searches for the disappearance of neutrons into mirror neutrons in a controlled magnetic field have previously been performed using ultracold neutrons, with some anomalous results reported. We describe a technique using cold neutrons to perform a disappearance and regeneration search, which would allow us to unambiguously identify a possible oscillation signal. An experiment using the existing General Purpose-Small Angle Neutron Scattering instrument at the High Flux Isotope Reactor at Oak Ridge National Laboratory will have the sensitivity to fully explore the parameter space of prior ultracold neutron searches and confirm or refute previous claims of observation. This instrument can also conclusively test the validity of recently suggested oscillation-based explanations for the neutron lifetime anomaly. 1 Introduction that can resolve the ambiguity associated with the source of ultracold neutron losses [14, 15]. The astrophysical evidence for dark matter is strong.
    [Show full text]
  • The Physics of Ultracold Neutrons and Fierz Interference in Beta Decay
    The Physics of Ultracold Neutrons and Fierz Interference in Beta Decay Thesis by Kevin Peter Hickerson In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2013 (Defended October 9, 2012) ii © 2013 Kevin Peter Hickerson All Rights Reserved iii Acknowledgements I am very indebted to my research adviser, Dr. Bradley Filippone, who kindly asked me to join his research group, led me toward a rewarding path into nuclear physics, and gave precious advice to work and experiment with ultracold neutrons. I am appreciative of my previous employer, Bill Gross, who enabled me to pursue my work outside of physics, ranging in far-reaching fields such as tablet computing, rapid pro- totyping, low-cost food production, and my personal favorite, solar energy. I wish to show much appreciation to Dr. Chris Morris, Dr. Mark Makela, Dr. Takeyasu Ito, John Ramsey, Walter Sondheim and Dr. Andy Saunders of Los Alamos National Lab- oratory, whose ingenuity and creativity and mentoring were invaluable for designing the many neutron experiments we performed at LANSCE. I am also grateful to all the graduate students and postdocs who have worked on the ultracold neutron projects with me. Their hard work and late hours make these experiments successful. Finally, I am very grateful to my family, my friends, my wife, Anna, and my children, Melanie, Brian, and Jack for tolerating my many long trips to Los Alamos to work on this research and supporting me during my years in graduate school. iv Abstract In the first component of this thesis, we investigate the physics of ultacold neutrons (UCN).
    [Show full text]
  • Ultracold Neutrons in Canada and Japan
    Ultracold Neutrons in Canada and Japan Jeff Martin The University of Winnipeg February 2009 research supported by Natural Sciences and Engineering Research Council Canada Canada Foundation for Innovation Manitoba Research & Innovation Fund Japan Society for the Promotion of Science International Spallation Ultracold Neutron Source Spokespeople: Y. Masuda (KEK), J.W. Martin (Winnipeg) Collaborators: J.D. Bowman, J. Birchall, L. Buchmann, L. Clarke, C. Davis, B.W. Filippone, M. Gericke, R. Golub, K. Hatanaka, M. Hayden, T.M. Ito, S. Jeong, I. Kato, S. Komamiya, E. Korobkina, E. Korkmaz, L. Lee, K. Matsuta, A. Micherdzinska, W.D. Ramsay, S.A. Page, B. Plaster, I. Tanihata, W.T.H. van Oers, Y. Watanabe, S. Yamashita, T. Yoshioka (KEK, Winnipeg, Manitoba, ORNL, TRIUMF, NCSU, Caltech, RCNP, SFU, LANL, Tokyo, UNBC, Osaka, Kentucky) We propose to construct the world©s highest density source of ultracold neutrons and use it to conduct fundamental and applied physics research using neutrons. Ultracold Neutrons (UCN) ● What are UCN? ● Interactions of UCN. ● How to make UCN. ● Plans for the International Spallation Ultracold Neutron Source (i-SUN). ● Experiments that we would do there. Ultracold Neutrons (UCN) ● UCN are neutrons that are moving so slowly that they are totally reflected from a variety of materials. ● So, they can be confined in material bottles for long periods of time. ● Typical parameters: – velocity < 8 m/s = 30 km/h – temperature < 4 mK – kinetic energy < 300 neV ● Interactions: – gravity: V=mgh – weak interaction (allows UCN to decay) – magnetic fields: V=-µ •B – strong interaction Gravity ● Question: If I threw something straight up at an initial speed of 30 km/h, how high would it go? ● Answer (from high-school physics): – about 3 meters (10 feet).
    [Show full text]
  • Gravitational and Centrifugal Quantum States of Matter (Neutrons) and Anti-Matter (Anti-Hydrogen Atoms)
    Gravitational and centrifugal quantum states of matter (neutrons) and anti-matter (anti-hydrogen atoms) INSTITUT MAX VON LAUE - PAUL LANGEVIN 24.01.13 V.V. Nesvizhevsky Gravitational and centrifugal quantum states of matter (neutrons) and anti-matter (anti-hydrogen atoms) The Uncertainty Principle: strictly speaking, you cannot say that you know the position (height) of a water droplet in the turning point and simultaneouly say that the vertical velocity in this point equals zero… INSTITUT MAX VON LAUE - PAUL LANGEVIN 24.01.13 V.V. Nesvizhevsky Gravitational and centrifugal quantum states of matter (neutrons) and anti-matter (anti-hydrogen atoms) as well as you cannot say that an apple is fixed at some height and simultaneously say that is not moving… INSTITUT MAX VON LAUE - PAUL LANGEVIN 24.01.13 V.V. Nesvizhevsky Gravitational and centrifugal quantum states of matter (neutrons) and anti-matter (anti-hydrogen atoms) and when it is moving, this is not a smooth classical motion Quantum bounces [P.W. Langhoff, Shroedinger particle in a gravitational well, Am. J. Phys. 39 (1971) 954; R.L. Gibbs, The quantum bouncer. Am. J. Phys. 43 (1975) 25; J. Gea-Banacloche, A quantum bouncing ball, Am. J. Phys. 67 (1999) 776] INSTITUT MAX VON LAUE - PAUL LANGEVIN 24.01.13 V.V. Nesvizhevsky Gravitational and centrifugal quantum states of matter (neutrons) and anti-matter (anti-hydrogen atoms) There are 4 known fundamental interactions: electromagnetic, stong, weak and gravitational Quantum states of a massive particle should exist independent of the fundamental nature of a bounding potential Preceeding experiment: observation of gravitational phase-shift [R.
    [Show full text]
  • Experiments with Ultracold Neutrons
    Experiments with ultracold neutrons - first 50 years. Yu.N. Pokotilovski1 Joint Institute for Nuclear Research 141980 Dubna, Moscow region, Russia Abstract This year is 50 anniversary of the first experimental observation of ultracold neutrons (UCN). I present my reminiscences of the first experiment in Dubna, first encounter with F.L. Shapiro – pioneer of the UCN investigations, and the early stage of the UCN experiments. Present status of investigations with UCN is shortly reviewed. PACS: 28.20.-v; 29.25.Dz; 14.20.Dh; 13.30.-a. Keywords: ultracold neutrons. 1 Prologue. My 1968 before UCN. 1968 was the last year of my postgraduate studentship in Moscow academic Institute. The topic of my work was the experimental study of interactions of high energy protons with big (quasi-infinite) uranium targets - so called electronuclear method of generation of neutrons and fuel isotopes. The experimental part was performed at the JINR synchrocyclotron and consisted in the measurement of production of neutrons and 239Pu in big uranium targets of different depletion and different central proton beam targets, bombarded by protons in the energy range 300-660 MeV. At that time this method was considered as a possible radical alternative to the arXiv:1805.05292v1 [physics.hist-ph] 14 May 2018 breeder-reactor-plus-fuel-reprocessing industry and as a way to solve the future world energy problem due to involvement of all uranium to energy production without en- richment process. Later, when it became clear that situation with mineral sources of energy is not as sad as was predicted, this theme was put aside.
    [Show full text]
  • Search for Low-Energy Upscattering of Ultracold Neutrons from a Beryllium Surface
    XJ9800298 COOBlUEHMfl OBbEflMHEHHOrO MHCTMTVTA flflEPHbIX MCCJlEflOBAHMM AyoHa E3-98-41 Al.Yu.Muzychka, Yu.N.Pokotilovskij P.Geltenbort* SEARCH FOR LOW-ENERGY UPSCATTERING OF ULTRACOLD NEUTRONS FROM A BERYLLIUM SURFACE ""Institute Laue-Langevin, Grenoble, France $ 2 9-40 1998 © 06beAHHeHHbiPi HHCTmyT AAepHbix ucc^eAOBanuPi. fly6Ha, 1998 1 Introduction There is the well-known and long-standing puzzle of ultracold neutron (UCN) storage times in closed volumes or, equivalently, of anomalous losses of UCN upon reflection from the inner surfaces of UCN traps. The most surprisingly large discrepancy in the experimental and pre­ dicted loss coefficients was observed for the most promising materials for high UCN storage times: cold beryllium [1, 2] and solid oxygen [3]. The anomaly consists in an almost temperature independent (in the temperature interval 10-300 K) wall loss coefficient (~ 3 ■ 10-5), corre­ sponding to the extrapolated inelastic thermal neutron cross section <r* ~ 0, 96. This experimental figure for Be is two orders of magnitude higher than the theoretical one, the latter being completely deter­ mined at low temperatures by the neutron capture in Be (0.0086). The experiment/theory ratio for a very cold oxygen surface achieves three orders of magnitude [3]. Approximate universality of the loss co­ efficient for beryllium and oxygen, and the independence of the Be fig­ ures from temperature, forces one to suspect a universal reason for this anomaly. A series of experiments to find the channel by which UCN leave the trap are described in [2]. None of the suspected reasons has been confirmed: surface contaminations by dangerous elements with large absorption cross-sections, penetration of UCN through possible micro-cracks in the surface layers of Be, the hypothetical process of milliheating of UCN due to collisions with a low frequency vibrating surface, the upscattering of UCN due to thermal vibrations of the wall nuclei.
    [Show full text]