Structure of the Trypanosome Cyanide-Insensitive Alternative Oxidase
Structure of the trypanosome cyanide-insensitive alternative oxidase Tomoo Shibaa,1,2, Yasutoshi Kidoa,1,3, Kimitoshi Sakamotoa,4, Daniel Ken Inaokaa, Chiaki Tsugea, Ryoko Tatsumia, Gen Takahashib, Emmanuel Oluwadare Baloguna,b,c, Takeshi Narad, Takashi Aokid, Teruki Honmae, Akiko Tanakae, Masayuki Inouef, Shigeru Matsuokaf, Hiroyuki Saimotog, Anthony L. Mooreh, Shigeharu Haradab,5, and Kiyoshi Kitaa,5 aDepartment of Biomedical Chemistry, Graduate School of Medicine, and fGraduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; bDepartment of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan; cDepartment of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria; dDepartment of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; eSystems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045, Japan; gDepartment of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; and hBiochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom Edited† by John E. Walker, Medical Research Council Mitochondrial Biology Unit, Cambridge, United Kingdom, and approved February 11, 2013 (received for review October 23, 2012) In addition to haem copper oxidases, all higher plants, some algae, mammalian host in the bloodstream, both the cytochrome re- yeasts, molds, metazoans, and pathogenic microorganisms such as spiratory pathway and oxidative phosphorylation disappear and Trypanosoma brucei contain an additional terminal oxidase, the are replaced by the trypanosomal alternative oxidase (TAO), cyanide-insensitive alternative oxidase (AOX). AOX is a diiron car- which functions as the sole terminal oxidase to reoxidize NADH boxylate protein that catalyzes the four-electron reduction of accumulated during glycolysis (5).
[Show full text]