• Mouthparts 1 • Mouthparts 2 • Thorax and Abdomen 1 • Thorax And

Total Page:16

File Type:pdf, Size:1020Kb

• Mouthparts 1 • Mouthparts 2 • Thorax and Abdomen 1 • Thorax And • HeadHead •• MouthpartsMouthparts 11 •• MouthpartsMouthparts 22 •• ThoraxThorax andand abdomenabdomen 11 •• ThoraxThorax andand abdomenabdomen 22 •• CockroachCockroach dissectiondissection © 1997 B.K. Mitchell & J.S. Scott, Department of Biological Sciences, University of Alberta The compound eyes are often the most COCKROACH BRAIN - dorsal aspect The inside of the prominent structures on the insect head. Drawing of dissected cockroach head contains more The Insect Head Adult holometabolous insects,as well as head showing brain and related than the brain, of immatures and adults of hemimetabolous Insects are strongly cephalized animals, that is, many of the important nerves. Frontal and hypocerebral course. There are insects have them. Insect compound ganglia are part of the stomatogas- many muscles that functions are moved anteriorly with a high degree of merging or eyes have thousands of more or less tric nervous system, while the cor- operate the various condensing of segments, sensory structures and neural ganglia. This equivalent sensory cartridges called om- pora cardiaca and corpora allata are appendages - the module illustrates the preceding statement. Additional information on matidia. Each ommatidium has a hexago- mouthpart muscles the insect head can be found in the mouthpart module. nal lens (hundreds in focus in this picture) being particularly and six to eight light-sensitive cells. Sin- complex. Six or seven segments are condensed to form the head capsule. This gle homologous sensory cells from nu- strong structure provides protection for the brain, support for eyes, oesophagus frontal ganglion merous adjacent ommatidia respond to This cleared whole ocelli, antennae and mouthparts. The strongest muscles in the head light in their limited field of view and send mount reveals an- serve the mandibles in chewing insects and the sucking pump in the information to the same place in the recurrent nerve other aspect of the piercing-sucking insects. optic lobe of the brain. The image formed head that is often in the insect brain is not as detailed as antennal nerve The hard exoskeleton that is a common feature of arthropods is overlooked - the ours but insects can be exquisitely sensi- optic lobe tentorium (red ar- particularly well illustrated in the head. The lesser appreciated internal tive to movement in the visual field. They rows). cuticular support structures are also well represented by the cross- also can see in colour. corpus cardiacum bracing tentorium. corpus allatum The tentorium is the “internal skeleton” which gives strength to the head capsule and provides a place for muscle attachment. It is formed by tube-shaped inward ex- Supported in part by B.K.Mitchell and J.S.Scott Academic Technologies for Learning © Department of Biological Sciences hypocerebral tensions of the exoskeleton. The mandibles, maxillary and labial palpi are all and Faculty of Science, University of Alberta University of Alberta 4 ganglion 8 visible in this frontal view. 13 Grasshoppers and cockroaches This section through a compound This is a scanning (drawings) are often used to illus- retinular layer eye shows some of the features. electron micro- trate the most basic form of the in- The lens layer is in red, the eye graph of the right sect head. The eye is often promi- lens retinular layer in black and gray side of a bug em- nent and the mouthparts can seem layer and the first of three parts of the bryo. strange to us. The evolutionary optic lobe in blue-gray. flexibility of the four mouthpart seg- Can you find the mental appendages is the theme of The retinular layer contains the following seg- the mouthpart segment of this se- sensory cells (six to eight per om- ments? ries. matidium). The dark layer just un- der the lens layer contains pig- In cockroaches, the head ments that help reduce light scat- • labial Back View is very flexibly attached to tering during the day. the thorax via an exten- • labral sive neck membrane (arrow). The oesophagus, optic • mandibular * heart, tracheal system, lobe and nervous system all •maxillary pass through the foramen at the back of the head The green arrow marks the boundary between the head and thorax. ( asterisk ). The eye is the bulge on the side of the head. Ventral is down and anterior is to the right. This is a dark adapted eye so the pigments are all at one end. This increases 1 light scattering (decreases resolution) but it increases sensitivity. 5 9 Insect heads take many shapes reflecting the characteristic feeding habits of the Jake Remple, a Cana- The sub- species concerned. For example, predaceous insects have forward directed dian entomologist, HEAD OF INSECT oesophagus oesophageal mouthparts with a corresponding forward protrusion of the head. The predators summarized this inter- Acron + 6 segments ganglion (SOG) pretation of insect of all insects head segmentation serves the major 1 1 - labral based on a careful ex- 2 mouthparts and 2 - antennal amination of develop- it’s therefore 4 3 - intercalary ing embryos of the much involved 5 4 - mandibular blister beetle Lytta. with feeding. stalkfly 6 5 - maxillary This picture is of The last three seg- a frontal section antlion larva 6 - labial ments are easy to see scorpion 3 through the SOG fly at all stages of devel- of a fly. acron opment (mandibular, neuropil maxillary and labial) because they bear ob- nerve labellar vious bi-lateral ap- tract nerve pendages. The three anterior segments required developmental analysis to confirm their pres- A typical ganglion (functional concentration of nerve cells) is composed of a periph- eral region of cell bodies (nerve and glial cells - red) and a region of nerve to nerve tsetse fly ence. The acron is homologous with the front part of the body of bi-laterally sym- cicada metrical animals such as the earthworm and is not considered a true segment connections called the neuropil. water 10 beetle 2 because it lacks a pair of appendages. larva 6 The three most prominent arrangements of the head have been given the names Prognathous, Hypognathous and Opisthorhynchous. This unusual view of the 1 suboesophageal ganglion (SOG) Plant bug of a fleshfly shows the brain and corpus pedunculatum SOG in the same orientation as archicerebrum the previous picture. Use the oe- 2 prosocerebrum sophagus as a reference point. Tiger 3 deutocerebrum 1 Here a single neuron has been beetle tritocerebrum 2 commisure filled with a fluorescent dye to re- brain labral nerve 3 veal its extensive branching pat- nervus connectivus tern in the SOG and in the brain. Prognathous 4 nervus recurrens commisure The cell body of this neuron is the frontal ganglion oesophagus bright dot just above the cell body nervus procurrens 5 4 label. This neuron is one of many 6 5 6 that process taste input from the labellar sensilla. Leaf Opisthorhynchous beetle The largest structure in the head-neck region is the brain and sub-oesophageal gan- suboesophageal glion complex. The oesophagus passes between these two major masses of nerv- cell ous tissue. These are dorsal and lateral views respectively. The numbers corre- body ganglion spond to the segmentation numbers of the previous slide. 11 7 Hypognathous 3 This frontal view of a cock- Dipteran mouthpart modifications roach head gives a better idea Mouthparts of Insects eye of what the mouthparts look labellum like in situ. The tentorium is REVIEW maxillary palp Insects owe their great success to their abilities to adapt to a antenna also visible (see module on the wide variety of habitats. Adaptations have occurred, indeed head in this series). Can you recognize the following? continue to occur, at every level of organization from the Note the well sclerotized man- molecular to the ecological. The comparative study of insect dibular “teeth” (black ridges in • antennae Horsefly adult- mouthparts is first and foremost a study of adaptation. We mandible lower center) and the protrud- Dissected ing galeae/lacinia and para- clypeus mouthparts single out mouthparts and the gross morphological level of • (ex. Micro-slide) maxillary organization in introductory courses because the variety of glossa. The mandibles appear palp to be at the front since the lab- • eye labrum adaptations is so great that we can address vast landscapes rum which largely covers them lacinia lacinia of insect evolution by looking at mouthparts alone. Also, they is transparent in this cleared • frons are relatively easy to see and appreciate and, perhaps most specimen. mandible hypopharynx mandible important, the mouthparts are entral to insect trophic • labial palpi behaviour cfood gathering behaviour). Horseflies (Tabanidae) have the same kinds of mouthpart modifications as labial maxillary • labrum blackflies, but since they are larger, are easier for us to study (their bite also causes more physical damage). All of the basic parts can be seen here and Supported in part by B.K.Mitchell and J.S.Scott palp palp mandible Academic Technologies for Learning © Department of Biological Sciences • don’t resemble the mouthparts of the cockroach. Nevertheless these are the and Faculty of Science, University of Alberta University of Alberta hypopharynx 4 8 appendages of the same segments - the result of the same basic develop- maxillary palpi mental plan. • 12 This detailed view of a Dipteran mouthpart modifications cockroach maxilla clearly cardo Mosquitoes have carried the business of piercing and shows the sclerites that The American cockroach sucking to a fine art. The stylets are modified labrum, make up this complex REVIEW (Periplaneta americana) has stipes maxillae and mandibles, just as in horseflies and appendage. The darker “generalized” mouthparts. Here’s a better challenge. This is a blackflies, but the cross section size is markedly re- the cuticle the heavier This insect is omnivorous and lateral view of a cockroach head with duced making for a much stealthier approach to feed- the tanning and usually its mouthparts are well suited the mouthparts extruded.
Recommended publications
  • ENTOMOLOGY 322 LABS 13 & 14 Insect Mouthparts
    ENTOMOLOGY 322 LABS 13 & 14 Insect Mouthparts The diversity in insect mouthparts may explain in part why insects are the predominant form of multicellular life on earth (Bernays, 1991). Insects, in one form or another, consume essentially every type of food on the planet, including most terrestrial invertebrates, plant leaves, pollen, fungi, fungal spores, plant fluids (both xylem and phloem), vertebrate blood, detritus, and fecal matter. Mouthparts are often modified for other functions as well, including grooming, fighting, defense, courtship, mating, and egg manipulation. This tremendous morphological diversity can tend to obscure the essential appendiculate nature of insect mouthparts. In the following lab exercises we will track the evolutionary history of insect mouthparts by comparing the mouthparts of a generalized insect (the cricket you studied in the last lab) to a variety of other arthropods, and to the mouthparts of some highly modified insects, such as bees, butterflies, and cicadas. As mentioned above, the composite nature of the arthropod head has lead to considerable debate as to the true homologies among head segments across the arthropod classes. Table 13.1 is presented below to help provide a framework for examining the mouthparts of arthropods as a whole. 1. Obtain a specimen of a horseshoe crab (Merostoma: Limulus), one of the few extant, primitively marine Chelicerata. From dorsal view, note that the body is divided into two tagmata, the anterior Figure 13.1 (Brusca & Brusca, 1990) prosoma (cephalothorax) and the posterior opisthosoma (abdomen) with a caudal spine (telson) at its end (Fig. 13.1). In ventral view, note that all locomotory and feeding appendages are located on the prosoma and that all except the last are similar in shape and terminate in pincers.
    [Show full text]
  • Electromagnetic Field and TGF-Β Enhance the Compensatory
    www.nature.com/scientificreports OPEN Electromagnetic feld and TGF‑β enhance the compensatory plasticity after sensory nerve injury in cockroach Periplaneta americana Milena Jankowska1, Angelika Klimek1, Chiara Valsecchi2, Maria Stankiewicz1, Joanna Wyszkowska1* & Justyna Rogalska1 Recovery of function after sensory nerves injury involves compensatory plasticity, which can be observed in invertebrates. The aim of the study was the evaluation of compensatory plasticity in the cockroach (Periplaneta americana) nervous system after the sensory nerve injury and assessment of the efect of electromagnetic feld exposure (EMF, 50 Hz, 7 mT) and TGF‑β on this process. The bioelectrical activities of nerves (pre‑and post‑synaptic parts of the sensory path) were recorded under wind stimulation of the cerci before and after right cercus ablation and in insects exposed to EMF and treated with TGF‑β. Ablation of the right cercus caused an increase of activity of the left presynaptic part of the sensory path. Exposure to EMF and TGF‑β induced an increase of activity in both parts of the sensory path. This suggests strengthening efects of EMF and TGF‑β on the insect ability to recognize stimuli after one cercus ablation. Data from locomotor tests proved electrophysiological results. The takeover of the function of one cercus by the second one proves the existence of compensatory plasticity in the cockroach escape system, which makes it a good model for studying compensatory plasticity. We recommend further research on EMF as a useful factor in neurorehabilitation. Injuries in the nervous system caused by acute trauma, neurodegenerative diseases or even old age are hard to reverse and represent an enormous challenge for modern medicine.
    [Show full text]
  • Amphibious Fishes: Terrestrial Locomotion, Performance, Orientation, and Behaviors from an Applied Perspective by Noah R
    AMPHIBIOUS FISHES: TERRESTRIAL LOCOMOTION, PERFORMANCE, ORIENTATION, AND BEHAVIORS FROM AN APPLIED PERSPECTIVE BY NOAH R. BRESSMAN A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVESITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology May 2020 Winston-Salem, North Carolina Approved By: Miriam A. Ashley-Ross, Ph.D., Advisor Alice C. Gibb, Ph.D., Chair T. Michael Anderson, Ph.D. Bill Conner, Ph.D. Glen Mars, Ph.D. ACKNOWLEDGEMENTS I would like to thank my adviser Dr. Miriam Ashley-Ross for mentoring me and providing all of her support throughout my doctoral program. I would also like to thank the rest of my committee – Drs. T. Michael Anderson, Glen Marrs, Alice Gibb, and Bill Conner – for teaching me new skills and supporting me along the way. My dissertation research would not have been possible without the help of my collaborators, Drs. Jeff Hill, Joe Love, and Ben Perlman. Additionally, I am very appreciative of the many undergraduate and high school students who helped me collect and analyze data – Mark Simms, Tyler King, Caroline Horne, John Crumpler, John S. Gallen, Emily Lovern, Samir Lalani, Rob Sheppard, Cal Morrison, Imoh Udoh, Harrison McCamy, Laura Miron, and Amaya Pitts. I would like to thank my fellow graduate student labmates – Francesca Giammona, Dan O’Donnell, MC Regan, and Christine Vega – for their support and helping me flesh out ideas. I am appreciative of Dr. Ryan Earley, Dr. Bruce Turner, Allison Durland Donahou, Mary Groves, Tim Groves, Maryland Department of Natural Resources, UF Tropical Aquaculture Lab for providing fish, animal care, and lab space throughout my doctoral research.
    [Show full text]
  • Order Ephemeroptera
    Glossary 1. Abdomen: the third main division of the body; behind the head and thorax 2. Accessory flagellum: a small fingerlike projection or sub-antenna of the antenna, especially of amphipods 3. Anterior: in front; before 4. Apical: near or pertaining to the end of any structure, part of the structure that is farthest from the body; distal 5. Apicolateral: located apical and to the side 6. Basal: pertaining to the end of any structure that is nearest to the body; proximal 7. Bilobed: divided into two rounded parts (lobes) 8. Calcareous: resembling chalk or bone in texture; containing calcium 9. Carapace: the hardened part of some arthropods that spreads like a shield over several segments of the head and thorax 10. Carinae: elevated ridges or keels, often on a shell or exoskeleton 11. Caudal filament: threadlike projection at the end of the abdomen; like a tail 12. Cercus (pl. cerci): a paired appendage of the last abdominal segment 13. Concentric: a growth pattern on the opercula of some gastropods, marked by a series of circles that lie entirely within each other; compare multi-spiral and pauci-spiral 14. Corneus: resembling horn in texture, slightly hardened but still pliable 15. Coxa: the basal segment of an arthropod leg 16. Creeping welt: a slightly raised, often darkened structure on dipteran larvae 17. Crochet: a small hook-like organ 18. Cupule: a cup shaped organ, as on the antennae of some beetles (Coleoptera) 19. Detritus: disintegrated or broken up mineral or organic material 20. Dextral: the curvature of a gastropod shell where the opening is visible on the right when the spire is pointed up 21.
    [Show full text]
  • Fd5359df95mannual ENT 4121.Pdf
    Phone : 01425-254022, (O) 01425-254022 (Fax) Dr. G.L. Keshwa February 22, 2010 I am really glad to know that the Practical Mannual for Insect Morphology and Systematic has been prepared for B.S.c. Ag. Hons. Part-I students by Dr. M.C. Bhargava and Dr. Ashok Sharma, Department of Entomology. The practical manual will fulfill the need and necessity of Introductory Entomology and will provide the guidelines for the students. I congratulate the authors in bringing out this publication and wish them all the success in their future eneavour. PREFECE The main aim of preparing this practical manual is to provide the undergraduate students of Agriculture, a simple exposition of the subject. It is primarily designed to cover the syllabus of Insect Morphology and Systematics (Ento- 4121). The manual contains details about introductory entomology including external and internal anatomy of grasshopper and classification of orders of agriculture importance up to family level. We feel immense pleasure in expressing our heartfelt regards with deep sense of gratitude to Dr. G L Keshwa, Dean, SKN College of Agriculture, Jobner for giving inspiration to prepare this manual. Place Jobner M.C. Bhargava Date ........................ Ashok Sharma Ento 4121 INSECT MORPHOLOGY AND SYSTEMATICS 3(2+1) CONTENTS S. No. Exercise Date Remark 1. Observing and sketching of external structure of grasshopper .................... ........................ 2. Acquaintance with the insect collection material .................... ........................ 3. Pinning of different type of insects and .................... ........................ preservation of different stages of insects 4. Preparation of temporary mount of biting and .................... ........................ chewing type of mouth parts. 5. Preparation of temporary mount of sponging and ...................
    [Show full text]
  • Ag. Ento. 3.1 Fundamentals of Entomology Credit Ours: (2+1=3) THEORY Part – I 1
    Ag. Ento. 3.1 Fundamentals of Entomology Ag. Ento. 3.1 Fundamentals of Entomology Credit ours: (2+1=3) THEORY Part – I 1. History of Entomology in India. 2. Factors for insect‘s abundance. Major points related to dominance of Insecta in Animal kingdom. 3. Classification of phylum Arthropoda up to classes. Relationship of class Insecta with other classes of Arthropoda. Harmful and useful insects. Part – II 4. Morphology: Structure and functions of insect cuticle, moulting and body segmentation. 5. Structure of Head, thorax and abdomen. 6. Structure and modifications of insect antennae 7. Structure and modifications of insect mouth parts 8. Structure and modifications of insect legs, wing venation, modifications and wing coupling apparatus. 9. Metamorphosis and diapause in insects. Types of larvae and pupae. Part – III 10. Structure of male and female genital organs 11. Structure and functions of digestive system 12. Excretory system 13. Circulatory system 14. Respiratory system 15. Nervous system, secretary (Endocrine) and Major sensory organs 16. Reproductive systems in insects. Types of reproduction in insects. MID TERM EXAMINATION Part – IV 17. Systematics: Taxonomy –importance, history and development and binomial nomenclature. 18. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta up to Orders. Major characteristics of orders. Basic groups of present day insects with special emphasis to orders and families of Agricultural importance like 19. Orthoptera: Acrididae, Tettigonidae, Gryllidae, Gryllotalpidae; 20. Dictyoptera: Mantidae, Blattidae; Odonata; Neuroptera: Chrysopidae; 21. Isoptera: Termitidae; Thysanoptera: Thripidae; 22. Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; 23. Lepidoptera: Pieridae, Papiloinidae, Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; 24.
    [Show full text]
  • Panoploscelis Scudderi Beier, 1950 And
    Panoploscelis scudderi Beier, 1950 and Gnathoclita vorax (Stoll, 1813): two katydids with unusual acoustic, reproductive and defense behaviors (Orthoptera, Pseudophyllinae) Sylvain Hugel To cite this version: Sylvain Hugel. Panoploscelis scudderi Beier, 1950 and Gnathoclita vorax (Stoll, 1813): two katydids with unusual acoustic, reproductive and defense behaviors (Orthoptera, Pseudophyllinae). Zoosys- tema, Museum Nationale d’Histoire Naturelle Paris, 2018, 40 (sp1), pp.327. 10.5252/zoosys- tema2019v41a17. hal-02349677 HAL Id: hal-02349677 https://hal.archives-ouvertes.fr/hal-02349677 Submitted on 21 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TITLE English Panoploscelis scudderi Beier, 1950 and Gnathoclita vorax (Stoll, 1813): two katydids with unusual acoustic, reproductive and defense behaviors (Orthoptera, Pseudophyllinae). TITLE French Panoploscelis scudderi Beier, 1950 et Gnathoclita vorax (Stoll, 1813) : deux sauterelles aux comportements acoustiques, reproducteurs et de défenses remarquables (Orthoptera, Pseudophyllinae). RUNNING head Two katydids with unusual behaviors Sylvain HUGEL INCI, UPR 3212 CNRS, Université de Strasbourg, 5 rue Blaise Pascal, F-67000 Strasbourg (France) [email protected] ABSTRACT Two species of Eucocconotini Beier, 1960 were collected during the “Our Planet Revisited, Mitaraka 2015” survey in the Mitaraka Mountains belonging to Tumuc-Humac mountain chain in French Guyana: Gnathoclita vorax (Stoll, 1813) and Panoploscelis scudderi Beier, 1950.
    [Show full text]
  • 4-H Insect Identification Study Guide for Junior 4-H’Ers
    4-H Insect Identification Study Guide for Junior 4-H’ers What is it? This is the first question most people ask habits. You must know the information in this study when they encounter a new kind of animal. Being able to guide, the 4-H Introduction to Entomology, and the indicated identify an animal is the first step in learning about that sections of the 4-H Entomology Manual (“How Insects Grow animal. Your backyard is home to hundreds of different and Develop” and “How Insects Feed—Mouthparts”) to species of interesting and unusual animals, and most of do well in the contest. these animals are insects. Insects affect our lives in many ways. Some insects are pests and some are beneficial, Spelling Counts but most insects are neither good nor bad—they are just Try to spell common names and order names correctly. little animals. Answers that are badly misspelled will be counted wrong, Participating in the 4-H Insect Identification contest and spelling may be used to break ties. will help you learn how to identify insects and learn about It is also helpful to understand why the common the biology and habits of these interesting little animals. names of some insects are written as one word, as in For the junior level contest, you only need to learn about 50 “dragonfly,” while those of other insects are written as two of our more common insects, but the skills you acquire in words, as in “house fly.” In general, when an organism learning about these 50 insects will help you expand your really is a member of the group being named, the name is knowledge of insects, as well as other animals and plants, written as two words, but if the organism does not really as you move through life.
    [Show full text]
  • Segmentation and Tagmosis in Chelicerata
    Arthropod Structure & Development 46 (2017) 395e418 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Segmentation and tagmosis in Chelicerata * Jason A. Dunlop a, , James C. Lamsdell b a Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115 Berlin, Germany b American Museum of Natural History, Division of Paleontology, Central Park West at 79th St, New York, NY 10024, USA article info abstract Article history: Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, che- Received 4 April 2016 licerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the ap- Accepted 18 May 2016 pendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or Available online 21 June 2016 clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the Keywords: prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages Arthropoda into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further Chelicerata fi Tagmosis modi ed within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in Prosoma groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may Opisthosoma also show reduced somite counts, but reconstructing segmentation in these animals remains chal- lenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa.
    [Show full text]
  • Cooption of an Appendage-Patterning Gene Cassette in the Head
    Cooption of an appendage-patterning gene cassette in PNAS PLUS the head segmentation of arachnids Emily V. W. Settona and Prashant P. Sharmaa,1 aDepartment of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53706 Edited by Nipam H. Patel, University of California, Berkeley, CA, and accepted by Editorial Board Member David Jablonski February 28, 2018 (received for review November 20, 2017) The jointed appendages of arthropods have facilitated the spec- ventral tissue. Ectopic expression of both Dmel–Sp6-9 and Dmel- tacular diversity and success of this phylum. Key to the regulation btd can induce wing-to-leg transformations, but Dmel–Sp6-9 has of appendage outgrowth is the Krüppel-like factor (KLF)/specific- a more important role in D. melanogaster leg fate specification, ity protein (Sp) family of zinc finger transcription factors. In the as Dmel–Sp6-9 can rescue double-null mutants, whereas Dmel- fruit fly, Drosophila melanogaster, the Sp6-9 homolog is activated btd cannot. In later development, both Dmel–Sp6-9 and Dmel-btd by Wnt-1/wingless (wg) and establishes ventral appendage (leg) are required for proper leg growth in larval stages (27, 28). fate. Subsequently, Sp6-9 maintains expression of the axial pat- Beyond D. melanogaster, gene expression surveys of Sp6-9 have terning gene Distal-less (Dll), which promotes limb outgrowth. In- demonstrated conservation of expression domains across insects and triguingly, in spiders, Dll has been reported to have a derived role one crustacean [all members of the same clade, Pancrustacea (29)]; as a segmentation gap gene, but the evolutionary origin and reg- taxonomically broader surveys of wg have shown broadly conserved ulation of this function are not understood because functional in- expression patterns across Arthropoda.
    [Show full text]
  • Geological History and Phylogeny of Chelicerata
    Arthropod Structure & Development 39 (2010) 124–142 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Review Article Geological history and phylogeny of Chelicerata Jason A. Dunlop* Museum fu¨r Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany article info abstract Article history: Chelicerata probably appeared during the Cambrian period. Their precise origins remain unclear, but may Received 1 December 2009 lie among the so-called great appendage arthropods. By the late Cambrian there is evidence for both Accepted 13 January 2010 Pycnogonida and Euchelicerata. Relationships between the principal euchelicerate lineages are unre- solved, but Xiphosura, Eurypterida and Chasmataspidida (the last two extinct), are all known as body Keywords: fossils from the Ordovician. The fourth group, Arachnida, was found monophyletic in most recent studies. Arachnida Arachnids are known unequivocally from the Silurian (a putative Ordovician mite remains controversial), Fossil record and the balance of evidence favours a common, terrestrial ancestor. Recent work recognises four prin- Phylogeny Evolutionary tree cipal arachnid clades: Stethostomata, Haplocnemata, Acaromorpha and Pantetrapulmonata, of which the pantetrapulmonates (spiders and their relatives) are probably the most robust grouping. Stethostomata includes Scorpiones (Silurian–Recent) and Opiliones (Devonian–Recent), while
    [Show full text]
  • Tetrapod Limb and Sarcopterygian Fin Regeneration Share a Core Genetic
    ARTICLE Received 28 Apr 2016 | Accepted 27 Sep 2016 | Published 2 Nov 2016 DOI: 10.1038/ncomms13364 OPEN Tetrapod limb and sarcopterygian fin regeneration share a core genetic programme Acacio F. Nogueira1,*, Carinne M. Costa1,*, Jamily Lorena1, Rodrigo N. Moreira1, Gabriela N. Frota-Lima1, Carolina Furtado2, Mark Robinson3, Chris T. Amemiya3,4, Sylvain Darnet1 & Igor Schneider1 Salamanders are the only living tetrapods capable of fully regenerating limbs. The discovery of salamander lineage-specific genes (LSGs) expressed during limb regeneration suggests that this capacity is a salamander novelty. Conversely, recent paleontological evidence supports a deeper evolutionary origin, before the occurrence of salamanders in the fossil record. Here we show that lungfishes, the sister group of tetrapods, regenerate their fins through morphological steps equivalent to those seen in salamanders. Lungfish de novo transcriptome assembly and differential gene expression analysis reveal notable parallels between lungfish and salamander appendage regeneration, including strong downregulation of muscle proteins and upregulation of oncogenes, developmental genes and lungfish LSGs. MARCKS-like protein (MLP), recently discovered as a regeneration-initiating molecule in salamander, is likewise upregulated during early stages of lungfish fin regeneration. Taken together, our results lend strong support for the hypothesis that tetrapods inherited a bona fide limb regeneration programme concomitant with the fin-to-limb transition. 1 Instituto de Cieˆncias Biolo´gicas, Universidade Federal do Para´, Rua Augusto Correa, 01, Bele´m66075-110,Brazil.2 Unidade Genoˆmica, Programa de Gene´tica, Instituto Nacional do Caˆncer, Rio de Janeiro 20230-240, Brazil. 3 Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, Washington 98101, USA. 4 Department of Biology, University of Washington 106 Kincaid, Seattle, Washington 98195, USA.
    [Show full text]