Proceedings Indiana Academy of Science Academy Indiana VOLUME 123 2014 VOLUME
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Predatory Mite (Acari, Parasitiformes: Mesostigmata (Gamasina); Acariformes: Prostigmata) Community in Strawberry Agrocenosis
Acta Universitatis Latviensis, Biology, 2004, Vol. 676, pp. 87–95 The predatory mite (Acari, Parasitiformes: Mesostigmata (Gamasina); Acariformes: Prostigmata) community in strawberry agrocenosis Valentîna Petrova*, Ineta Salmane, Zigrîda Çudare Institute of Biology, University of Latvia, Miera 3, Salaspils LV-2169, Latvia *Corresponding author, E-mail: [email protected]. Abstract Altogether 37 predatory mite species from 14 families (Parasitiformes and Acariformes) were collected using leaf sampling and pit-fall trapping in strawberry fi elds (1997 - 2001). Thirty- six were recorded on strawberries for the fi rst time in Latvia. Two species, Paragarmania mali (Oud.) (Aceosejidae) and Eugamasus crassitarsis (Hal.) (Parasitidae) were new for the fauna of Latvia. The most abundant predatory mite families (species) collected from strawberry leaves were Phytoseiidae (Amblyseius cucumeris Oud., A. aurescens A.-H., A. bicaudus Wainst., A. herbarius Wainst.) and Anystidae (Anystis baccarum L.); from pit-fall traps – Parasitidae (Poecilochirus necrophori Vitz. and Parasitus lunaris Berl.), Aceosejidae (Leioseius semiscissus Berl.) and Macrochelidae (Macrocheles glaber Müll). Key words: agrocenosis, diversity, predatory mites, strawberry. Introduction Predatory mites play an important ecological role in terrestrial ecosystems and they are increasingly being used in management for biocontrol of pest mites, thrips and nematodes (Easterbrook 1992; Wright, Chambers 1994; Croft et al. 1998; Cuthbertson et al. 2003). Many of these mites have a major infl uence on nutrient cycling, as they are predators on other arthropods (Santos 1985; Karg 1993; Koehler 1999). In total, investigations of mite fauna in Latvia were made by Grube (1859), who found 28 species, Eglītis (1954) – 50 species, Kuznetsov and Petrov (1984) – 85 species, Lapiņa (1988) – 207 species, and Salmane (2001) – 247 species. -
On the Taxonomic State of Water Mite Taxa (Acari: Hydrachnidia) Described from the Palaearctic, Part 3, Hygrobatoidea and Arrenuroidea with New Faunistic Data
Zootaxa 3981 (4): 542–552 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3981.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:861CEBBE-5277-4E4C-B3DF-8850BEDD2A23 On the taxonomic state of water mite taxa (Acari: Hydrachnidia) described from the Palaearctic, part 3, Hygrobatoidea and Arrenuroidea with new faunistic data HARRY SMIT1, REINHARD GERECKE2, VLADIMIR PEŠIĆ3 & TERENCE GLEDHILL4 1Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands. E-mail: [email protected] 2Biesingerstr. 11, 72070 Tübingen, Germany. E-mail: [email protected] 3Department of Biology, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro. E-mail: [email protected] 4Freshwater Biological Association, The Ferry House, Far Sawrey, Ambleside, Cumbria LA22 0LP, United Kingdom. E-mail: [email protected] Abstract Following revision of material from museum collections and recent field work, new taxonomic and faunistic data are given for several representatives of the water mite superfamilies Hygrobatoidea and Arrenuroidea. Ten new synonyms are established: Family Limnesiidae: Limnesia martianezi Lundblad, 1962 = L. arevaloi arevaloi K. Viets, 1918; Limnesia jaczewskii Biesiadka, 1977 = Limnesia connata Koenike, 1895. Family Hygrobatidae: Hygro- bates properus Láska, 1954 = H. trigonicus Koenike, 1895. Family Unionicolidae: Unionicola finisbelli Ramazzotti, 1947 = U. inusitata Koenike, 1914. Family Pionidae: Tiphys koenikei (Barrois & Moniez, 1887) = Forelia variegator (Koch, 1837); Piona falcigera Koenike, 1905, P. bre h m i Walter, 1910, P. trisetica bituberosa K. Viets, 1930 and P. dentipes Lun- dblad, 1962 = P. alpicola (Neuman, 1880). -
Synchronized Male Cricket Calls in Anaxipha Sp. Morales 1
Synchronized Male Cricket Calls in Anaxipha sp. Morales 1 Synchronized male cricket calls in choruses of the cricket Anaxipha sp. Michael Morales University of California, Santa Cruz EAP Tropical Diversity and Ecology Fall 2017 15 December 2017 ______________________________________________________________________________ ABSTRACT In Monteverde, there is a species of cricket within the Genus Anaxipha where males sing in loud choruses at night. I wanted to explore the purpose of this behavior by looking at the call and response activity between individual males. In this experiment, I looked at male responses to manipulations of the species male song, which is composed of two elements. I conducted a series of playback experiments on captive crickets. Responses of test subjects were documented while presenting playbacks of manipulated songs. Each playback treatment had a unique response from the crickets being tested. However, overall, it appears that the crickets were either trying to copy the composition the recordings, or keep pace with their speed. Results show that males within this species of cricket are actively listening and responding to each other. ______________________________________________________________________________ Cantos sincronizados de grillos machos en coros de Anaxipha sp. RESUMEN En Monteverde, hay una especie de grillo dentro del género Anaxipha, donde los machos cantan en coros de alto volumen por las noches. Quise explorar el propósito de este comportamiento estudiando la actividad de cantos y respuestas entre machos. Mediante experimentos, analicé las respuestas de los machos a canciones manipuladas de otros machos de la especie, las cuales normalmente se componen de dos elementos. Los experimentos consistieron en la reproducción de los cantos modificados a grillos cautivos como sujetos de prueba y la grabación de sus respuestas. -
Natural Communities of Michigan: Classification and Description
Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council. -
White River Vision Plan Transition Team Submitted Written Briefs Activation/Economy Stakeholders
White River Vision Plan Transition Team Submitted Written Briefs Activation/Economy Stakeholders The White River Vision Plan Transition Team is appointed and charged with serving as the civic trust to create the regional governance implementation strategy for the White River Vision Plan. The White River Vision Plan Transition Team consists of balanced representatives from both Marion and Hamilton Counties with governance, organizational development, fundraising, and political experience. As part of the Team process, three sets of representative stakeholders, organized around the Vision Plan’s guiding principle groupings of environment, activation/economy, and regional/community/equity, are invited to submit written testimony to guide the Team’s discussions. Included in this packet are responses received from the activation & economy stakeholders. • Norman Burns, Conner Prairie • Ginger Davis, Hamilton County Soil & Water Conservation District • Patrick Flaherty, Indianapolis Arts Center • Greg Harger, Reconnecting to Our Waterways White River Committee • Amy Marisavljevic, Indiana DNR • Sarah Reed, City of Noblesville • Michael Strohl, Citizens Energy Group • Kenton Ward, Hamilton County Surveyor • Jonathan Wright, Newfields • Staff, Hamilton County Parks & Recreation Additional organizations were also invited to submit written briefs but opted not to respond. Response from Norman Burns Conner Prairie WRVP Transition Team: Regional Governance Model Questionnaire Please limit your response to four pages total. Responses will be public. Briefly describe your organization or interest, its relationship to the White River, and its primary geographic area of interest. Conner Prairie is a unique historic place that inspires curiosity and fosters learning by providing engaging and individualized experiences for everyone. Located on the White River in Hamilton County Indiana, the William Conner story, and the Indiana story, are intertwined and continues to be told and interpreted at Conner Prairie. -
Community Structure of Mites (Acari: Acariformes and Parasitiformes) in Nests of the Semi-Collared Flycatcher (Ficedula Semitorquata) R
International Research Journal of Natural Sciences Vol.3, No.3, pp.48-53, December 2015 ___Published by European Centre for Research Training and Development UK (www.eajournals.org) COMMUNITY STRUCTURE OF MITES (ACARI: ACARIFORMES AND PARASITIFORMES) IN NESTS OF THE SEMI-COLLARED FLYCATCHER (FICEDULA SEMITORQUATA) R. Davidova, V. Vasilev, N. Ali, J. Bakalova Konstantin Preslavsky University of Shumen, 115, Universitetska Str., Shumen, 9700, Bulgaria. ABSTRACT: The aims of the present paper are to establish the specific structure of communities of prostigmatic and mesostigmatic mites in nests of the semi-collared flycatcher (Ficedula semitorquata) and to compare the fauna with the mites in nests of two other European flycatchers. For analysis of community structure of mites were used the indices: prevalence, relative density, mean intensity and dominance. Mite communities are strongly dominated by the species Dermanyssus gallinae and Ornithonyssus sylviarum, which were found with the highest frequency and dominance. The mite communities are characterized by a large number of subrecedent species. KEYWORDS: Acariformes, Parasitiformes, Nest of Bird, Community Structure INTRODUCTION The nests of different species of birds are an example of a fairly unstable and isolated habitat, with its own dependent on it specific fauna which involves different groups of invertebrate animals. One of the components of this fauna which demonstrates particular abundance is the arthropods, and more specifically, the mites. The studies of Parasitiformes show that mesostigmatic mites living in birds' nests vary both in terms of their species affiliation and the structure of their communities [4, 8]. Highly important with respect to veterinary science and medicine are a number of species, such as Ornithonyssus bursa, Ornithonyssus sylviarum, Dermanyssus gallinae harboured by birds, Ornithonyssus bacoti, harboured by rodents, etc. -
Quality of Life
Nickel Plate District Amphitheater Quality of Life The City of Fishers is home to the Nickel Plate District. It is the civic, historic, and cultural epicenter of Fishers, Indiana. The Nickel Plate District is where you will find outstanding live entertainment, festivals, great restaurants, a robust network of multi-use trails, as well as civic services and resources. Fishers also boasts an award-winning parks system, including Ritchey Woods Nature Preserve and Billericay Park – named after Fishers sister city Billericay, England – which has 7 baseball diamonds, as well as a splash pad for summer fun. Come to Fishers and enjoy all we have to offer! Miles of Recreation Nickel Plate District Events Three Major Health - 4.7 miles of bike lanes - Free Movie Series Care Networks - 130.9 miles of paths - Fridays After Dark Acoustic Series - St. Vincent’s (side & shared) - Fishers Summer - Community Health - 586 acres of parks Concert Series - IU Health - Farmers Market, Conner Prairie Interactive Safe Community May-Sept History Museum - Arts Crawl - Only community in Indiana where - Smithsonian Affiliate all three public safety divisions, Festivals Fire, Police and EMS, are Quality School System - Fishers Freedom Festival nationally accredited - 13 Four Star schools - Fishers Renaissance Faire - Multiple National Blue Ribbon schools - Oktoberfest in Saxony - National Award recognition by US - Blast on the Bridge at Geist News & World Report Best high school list Indiana Transportation Museum - 94% of graduates plan to - State Fair train continue their education - Polar Express in two- or four-year - Morse Reservoir colleges or universities Fireworks - Dinner Trains Geist Reservoir - Blast on the Bridge - Boating - Sailing Club - Yacht Club Billericay Park baseball diamonds Geist Reservoir www.thefishersadvantage.com • Questions? Call 317.595.3470. -
THELYPTERIS SUBG. AMAUROPELTA (THELYPTERIDACEAE) DA ESTAÇÃO ECOLÓGICA DO PANGA, UBERLÂNDIA, MINAS GERAIS, BRASIL Adriana A
THELYPTERIS SUBG. AMAUROPELTA (THELYPTERIDACEAE) DA ESTAÇÃO ECOLÓGICA DO PANGA, UBERLÂNDIA, MINAS GERAIS, BRASIL Adriana A. Arantes1, Jefferson Prado2 & Marli A. Ranal1 RESUMO (Thelypteris subg. Amauropelta (Thelypteridaceae) da Estação Ecológica do Panga, Uberlândia, Minas Gerais, Brasil) O presente trabalho apresenta o tratamento taxonômico para as espécies de Thelypteris subgênero Amauropelta que ocorrem na Estação Ecológica do Panga. Thelypteridaceae mostrou-se uma das mais representativas da pteridoflora local, com 14 espécies de Thelypteris segregadas em quatro subgêneros (Amauropelta, Cyclosorus, Goniopteris e Meniscium). Na área de estudo, o subgênero Amauropelta está representado por quatro espécies, Thelypteris heineri, T. mosenii, T. opposita e T. rivularioides. São apresentadas descrições, chave para identificação das espécies, comentários, distribuição geográfica e ilustrações dos caracteres diagnósticos. Palavras-chave: samambaias, Pteridophyta, cerrado, flora, taxonomia. ABSTRACT (Thelypteris subg. Amauropelta (Thelypteridaceae) of the Ecological Station of Panga, Uberlândia, Minas Gerais State, Brazil) This paper provides the taxonomic treatment for the species of Thelypteris subgenus Amauropelta in the Ecological Station of Panga. Thelypteridaceae is one of the richest families in the area, with 14 species of Thelypteris segregated in four subgenera (Amauropelta, Cyclosorus, Goniopteris, and Meniscium). In the area the subgenus Amauropelta is represented by four species, Thelypteris heineri, T. mosenii, T. opposita, and -
Thelypteroid Comprising Species Chiefly Regions. These Family, Its
BLUMEA 27(1981) 239-254 Comparative morphologyof the gametophyteof some Thelypteroidferns Tuhinsri Sen Department of Botany, Kalyani University, Kalyani 741235, West Bengal, India. Abstract A study of the developmentofthe gametophytes of sixteen thelypteroidferns reveals similarities and differences them. Combinations of the diversified features of the significant among prothalli appear to identification delimitation of the taxa, and the views of have a tremendous impact on and major support those authors who the taxonomic of these ferns. propose segregation Introduction The thelypteroid ferns comprising about one thousand species are chiefly inhabitants the and few of them in These of tropics only a occur temperate regions. plants are exceptionally varied in structure, yet they constitute a natural family, its members being easily distinguishable by their foliar acicular hairs, cauline scales with marginal and superficial appendages, and two hippocampus type of petiolar fern this bundles. It is certainly significant that no other has assemblage of vegetative characters. A critical survey through the literaturereveals that probably in no other group of ferns the generic concept of the taxonomists is so highly in the and Reed assembled all contrasting as thelypteroids. Morton (1963) (1968) the thelypteroids in a single genus, Thelypteris. Iwatsuki (1964) on the other hand, subdivided them into three genera. Copeland (1947) recognised eight genera (including with them the unrelated Currania) while Christensen (1938) tentatively suggested about twelve. Pichi Sermolli (1970) stated that no less than eighteen have to be and increased this numberto in 1977 genera kept distinct, thirtytwo (Pichi Sermolli, 1977); Ching (1963) maintainednineteen genera in Asia. Holttum (1971), Old in his new system of genera in the World Thelypteridaceae circumscribed twentythree genera. -
Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar. -
Efficacy and Host Specificity Compared Between Two Populations of The
Biological Control 65 (2013) 53–62 Contents lists available at SciVerse ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Efficacy and host specificity compared between two populations of the psyllid Aphalara itadori, candidates for biological control of invasive knotweeds in North America ⇑ Fritzi Grevstad a, , Richard Shaw b, Robert Bourchier c, Paolo Sanguankeo d, Ghislaine Cortat e, Richard C. Reardon f a Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA b CABI, Bakeham Lane, Egham, Surrey TW20 9TY, United Kingdom c Agriculture and AgriFood Canada-Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1 d Olympic Natural Resources Center, University of Washington, Forks, WA 98331, USA e CABI, CH 2800 Delemont, Switzerland f USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, WV 26505, USA highlights graphical abstract " Two populations of the psyllid Aphalara itadori are effective at reducing knotweed growth and biomass. " The two populations differ in their performance among different knotweed species. " Development of A. itadori occurred infrequently on several non-target plant species. " The psyllid exhibited non-preference and an inability to persist on non- target plants. article info abstract Article history: Invasive knotweeds are large perennial herbs in the Polygonaceae in the genus Fallopia that are native to Received 2 February 2012 Asia and invasive in North America. They include Fallopia japonica (Japanese knotweed), F. sachalinensis Accepted 4 January 2013 (giant knotweed), and a hybrid species F. x bohemica (Bohemian knotweed). Widespread throughout Available online 12 January 2013 the continent and difficult to control by mechanical or chemical methods, these plants are good targets for classical biological control. -
Gnaphalieae-Asteraceae) of Mexico
Botanical Sciences 92 (4): 489-491, 2014 TAXONOMY AND FLORISTIC NEW COMBINATIONS IN PSEUDOGNAPHALIUM (GNAPHALIEAE-ASTERACEAE) OF MEXICO OSCAR HINOJOSA-ESPINOSA Y JOSÉ LUIS VILLASEÑOR1 Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, México, D.F., México 1Corresponding author: [email protected] Abstract: In a broad sense, Gnaphalium L. is a heterogeneous and polyphyletic genus. Pseudognaphalium Kirp. is one of the many segregated genera from Gnaphalium which have been proposed to obtain subgroups that are better defi ned and presumably monophyletic. Although most Mexican species of Gnaphalium s.l. have been transferred to Pseudognaphalium, the combinations so far proposed do not include a few Mexican taxa that truly belong in Pseudognaphalium. In this paper, the differences between Gnaphalium s.s. and Pseudognaphalium are briefl y addressed, and the transfer of two Mexican species and three varieties from Gnaphalium to Pseudognaphalium are presented. Key Words: generic segregate, Gnaphalium, Mexican composites, taxonomy. Resumen: En sentido amplio, Gnaphalium L. es un género heterogéneo y polifi lético. Pseudognaphalium Kirp. es uno de varios géneros segregados, a partir de Gnaphalium, que se han propuesto para obtener subgrupos mejor defi nidos y presumiblemente monofi léticos. La mayoría de las especies mexicanas de Gnaphalium s.l. han sido transferidas al género Pseudognaphalium; sin embargo, las combinaciones propuestas hasta el momento no cubren algunos taxones mexicanos que pertenecen a Pseudogna- phalium. En este trabajo se explican brevemente las diferencias entre Gnaphalium s.s. y Pseudognaphalium, y se presentan las transferencias de dos especies y tres variedades mexicanas de Gnaphalium a Pseudognaphalium. Palabras clave: compuestas mexicanas, Gnaphalium, segregados genéricos, taxonomía.