Systematically Fingerprinting Low- and Medium-Interaction Honeypots at Internet Scale

Total Page:16

File Type:pdf, Size:1020Kb

Systematically Fingerprinting Low- and Medium-Interaction Honeypots at Internet Scale Bitter Harvest: Systematically Fingerprinting Low- and Medium-interaction Honeypots at Internet Scale Alexander Vetterl Richard Clayton University of Cambridge University of Cambridge [email protected] [email protected] Abstract alistic environment for humans to interact with. Attack- ers have a strong motivation to detect honeypots at an The current generation of low- and medium interac- early stage as they do not want to disclose their methods, tion honeypots uses off-the-shelf libraries to provide the exploits and tools [21]. These attackers have attempted transport layer. We show that this architecture is fa- to distinguish honeypots by executing commands within tally flawed because the protocols are implemented sub- the login shell (or the impersonation of the login shell) tly differently from the systems being impersonated. We and examining the responses. This has led to an arms present a generic technique for systematically finger- race as attackers develop new distinguishers and honey- printing low- and medium interaction honeypots at In- pot authors improve the verisimilitude of their system. ternet scale with just one packet and an ERR (Equal Er- However, if a honeypot can be detected at the transport ror Rate) of 0.0183. We conduct Internet-wide scans and level, for example without completing the SSH hand- identify 7 605 honeypot instances across nine different shake or Telnet options negotiation, the honeypot’s value honeypot implementations for the most important net- will be minimal and efforts to impersonate the service work protocols SSH, Telnet, and HTTP. For SSH hon- will be in vain [25]. This aspect of the detection arms eypots we also determined their patch level and find that race is especially challenging because modern protocols they are poorly maintained – 27% of the honeypots have such as SSH must handle a variety of versions, key ex- not been updated within the last 31 months and only change mechanisms, ciphers and service requests. Sim- 39% incorporate improvements from 7 months ago. We ilarly, in Telnet the client and server can negotiate nu- believe our findings to be a ‘class break’ in that trivial merous settings such as line mode, echo and terminal patches cannot address the issue. type. As the RFCs do not mandate every aspect of a net- work protocol, two implementations of a complex proto- 1 Introduction col may deal with ambiguities differently, and this may reveal the presence of a honeypot. Early detection of new attack vectors and abusive be- Finding deviations between applications and their fin- haviour is a cornerstone of contemporary approaches to gerprints has a long history and a number of theoretical improving Internet security. Honeypots, resources that and prototyped approaches, mainly based on binary anal- appear to be legitimate systems, have long proven effec- ysis, have been proposed [6, 7, 37]. Specific to finger- tive in capturing malware, helping to counter spam and printing honeypots, Holz et al. [21] showed that the exe- providing early warning signals about upcoming threats. cution time of attackers’ commands may be significantly Secure Shell (SSH), Telnet, and HTTP were a focus of longer due to the additional overhead of logging and early honeypot research. Since SSH is the de facto stan- sandboxing the execution of the honeypot itself. Simi- dard to login to servers over an unsecured network, SSH larly, Fu et al. [17] found that attackers could use the la- honeypots continue to be extremely valuable. With the tency of the networking layer to fingerprint honeypots. In rise of the Mirai botnet, which recruits a variety of IoT 2015 Cymmetria Research summarized the known ways devices using Telnet, it became evident that Telnet hon- to fingerprint a variety of honeypots and provided a list eypots remain a key source of information [3]. of recommendations for honeypot developers [5]. For the last decade, honeypot research has received All of these are individual findings, focusing on iden- limited attention, with efforts mainly focused on the tifying single honeypot implementations. However, we monitoring of human activity and the provision of a re- are the first to observe that there is a generic weakness in the current generation of low- and medium-interaction Table 1: Honeypots in this study honeypots because of their reliance on off-the-shelf li- Updated Language Library braries to implement large parts of the transport layer. These libraries are used for their convenience, but they SSH Kippo May 15 Python TwistedConch were never intended to provide identical behaviour to Cowrie May 18 Python TwistedConch ‘real’ servers. We systematically identify these differ- Telnet ences, which can number in the thousands, and show that TPwd Feb 16 C custom this allows us to locate a large variety of honeypots by MTPot Mar 17 Python telnetsrv TIoT May 17 Python custom Internet scale scanning. Cowrie May 18 Python TwistedConch We believe this to be a class break in that patches to HTTP/Web the current generation of honeypots cannot address the Dionaea Sep 16 Python custom issue. Until these honeypots are given a new architec- Glastopf Oct 16 Python BaseHTTPServer Conpot Mar 18 Python BaseHTTPServer ture, anyone with moderate capabilities has a plethora of extremely simple and quick methods of identifying that a honeypot is running on a particular IPv4 address and can large-scale attacks. A 2012 report for the European Net- thereby treat it differently than otherwise. work and Information Security Agency (ENISA) evalu- Overall, we make three main contributions: ated the vast majority of available honeypots, including We present a generic and accurate technique for • high-interaction honeypots. The authors recommend us- systematically fingerprinting low- and medium in- ing the medium-interaction honeypots Kippo for SSH, teraction honeypots by constructing distinguishing Glastopf for HTTP and Dionaea for the remaining proto- probes at the transport layer. We identified thou- cols [20]. Honeypots that support Telnet ‘out of the box’ sands of deviations between honeypots and the ser- were not widely available at the time of that study. vices they are impersonating. Table 1 provides an overview of the honeypots that we We use this technique to perform Internet-wide • considered in our study, which we now discuss in detail. scans for 9 different honeypots for the most im- SSH Honeypots: In this paper we consider SSH portant network protocols SSH, Telnet and HTTP. honeypots emulating generic servers running OpenSSH We find 7 605 honeypot instances residing on 6 125 whose login credentials can be guessed and commands IPv4 addresses: 2 779 honeypot instances for SSH, issued within an operating system shell such as bash. 1 166 for Telnet and 3 660 for HTTP. OpenSSH is the most widely used SSH protocol suite, We provide insights into how honeypots are con- • and is installed on approximately 77% of all SSH servers figured and deployed in practice. We discover that listening on port 22 [13]. only 39% of the honeypots were updated within Many SSH honeypots have been developed over the the previous 7 months. Furthermore, we find that years and one of the first SSH honeypots was Ko- 546 (72%) of the 758 Kippo honeypots are still (44 joney [24] but active development ceased around 2006. months later) vulnerable to a known fingerprinting Kojoney uses the TwistedConch library which dates back technique that was first disclosed in 2014. to 2002 and is the de facto standard implementation of SSHv2 for Python2/3. Kojoney inspired Kippo [23] 2 Background which was developed from 2009 to 2015 but the Kippo author now recommends people use a forked project Honeypots are classified by the type of system that they called Cowrie [31]. Cowrie has added more extensive emulate, such as web or email servers, or general purpose logging and support for Telnet, and it remains under ac- remote access ‘shells’. Honeypots are further classified tive development. The project’s philosophy is to only as low interaction (in this context merely collecting cre- implement shell commands that are being used by at- dential guesses), medium interaction (providing a higher tackers and so as of 2018-01, Cowrie (partly) emulates level of interaction) or high interaction (allowing attack- 34 commands [8]. In 2015, Deutsche Telekom included ers full control of a machine). Kippo in T-Pot, a multi-honeypot platform “based on High-interaction honeypots have significant value, but well-established honeypots” [9]. T-Pot combines differ- many people are unable to accept the risk that such hon- ent honeypots for network services with an intrusion de- eypots may be used for DDoS attacks, malware distri- tection system and a monitoring and reporting engine. bution or the sending of email spam. However, low- As of March 2016, Kippo was replaced by Cowrie “since and medium-interaction honeypots have proven effec- it offers huge improvements over Kippo” [10]. tive as they are easy to deploy and to maintain, while Telnet Honeypots: Since mid-2016, and the rise of at the same time potential harm is minimised. They the Mirai botnet, there has been an increasing interest in are especially useful in collecting quantitative data about Telnet honeypots. In this paper we consider four recent systems: MTPot, Telnet-IoT-Honeypot (TIoT), Telnet- the lowest, i.e. the responses RPi for Ij are overall the Password-Honeypot (TPwd) and Cowrie. least similar. In other words, we try to find the probe MTPot, developed by Cymmetria Research, a com- that results in the most distinctive response across all the pany focusing on cyber deception, is designed to catch protocol implementations. Mirai binaries. It is written in Python 2.x and uses the Cosine similarity is an established technique for com- telnetsrv library for its telnet protocol implementation. paring sets of information, commonly used to measure TIoT also aims to catch IoT malware and is also written text semantic similarity.
Recommended publications
  • Who Is Knocking on the Telnet Port: a Large-Scale Empirical Study of Network Scanning
    Session 15: Network Security 2 ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea Who is Knocking on the Telnet Port: A Large-Scale Empirical Study of Network Scanning Hwanjo Heo Seungwon Shin KAIST KAIST ETRI [email protected] [email protected] ABSTRACT this information (i.e., who serves what) is absolutely imperative for Network scanning is the primary procedure preceding many net- attackers. Hence, attackers aggressively gather this information by work attacks. Until recently, network scanning has been widely directly searching target hosts or even employing already deployed studied to report a continued growth in volume and Internet-wide malware (e.g., botnet) for efficiency. trends including the underpinning of distributed scannings by lin- As such, since this network scanning is an indispensable process gering Internet worms. It is, nevertheless, imperative to keep us for cyber attacks, attention should still be paid to it, even though informed with the current state of network scanning, for factual it has been studied, investigated, and monitored for a long time. and comprehensive understanding of the security threats we are Indeed, researchers and practitioners have already deeply surveyed, facing, and new trends to serve as the presage of imminent threats. analyzed, and measured this behavior [3, 8, 26, 34, 35]. However, it In this paper, we analyze the up-to-date connection-level log should be kept in mind that the characteristics of network scanning data of a large-scale campus network to study the recent scanning (e.g., main target services and scan origins) are quite sensitive to the trends in breadth.
    [Show full text]
  • German Cities Exposed a Shodan-Based Security Study on Exposed Cyber Assets in Germany
    German Cities Exposed A Shodan-based Security Study on Exposed Cyber Assets in Germany Natasha Hellberg and Rainer Vosseler Trend Micro Forward-Looking Threat Research (FTR) Team A TrendLabs Research Paper Contents TREND MICRO LEGAL DISCLAIMER The information provided herein is for general information and educational purposes only. It is not intended and 4 should not be construed to constitute legal advice. The information contained herein may not be applicable to all situations and may not reflect the most current situation. Exposed Cyber Assets Nothing contained herein should be relied on or acted upon without the benefit of legal advice based on the particular facts and circumstances presented and nothing herein should be construed otherwise. Trend Micro 5 reserves the right to modify the contents of this document at any time without prior notice. Translations of any material into other languages are Exposed Cities: intended solely as a convenience. Translation accuracy is not guaranteed nor implied. If any questions arise Germany related to the accuracy of a translation, please refer to the original language official version of the document. Any discrepancies or differences created in the translation are not binding and have no legal effect for compliance or 12 enforcement purposes. Although Trend Micro uses reasonable efforts to include accurate and up-to-date information herein, Trend Micro Exposed Cyber Assets makes no warranties or representations of any kind as to its accuracy, currency, or completeness. You agree in Germany that access to and use of and reliance on this document and the content thereof is at your own risk.
    [Show full text]
  • An Intelligent Improvement of Internet-Wide Scan Engine for Fast Discovery of Vulnerable Iot Devices
    S S symmetry Article An Intelligent Improvement of Internet-Wide Scan Engine for Fast Discovery of Vulnerable IoT Devices Hwankuk Kim ID , Taeun Kim and Daeil Jang * Korea Internet & Security Agency, 9, Jinheung-gil, Naju-si, Jeollanam-do 58324, Korea; [email protected] (H.K.); [email protected] (T.K.) * Correspondence: [email protected]; Tel.: +82-61-820-1274 Received: 31 March 2018; Accepted: 7 May 2018; Published: 10 May 2018 Abstract: Since 2016, Mirai and Persirai malware have infected hundreds of thousands of Internet of Things (IoT) devices and created a massive IoT botnet, which caused distributed denial of service (DDoS) attacks. IoT malware targets vulnerable IoT devices, which are vulnerable to security risks. Techniques are needed to prevent IoT devices from being exploited by attackers. However, unlike high-performance PCs, IoT devices are lightweight, low-power, and low-cost, having performance limitations regarding processing and memory, which makes it difficult to install security and anti-malware programs. Recently, several studies have been attempted to quickly search for vulnerable internet-connected devices to solve this real issue. Issues yet to be studied still exist regarding these types of internet-wide scan technologies, such as filtering by security devices and a shortage of collected operating system (OS) information. This paper proposes an intelligent internet-wide scan model that improves IP state scanning with advanced internet protocol (IP) randomization, reactive protocol (port) scanning, and OS fingerprinting scanning, applying k* algorithm in order to find vulnerable IoT devices. Additionally, we describe the experiment’s results compared to the existing internet-wide scan technologies, such as ZMap and Shodan.
    [Show full text]
  • Andrews Ku 0099M 16872 DA
    Evaluating the Proliferation and Pervasiveness of Leaking Sensitive Data in the Secure Shell Protocol and in Internet Protocol Camera Frameworks Ron Andrews B.S. Computer Science, University of Kansas, 2003 Submitted to the graduate degree program in Electrical Engineering and Computer Science Department and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Masters of Science in Computer Science. Chair: Alexandru G. Bardas Fengjun Li Bo Luo Date defended: Nov 18, 2019 The Dissertation Committee for Ron Andrews certifies that this is the approved version of the following dissertation : Evaluating the Proliferation and Pervasiveness of Leaking Sensitive Data in the Secure Shell Protocol and in Internet Protocol Camera Frameworks Chair: Alexandru G. Bardas Date approved: Nov 18, 2019 ii Abstract In George Orwell’s nineteen eighty-four: A novel, there is fear regarding what “Big Brother”, knows due to the fact that even thoughts could be “heard”. Though we are not quite to this point, it should concern us all in what data we are transferring, both intentionally and unintentionally, and whether or not that data is being “leaked”. In this work, we consider the evolving landscape of IoT devices and the threat posed by the pervasive botnets that have been forming over the last several years. We look at two specific cases in this work. One being the practical application of a botnet system actively executing a Man in the Middle Attack against SSH, and the other leveraging the same paradigm as a case of eavesdropping on Internet Protocol (IP) cameras.
    [Show full text]
  • Internet of Things Ddos White Paper
    Internet of Things DDoS White Paper October 24, 2016 E-ISAC Private: Sector Members and Partner Organizations (TLP: White) Recommended Audience: Public Internet of Things DDoS White Paper October 24, 2016 Over the past several months, existing attack surfaces and new malware payloads were exploited in unique ways, using custom attack software. The E-ISAC developed the following recommendations for defensive capabilities in the Electricity Subsector with suggestions to improve the overall posture of network security and cyber security within our community. Security, if considered at all, is typically an afterthought for devices designed to be used as part of the Internet of Things (IoT). Cyber security practitioners agree that nearly all devices on the Internet are more likely to be attacked because of the general omission of security in the design process of these new devices. Due to the highly interconnected state of the IoT, the insecurity built into systems as mundane as consumer products and toys can now be leveraged against systems as critical as industrial controls, such as those used in the electric power industry. Recent attacks highlight the scale of network bandwidth that can be unleashed upon connected systems. A new form of attack is a class known as the Non-Reflection Distributed Denial of Service (DDoS) Attack. This new technique uses very large numbers of devices typically classified as “Things” in the terminology of the IoT, that can be harnessed from all areas of the Internet rather than a small number of networks. This massive scale of devices had successfully generated attack throughput rates on the order of one Terabit-per-second (Tbps) or more.
    [Show full text]
  • US Cities Exposed a Shodan-Based Security Study on Exposed Assets in the US
    US Cities Exposed A Shodan-Based Security Study on Exposed Assets in the US Numaan Huq, Stephen Hilt, and Natasha Hellberg Trend Micro Forward-Looking Threat Research (FTR) Team A TrendLabsSM Research Paper TREND MICRO LEGAL DISCLAIMER The information provided herein is for general information Contents and educational purposes only. It is not intended and should not be construed to constitute legal advice. The information contained herein may not be applicable to all situations and may not reflect the most current situation. Nothing contained herein should be relied on or acted upon without the benefit of legal advice based on the 4 particular facts and circumstances presented and nothing herein should be construed otherwise. Trend Micro Exposed Cyber Assets reserves the right to modify the contents of this document at any time without prior notice. Translations of any material into other languages are intended solely as a convenience. Translation accuracy is not guaranteed nor implied. If any questions arise related to the accuracy of a translation, please refer to 6 the original language official version of the document. Any discrepancies or differences created in the translation are Exposed Cities not binding and have no legal effect for compliance or enforcement purposes. Although Trend Micro uses reasonable efforts to include accurate and up-to-date information herein, Trend Micro makes no warranties or representations of any kind as to its accuracy, currency, or completeness. You agree 36 that access to and use of and reliance on this document and the content thereof is at your own risk. Trend Micro Safeguarding Against disclaims all warranties of any kind, express or implied.
    [Show full text]
  • Abnormal Behavior-Based Detection of Shodan and Censys-Like Scanning
    Abnormal Behavior-Based Detection of Shodan and Censys-Like Scanning Seungwoon Lee1, Seung-Hun Shin2, and Byeong-hee Roh1 1 Dept. of Computer Engineering, Ajou University, Suwon, Korea 2University College, Ajou University, Suwon, Korea {swleeyg, sihnsh, bhroh}@ajou.ac.kr Abstract—Shodan and Censys, also known as IP Device search that port. Thus, it can make the device safe from Shodan and engines, build searchable databases of internet devices and Censys to detect and prevent SYN scan and banner grab. In a networks. Even these tools are useful for security, those also can topological view, Shodan and Censys operate several distributed provide the vulnerabilities to malicious users. To prevent the servers and they scan the hosts separately and is aggregated in information disclosure of own IP devices on those search engines, the database [1][4]. Also, they use horizontal scan which means a fundamental solution is blocking the access from the scanners of scanning a single port on multiple hosts. them. Therefore, it is needed to understand and consider their scanning mechanism. Therefore, we propose an abnormal Those scans can be detected using the ideas of existing behavior based scan detection of Shodan and Censys. To do this, researches. Single host port scan including TCP SYN and several traditional scan detection approaches are combined and Banner grabbing can be detected using misuse detection [5][6] applied to satisfy their specification. Proposed idea is monitoring and anomaly detection [7] in IDSs (Intrusion Detection System). packets whether it is abnormal or not and adding on the suspicious Misuse detection is also called rule-based detection that misuse list if it is.
    [Show full text]
  • Search Engines That Scan for Internet-Connected Services: Classification and Empirical Study
    SEARCH ENGINES THAT SCAN FOR INTERNET-CONNECTED SERVICES: CLASSIFICATION AND EMPIRICAL STUDY by Christopher Bennett A thesis submitted to the Faculty of Graduate and Post Doctoral Affairs in partial fulfillment of the requirements for the degree of Master of Computer Science in Network Security Carleton University Ottawa, Ontario ©2021 Christopher Bennett Abstract In this thesis, we revisit outdated definitions of Surface Web and Deep Web and pro- vide new definitions and apply them to Internet search engines. We argue thatthe scope of the term \Web" is too narrow when referring to information on the Internet. We offer, and define, new terms to better describe the state of the Internet: Surface Internet, Shallow Internet, and Deep Internet. We use these terms to describe: Re- sponding Internet-Connected Entity (RICE), Search Engine for Responding Internet- Connected Entities (SERICE), Web search engines, and Internet search engines. We explain how popular Internet-wide scanning services | Shodan and Censys | are SERICEs that index RICEs. In empirical work, we analyze scans from Shodan and Censys and determine they use few resources and provide an up-to-date view of the Internet. ii Acknowledgements Throughout the writing of this thesis I have received a great deal of support and assistance. Firstly, I would like to express my gratitude and appreciation to my supervisors Dr. Paul van Oorschot and Dr. AbdelRahman Abdou for the long hours reviewing my thesis and mentoring me. I thank them for the lessons I have learned and will never forget. I would like to thank the members of the Carleton Computer Security Lab and Carleton Internet Security Lab, especially Christopher Bellman, for their invaluable insight and discussions during my time at Carleton University.
    [Show full text]
  • Muninn Monitoring Changes in the Icelandic Internet Through Repeated Port Scanning
    Muninn Monitoring Changes in the Icelandic Internet through Repeated Port Scanning Alex Már Gunnarsson Níels Ingi Jónasson Sindri Ingólfsson Thesis of 12 ECTS Bachelor of Science in Computer Science May 2019 Muninn Monitoring Changes in the Icelandic Internet through Repeated Port Scanning Alex Már Gunnarsson Níels Ingi Jónasson Sindri Ingólfsson Thesis of 12 ECTS credits submitted to the School of Computer Science at Reykjavík University in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science May 2019 Supervisor: Gylfi Þór Guðmundsson Examiner: Marcel Kyas Advisors: Theódór R. Gíslason Hlynur Óskar Guðmundsson Acknowledgements We would like to give special thanks to these individuals and organizations. Syndis was very generous to accomidate us by providing us with an office space, lunches and caffeine as well as advice from experts in the field. CERT for showing great interest in the project and providing advice regarding ethical concerns. Opin Kerfi was nice enough to allow us to perform our scans when no other service provider was willing to host us. Hlynur Þór Óskarsson for taking time out of his busy schedule to provide us with guidance on a weekly basis. Theódór Ragnar Gíslason for encouragement and being there when we needed to consult his expertise. Gylfi Þór Guðmundsson for being constantly ready to help and molding our mass of stupid ideas into good ones. i [This page is intentionally left blank] ii Contents 1 Introduction 1 2 Background 2 2.1 Standards and Definitions . .2 2.2 Internet Census 2012 . .5 2.3 Shodan . .5 2.4 Application for Historical Service Assessment (AHSA) .
    [Show full text]
  • Iot-Botnet Detection and Isolation by Access Routers
    2018 9th International Conference on the Network of the Future (NOF) IoT-Botnet Detection and Isolation by Access Routers Christian Dietz∗y, Raphael Labaca Castro∗, Jessica Steinbergery, Cezary Wilczak∗, Marcel Antzek∗, Anna Sperottoy and Aiko Prasy ∗ Research Institute CODE yDesign and Analysis of Communication Systems Bundeswehr University Munich University of Twente Neubiberg, Germany Enschede, The Netherlands Email:fChristian.Dietz, Raphael.Labaca, Email:fC.Dietz, J.Steinberger, Cezary.Wilczak, [email protected] A.Sperotto, [email protected] Abstract—In recent years, emerging technologies such as the The main attack techniques used by IoT botnets exploit Internet of Things gain increasing interest in various commu- security vulnerabilities and make use of sophisticated, complex nities. However, the majority of IoT devices have little or no and multi-vector large-scale cyber attacks based on flooding protection at software and infrastructure levels and thus are also opening up new vulnerabilities that might be misused by and Water Torture techniques whereas traditional Botnets cybercriminals to perform large-scale cyber attacks by means make use of Reflection and Amplification. In particular, the IoT of IoT botnets. These kind of attacks lead to infrastructure botnet Mirai used 10 predefined attack vectors [7] including and service outages and cause enormous financial loss, image generic routing encapsulation (GRE) flood, TCP STOMP and and reputation damage. One approach to proactively block DNS Water Torture technique and mainly performed volumet- the spreading of such IoT botnets is to automatically scan for vulnerable IoT devices and isolate them from the Internet ric, application-layer, and TCP state-exhaustion attacks [6].
    [Show full text]
  • An Exploration of the Cybercrime Ecosystem Around Shodan
    An exploration of the cybercrime ecosystem around Shodan Maria Bada* and Ildiko Pete* Department of Computer Science and Technology, University of Cambridge Cambridge, UK fi[email protected] *These authors contributed equally to this work Abstract—Discussions on underground forums provide valu- interactions of members of underground forums provides a able insights to hackers’ practices, interests and motivations. novel perspective of IoT security and reveals vulnerabilities Although Internet of Things (IoT) vulnerabilities have been that are actively discussed, the main targets, and hackers’ extensively explored, the question remains how members of hacker communities perceive the IoT landscape. In this work, we motivations to exploit these vulnerabilities. present an analysis of IoT related discussions that are potentially Specifically in this study, we analyse discussions around cybercriminal in nature. In particular, we analyse forum threads Shodan, one of the most popular search engines of Internet that discuss the search engine Shodan. The source of these posts facing devices and services. Shodan is designed to crawl the is the CrimeBB dataset provided by the Cambridge Cybercrime Internet and to index discovered services [6], and it allows Centre (CCC)1. We analyse 1051 thread discussions from 19 forums between 2009 and 2020. The overall aim of our work is the discovery of vulnerable devices [7]. Thus, it is widely to explore the main use cases of Shodan and highlight hackers’ used by security professionals and have greatly contributed to targets and motivations. We find that Shodan is versatile and raising awareness of the problems facing the IoT landscape. is actively used by hackers as a tool for passive information Through analysing Shodan related discussions on underground gathering providing easier access to hackable targets.
    [Show full text]
  • Western European Cities Exposed: a Shodan-Based Security Study on Exposed Cyber Assets in Western Europe Important Questions That Come to Mind Are
    Western European Cities Exposed A Shodan-based Security Study on Exposed Cyber Assets in Western Europe Natasha Hellberg and Rainer Vosseler Trend Micro Forward-Looking Threat Research (FTR) Team A TrendLabs Research Paper Contents TREND MICRO LEGAL DISCLAIMER The information provided herein is for general information and educational purposes only. It is not intended and 4 should not be construed to constitute legal advice. The information contained herein may not be applicable to all situations and may not reflect the most current situation. Exposed Cyber Assets Nothing contained herein should be relied on or acted upon without the benefit of legal advice based on the particular facts and circumstances presented and nothing herein should be construed otherwise. Trend Micro 7 reserves the right to modify the contents of this document at any time without prior notice. Translations of any material into other languages are Exposed Cities: intended solely as a convenience. Translation accuracy is not guaranteed nor implied. If any questions arise Western European related to the accuracy of a translation, please refer to the original language official version of the document. Any Capitals discrepancies or differences created in the translation are not binding and have no legal effect for compliance or enforcement purposes. Although Trend Micro uses reasonable efforts to include 13 accurate and up-to-date information herein, Trend Micro makes no warranties or representations of any kind as to its accuracy, currency, or completeness. You agree Exposed Cyber Assets that access to and use of and reliance on this document and the content thereof is at your own risk.
    [Show full text]