Winter 2011 Volume 23 Number 4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MMI 53 River Street Dam.Pdf
TOWN OF ACTON JUNE 7, 2019 | ACTON, MA PROPOSAL Studies Related to the Dam Located at 53 River Street June 7, 2019 Mr. John Mangiaratti, Town Manager Town of Acton Town Manager’s Office 472 Main Street Acton, MA 01720 RE: River Street Dam Removal and Fort Pond Brook Restoration Acton, Massachusetts MMI #4458-02 Dear Mr. Mangiaratti: The Milone & MacBroom team of structural engineers, bridge scour experts, geotechnical engineers, and hydraulic engineers are uniquely qualified to design the dam removal, and evaluate the potential upstream and downstream infrastructure impacts associated with the removal of the Dam at River Street to improve ecological functions of the Fort Pond Brook. When reviewing our proposal, we ask that you consider the following: Our team brings expertise and a proven track record of success in dam removal projects throughout New England. Milone & MacBroom professionals have backgrounds in hydrology and hydraulics, engineering design, fisheries expertise, and wetland biology. Our staff also includes invasive species experts, fisheries biologists, and permitting specialists. We also integrate the creative innovation of our extensive in-house team of landscape architects and frequently include passive recreational park features at our dam removal sites. We have the ability to integrate dam removal with the natural site opportunities through careful analysis and planning so that your project is technically sound, environmentally sensitive, and aesthetically pleasing. Our team of experts has performed many dam removal projects throughout New England and the Northeast. Milone and MacBroom are pioneers in the field, having completed our first dam removals in the 1990s. With over 40 constructed dam removal projects, we have completed more than any other design firm in the Northeast. -
Geographical Distribution and Potential for Adverse Biological Effects of Selected Trace Elements and Organic Compounds in Strea
Geographical Distribution and Potential for Adverse Biological Effects of Selected Trace Elements and Organic Compounds in Streambed Sediment in the Connecticut, Housatonic, and Thames River Basins, 1992-94 By Robert F. Breault and Sandra L. Harris Abstract exceed sediment-quality guidelines over a wider geographical area, although usually by lower Streambed-sediment samples were collected ratios of contaminant concentration to sediment- in 1992-94 at selected sites in the Connecticut, quality guideline than the organic compounds. Housatonic, and Thames River Basins to determine the geographical distribution of trace elements and organic compounds and their INTRODUCTION potential for adverse biological effects on aquatic organisms. Chromium, copper, lead, mercury, The Connecticut, Housatonic, and Thames River Basins study unit is one of 59 National Water-Quality nickel, zinc, chlordane, DDT, PAHs, and PCBs Assessment (NAWQA) study units nationwide. The were detected in samples from throughout the study unit drainage basin comprises an area of almost basins, but concentrations of these constituents 16,000 mi2 and extends through parts of the Province of generally were lowest in the northern forested Quebec, Canada, eastern Vermont, western New Hamp- drainage basins and highest in the southern shire, west-central Massachusetts, nearly all of Connect- urbanized drainage basins of Springfield, icut, and small parts of New York and Rhode Island. Massachusetts, and Hartford, New Haven and The study unit is entirely within the New Bridgeport, Connecticut. Possible anthropogenic England Physiographic Province (Fenneman, 1938), a sources of these contaminants include industrial plateau-like upland that rises gradually from the sea but effluent; municipal wastewater; runoff from includes numerous mountain ranges and individual agricultural, urban and forested areas; and peaks. -
Large Woody Debris Fact Sheet
Inland Fisheries Division Habitat Conservation and Enhancement Program Large Woody Debris Fact Sheet I. Introduction Trees that grow along a streamside can often fall into a watercourse due to floods, erosion, windthrow, disease, beaver activity or natural mortality. These materials, often referred to as Large Woody Debris (LWD) can include whole trees with a rootwad and limbs attached or portions of trees with or without rootwads or limbs. LWD is typically defined by biologists as logs with a minimum diameter of 4 inches and a minimum length of 6 feet that protrude or lay within a stream channel. Environmental and recreational groups have often removed LWD as part of river cleanup or river improvement projects. Although these groups have good intentions, LWD removal can be “very detrimental” to stream health and well being. In fact, during the last decade, the Inland Fisheries Division has been actively adding LWD to river systems as a component of individual stream restoration projects, particularly in streams that are LWD deficient. This fact sheet describes the vital importance of LWD to river ecosystems and provides guidance for its beneficial management. Example of various types of large woody debris in the Moosup River, Plainfield. DEP • Inland Fisheries Division • Habitat Conservation and Enhancement Program 1 II. Ecological Benefits of Large Woody Debris Research studies have shown that LWD is a vital and naturally occurring component of healthy stream ecosystems. Ecological benefits of LWD are described below. ¾ Fish Habitat LWD that falls completely across a stream causes water to be slightly impounded resulting in the formation of an upstream pool and a downstream plunge pool as water flows under and over the wood. -
The New Haven Harbor
Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 1984 Volume VI: Geology and the Industrial History of Connecticut Gateway to New Haven: The New Haven Harbor Curriculum Unit 84.06.10 by Carolyn C. Smith There are many theories as to the origin of our vast universe. As we know, the earth has been around for billions of years. Looking around us we can’t help but question how this creation of our planet came to be as it is today. Through experience and past knowledge it has been brought out that there are three major forces which are responsible for our land formations: 1) glaciers, 2) volcanoes, and 3) water. The purpose of this unit is to show how the geographical location of the New Haven Harbor has affected the lives of the people living in New Haven by focusing our attention on the phenomena of nature which has been prevailing for millions of years. When this unit is completed the students will: 1. Know how the early settlers made use of the New Haven Harbor. 2. Know the three main geographical divisions of the state of Connecticut and how they came to be. 3. Be able to discuss the Triassic fault and what effect it has on the New Haven Harbor. 4. Know how the channel of the New Haven Harbor has changed in the last two centuries and how these changes are affecting our social and economic growth today. 5. Know what proposals the city of New Haven has made to protect the New Haven Harbor for future use. -
WEST RIVER WATERSHED MANAGEMENT PLAN Prepared by AUGUST 2015 Acknowledgements
WEST RIVER WATERSHED MANAGEMENT PLAN prepared by AUGUST 2015 Acknowledgements We would like to thank the following individuals and organizations for their contributions of time and effort to the development of this plan: Project Steering Committee Chelsea Auerback, West River Watershed Coalition, New Haven Resident, Student, Yale Law Lynne Bonnett, Greater New Haven Waterworks Coalition, New Haven Environmental Justice Network Frank Cochran, New Haven, Friends of Edgewood Park Frank Deleo, Woodbridge Resident, West River Watershed Coalition Member Kathy Fay, Neighborhood Housing Services, New Haven Chris Malik, Connecticut Department of Energy and Environmental Protection Adam Marchand, Alderman, Ward 25, New Haven Courtney McGinnis, Hamden Resident, Assistant Professor of Biology at Quinnipiac University Mary Mushinsky, River Advocates of South Central Connecticut (formerly with Mill River Watershed Association) Stacy R. Spell, West River Community Member, Civic Leader Ron Walters, South Central Connecticut Regional Water Authority Giovanni Zinn, City Engineer, City of New Haven Gary Zrelak, Greater New Haven Water Pollution Control Authority Other Involved Stakeholders City of New Haven – Karyn Gilvarg, Executive Director, City Plan Department; Rebecca Bombero, Director New Haven Parks, Recreation and Trees City of West Haven – Gail Burns, City Council Member, 10th District; Rob Librandi, Assistant City Planner Common Ground High School – David Edgeworth, Joel Toleman and the Common Ground West River Stewards Friends of Beaver Ponds -
Mill River Watershed Management Plan
Mill River Watershed Based Plan prepared by SEPTEMBER 2018 Acknowledgements We would like to thank the following individuals and organizations for their contributions of time and effort to the development of this plan: Project Steering Committee Carl Amento, South Central Region Council of Governments Rebecca Andreucci, South Central Region Council of Governments Mark Austin, Hamden Town Engineer Bill Brown, Eli Whitney Museum Aaron Budris, Naugatuck Valley Council of Governments Kim Digiovanni, Quinnipiac University Sean Duffy, Quinnipiac University/Albert Schweitzer Institute Alex Felson, Director, Yale Urban Ecology & Design Mark Foran, Whitneyville Civic Association Dawn Henning, City of New Haven Engineering Daniel W. Kops, Hamden Town Planner Elsa Loehmann, Cheshire Land Trust JR Logan, Mill River Trail Advocates Chris Malik, Connecticut Department of Energy and Environmental Protection Connie Matheson, Whitneyville Civic Association Kevin McCarthy, Friends of East Rock Park/Mill River Trail Advocates Mary Mushinsky, River Advocates of South Central Connecticut Pamela Roach, Cheshire Land Trust Nancy Rosembalm, Hamden Land Trust Joy Vanderlek, Cheshire Land Trust Ron Walters, South Central Connecticut Regional Water Authority Aicha Woods, New Haven City Planning Anthony Zemba, Fitzgerald & Halliday, Inc. Gary Zrelak, Greater New Haven Water Pollution Control Authority Other Involved Stakeholders Gabe Benoit, Yale FES Professor, Hixon Center Director Rebecca Bombero, Director of New Haven Parks, Recreation, and Trees Lee Cruz, Community -
YOUR SOURCE for CT Fishing Information
Share the Experience—Take Someone Fishing • APRIL 14 Opening Day Trout Fishing 2018 CONNECTICUT ANGLER’S GUIDE INLAND & MARINE FISHING YOUR SOURCE For CT Fishing Information »New Trout & »New Inland »New Marine Salmon Stamp Regulations Regulations See page 8 & 20 for 2018 for 2018 See page 20 See page 58 Connecticut Department of Energy & Environmental Protection www.ct.gov/deep/fishing FISHING REGULATIONS GUIDE - GA TRIM: . 8˝ X 10-1/2˝ (AND VARIOUS OTHER STATES) BLEED: . 8-1/4˝ X 10-3/4˝ SAFETY: . 7˝ X 10˝ TRIM TRIM SAFETY TRIM BLEED BLEED SAFETY BLEED BLEED TRIM TRIM SAFETY SAFETY SAFETY SAFETY TRIM TRIM BLEED BLEED TRIM TRIM TRIM BLEED BLEED SAFETY SAFETY Client: Progressive Job No: 16D00890 Created by: Dalon Wolford Applications: InDesign CC, Adobe Photoshop CC, Adobe Illustrator CC Job Description: Full Page, 4 Color Ad Document Name: Bass ad / Fishing Regulations Guide - GA and various other states Final Trim Size: 7-7/8˝ X 10-1/2˝ Final Bleed: 8-1/8˝ X 10-13/16˝ Safety: 7˝ X 10˝ Date Created: 11/7/16 FISHING REGULATIONS GUIDE - GA TRIM: . 8˝ X 10-1/2˝ (AND VARIOUS OTHER STATES) BLEED: . 8-1/4˝ X 10-3/4˝ SAFETY: . 7˝ X 10˝ TRIM TRIM SAFETY TRIM BLEED BLEED SAFETY BLEED BLEED TRIM TRIM SAFETY SAFETY 2018 CONNECTICUT ANGLER’S GUIDE INLAND REGULATIONS INLAND & MARINE FISHING Easy two-step process: 1. Check the REGULATION TABLE (page 21) for general statewide Contents regulations. General Fishing Information 2. Look up the waterbody in the LAKE AND PONDS Directory of Services Phone Numbers .............................2 (pages 32–41) or RIVERS AND STREAMS (pages 44–52) Licenses ......................................................................... -
Connecticut Watersheds
Percent Impervious Surface Summaries for Watersheds CONNECTICUT WATERSHEDS Name Number Acres 1985 %IS 1990 %IS 1995 %IS 2002 %IS ABBEY BROOK 4204 4,927.62 2.32 2.64 2.76 3.02 ALLYN BROOK 4605 3,506.46 2.99 3.30 3.50 3.96 ANDRUS BROOK 6003 1,373.02 1.03 1.04 1.05 1.09 ANGUILLA BROOK 2101 7,891.33 3.13 3.50 3.78 4.29 ASH CREEK 7106 9,813.00 34.15 35.49 36.34 37.47 ASHAWAY RIVER 1003 3,283.88 3.89 4.17 4.41 4.96 ASPETUCK RIVER 7202 14,754.18 2.97 3.17 3.31 3.61 BALL POND BROOK 6402 4,850.50 3.98 4.67 4.87 5.10 BANTAM RIVER 6705 25,732.28 2.22 2.40 2.46 2.55 BARTLETT BROOK 3902 5,956.12 1.31 1.41 1.45 1.49 BASS BROOK 4401 6,659.35 19.10 20.97 21.72 22.77 BEACON HILL BROOK 6918 6,537.60 4.24 5.18 5.46 6.14 BEAVER BROOK 3802 5,008.24 1.13 1.22 1.24 1.27 BEAVER BROOK 3804 7,252.67 2.18 2.38 2.52 2.67 BEAVER BROOK 4803 5,343.77 0.88 0.93 0.94 0.95 BEAVER POND BROOK 6913 3,572.59 16.11 19.23 20.76 21.79 BELCHER BROOK 4601 5,305.22 6.74 8.05 8.39 9.36 BIGELOW BROOK 3203 18,734.99 1.40 1.46 1.51 1.54 BILLINGS BROOK 3605 3,790.12 1.33 1.48 1.51 1.56 BLACK HALL RIVER 4021 3,532.28 3.47 3.82 4.04 4.26 BLACKBERRY RIVER 6100 17,341.03 2.51 2.73 2.83 3.00 BLACKLEDGE RIVER 4707 16,680.11 2.82 3.02 3.16 3.34 BLACKWELL BROOK 3711 18,011.26 1.53 1.65 1.70 1.77 BLADENS RIVER 6919 6,874.43 4.70 5.57 5.79 6.32 BOG HOLLOW BROOK 6014 4,189.36 0.46 0.49 0.50 0.51 BOGGS POND BROOK 6602 4,184.91 7.22 7.78 8.41 8.89 BOOTH HILL BROOK 7104 3,257.81 8.54 9.36 10.02 10.55 BRANCH BROOK 6910 14,494.87 2.05 2.34 2.39 2.48 BRANFORD RIVER 5111 15,586.31 8.03 8.94 9.33 9.74 -
State of the Watershed Report the Hockanum River
THE HOCKANUM RIVER STATE OF THE WATERSHED REPORT December 2005 Prepared for: North Central Conservation District, Inc. Prepared by: Funded in part by the Connecticut Department of Environmental Protection through a United States Environmental Protection Agency Clean Water Act Section 604(b) Water Quality Management Planning Grant. THE HOCKANUM RIVER STATE OF THE WATERSHED REPORT North Central Conservation District, Inc. TABLE OF CONTENTS SECTION PAGE 1.0 INTRODUCTION ....................................................................................................... 1 2.0 HISTORICAL PERSPECTIVE................................................................................... 5 2.1 Geology............................................................................................................ 5 2.2 Population and Industry................................................................................... 5 2.3 Restoration Efforts........................................................................................... 7 3.0 WATER RESOURCES ............................................................................................... 9 3.1 Water Quantity................................................................................................. 9 3.2 Water Quality................................................................................................. 12 3.2.1 Classifications and Impairments........................................................ 12 3.2.2 Monitoring Data ............................................................................... -
Indivisibleloadpermitbridgerest
Non-Posted Bridge Restrictions *Revised May 2021 STATE OF CONNECTICUT DEPARTMENT OF TRANSPORTATION 2800 BERLIN TURNPIKE, P.O. BOX 317546 NEWINGTON, CONNECTICUT 06131-7546 Office e-mail: [email protected] Connecticut DOT CVISN Web Page (860) 594-2880 On-line Permits https://portal.ct.gov/DOT Fax (860) 594-2949 https://cvoportal.ct.gov/ ROUTE TOWN BRIDGE NO. FEATURE CROSSED MAXIMUM LOAD Weight is only allowed if vehicle(s) has noted number of axles. If less axles, then Maximum Load is less. 1 Milford 00327 Housatonic River Legal Weight (Washington—Devon Bridge) 1 New Haven 00334 Metro-North RR Legal Weight (Water Street Bridge) 1 EB New London 02572 I-95 Ramp, SR 641 SB 180,000 lbs. on 9 axles 1 Groton 03329 Route 349 180,000 lbs. on 9 axles 2 Hartford 00371A I-91, Conrail, CT River 180,000 lbs. on 9 axles (Founders Bridge) 2WB Marlborough 03374 West Street 140,000 lbs. on 7 axles 2A Montville 03424 Route 32 160,000 lbs. on 8 axles 7 Cornwall 00560 Housatonic River 120,000 lbs. on 6 axles 7 SB Norwalk 03565 Connecticut Avenue 180,000 lbs. on 9 axles 7 NB Norwalk 03567A Maple Street 180,000 lbs. on 9 axles 7 SB Norwalk 03567B Maple Street 180,000 lbs. on 9 axles 7 SB Norwalk 03572 Norwalk River 180,000 lbs. on 9 axles 8 Trumbull 03776 Route 8 180,000 lbs. on 9 axles (Ramp from Route 127 to Route 8 North) Page 1 of 6 May 2021 8 SB Shelton 02720 Armstrong Road 180,000 lbs. -
Hockanum River Water Pollution Control Facility Upgrade
Project Overview Hockanum River Originally constructed in the mid 1950s as a primary treatment facility, the Hockanum River WPCF was ex- Water Pollution Control panded in 1970 to provide for secondary treatment. The WPCF was further expanded in 1990 to reduce the Facility Upgrade seasonal discharge of ammonia to the Hockanum River. A smaller upgrade was completed in 2004 to replace the chlorine gas disinfection system with a much safer ultra violet disinfection process. The Hockanum River Manchester Water & Sewer Department WPCF currently treats on average 6.5 million gallons per day (mgd) of sewage, with a peak flow in excess of 125 Spring Street 15 mgd. Manchester, CT 06045-0191 Planning for Future Needs www.townofmanchester.org The Hockanum River WPCF is facing several issues that need to be addressed to meet the needs of the com- munity including: Contractor – Nitrogen Removal The Department of Energy and Environmental Protection (DEEP) established strict annual nitro- gen removal limits for all wastewater facilities in the state in order to improve the quality of Long Island Sound. To achieve these limits, the Hocka- 454 Boston Post Road num River WPCF must upgrade its treatment ca- Waterford, CT 06385 pabilities. www.carlincontracting.com – Phosphorus Removal The DEEP has also been working with the Environ- mental Protection Agency (EPA) to establish local water quality limits for phosphorus discharges from WPCFs to fresh water receiving streams such as the Hockanum. The DEEP informed Manchester that as part of the next renewal of the Town’s wastewater Project Engineer discharge permit, strict phosphorus limits would be included. -
Atlantic Salmon EFH the Proposed EFH Designation for Atlantic Salmon
Atlantic salmon EFH The proposed EFH designation for Atlantic salmon includes the rivers, estuaries, and bays that are listed in Table 31 and shown in Map 105, which exhibit the environmental conditions defined in the text descriptions. Smaller tributaries not shown on the map are also EFH for one or more life stage as long as they conform to the proposed habitat descriptions. All EFH river systems form a direct connection to the sea, but EFH would not include portions of rivers above naturally occurring barriers to upstream migration or land-locked lakes and ponds. The oceanic component of EFH is to a distance of three miles from the mouth of each river. The new designation includes six new drainage systems not included in the original list of 26 rivers that were designated in 1998. All of them are in the Maine coastal sub-region (Chandler, Indian, Pleasant, St. George, Medomak, and Pemaquid rivers). All told, 30 river systems in nine New England sub-regions are designated for Atlantic salmon EFH. The new map includes a more continuous series of bays and areas adjacent to river mouths that are within three miles of the coast. Designated EFH in Long Island Sound has been reduced to small areas where the Connecticut and Pawcatuck Rivers empty into the sound, rather than taking up the entire sound. Also, there are a number of improvements in the text descriptions which make the habitat requirements for each life stage more specific and applicable to three separate juvenile life stages (fry, parr, and smolts). Text descriptions: Essential fish habitat for Atlantic salmon (Salmo salar) is designated as the rivers, estuaries, and bays that are listed in Table 31 and shown in Map 105.