Thermodynamic Semirings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Semiring Frameworks and Algorithms for Shortest-Distance Problems
Journal of Automata, Languages and Combinatorics u (v) w, x–y c Otto-von-Guericke-Universit¨at Magdeburg Semiring Frameworks and Algorithms for Shortest-Distance Problems Mehryar Mohri AT&T Labs – Research 180 Park Avenue, Rm E135 Florham Park, NJ 07932 e-mail: [email protected] ABSTRACT We define general algebraic frameworks for shortest-distance problems based on the structure of semirings. We give a generic algorithm for finding single-source shortest distances in a weighted directed graph when the weights satisfy the conditions of our general semiring framework. The same algorithm can be used to solve efficiently clas- sical shortest paths problems or to find the k-shortest distances in a directed graph. It can be used to solve single-source shortest-distance problems in weighted directed acyclic graphs over any semiring. We examine several semirings and describe some specific instances of our generic algorithms to illustrate their use and compare them with existing methods and algorithms. The proof of the soundness of all algorithms is given in detail, including their pseudocode and a full analysis of their running time complexity. Keywords: semirings, finite automata, shortest-paths algorithms, rational power series Classical shortest-paths problems in a weighted directed graph arise in various contexts. The problems divide into two related categories: single-source shortest- paths problems and all-pairs shortest-paths problems. The single-source shortest-path problem in a directed graph consists of determining the shortest path from a fixed source vertex s to all other vertices. The all-pairs shortest-distance problem is that of finding the shortest paths between all pairs of vertices of a graph. -
Subset Semirings
University of New Mexico UNM Digital Repository Faculty and Staff Publications Mathematics 2013 Subset Semirings Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy [email protected] Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebraic Geometry Commons, Analysis Commons, and the Other Mathematics Commons Recommended Citation W.B. Vasantha Kandasamy & F. Smarandache. Subset Semirings. Ohio: Educational Publishing, 2013. This Book is brought to you for free and open access by the Mathematics at UNM Digital Repository. It has been accepted for inclusion in Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Subset Semirings W. B. Vasantha Kandasamy Florentin Smarandache Educational Publisher Inc. Ohio 2013 This book can be ordered from: Education Publisher Inc. 1313 Chesapeake Ave. Columbus, Ohio 43212, USA Toll Free: 1-866-880-5373 Copyright 2013 by Educational Publisher Inc. and the Authors Peer reviewers: Marius Coman, researcher, Bucharest, Romania. Dr. Arsham Borumand Saeid, University of Kerman, Iran. Said Broumi, University of Hassan II Mohammedia, Casablanca, Morocco. Dr. Stefan Vladutescu, University of Craiova, Romania. Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/eBooks-otherformats.htm ISBN-13: 978-1-59973-234-3 EAN: 9781599732343 Printed in the United States of America 2 CONTENTS Preface 5 Chapter One INTRODUCTION 7 Chapter Two SUBSET SEMIRINGS OF TYPE I 9 Chapter Three SUBSET SEMIRINGS OF TYPE II 107 Chapter Four NEW SUBSET SPECIAL TYPE OF TOPOLOGICAL SPACES 189 3 FURTHER READING 255 INDEX 258 ABOUT THE AUTHORS 260 4 PREFACE In this book authors study the new notion of the algebraic structure of the subset semirings using the subsets of rings or semirings. -
Exercises and Solutions in Groups Rings and Fields
EXERCISES AND SOLUTIONS IN GROUPS RINGS AND FIELDS Mahmut Kuzucuo˘glu Middle East Technical University [email protected] Ankara, TURKEY April 18, 2012 ii iii TABLE OF CONTENTS CHAPTERS 0. PREFACE . v 1. SETS, INTEGERS, FUNCTIONS . 1 2. GROUPS . 4 3. RINGS . .55 4. FIELDS . 77 5. INDEX . 100 iv v Preface These notes are prepared in 1991 when we gave the abstract al- gebra course. Our intention was to help the students by giving them some exercises and get them familiar with some solutions. Some of the solutions here are very short and in the form of a hint. I would like to thank B¨ulent B¨uy¨ukbozkırlı for his help during the preparation of these notes. I would like to thank also Prof. Ismail_ S¸. G¨ulo˘glufor checking some of the solutions. Of course the remaining errors belongs to me. If you find any errors, I should be grateful to hear from you. Finally I would like to thank Aynur Bora and G¨uldaneG¨um¨u¸sfor their typing the manuscript in LATEX. Mahmut Kuzucuo˘glu I would like to thank our graduate students Tu˘gbaAslan, B¨u¸sra C¸ınar, Fuat Erdem and Irfan_ Kadık¨oyl¨ufor reading the old version and pointing out some misprints. With their encouragement I have made the changes in the shape, namely I put the answers right after the questions. 20, December 2011 vi M. Kuzucuo˘glu 1. SETS, INTEGERS, FUNCTIONS 1.1. If A is a finite set having n elements, prove that A has exactly 2n distinct subsets. -
Formal Power Series - Wikipedia, the Free Encyclopedia
Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series -
1. Rings of Fractions
1. Rings of Fractions 1.0. Rings and algebras (1.0.1) All the rings considered in this work possess a unit element; all the modules over such a ring are assumed unital; homomorphisms of rings are assumed to take unit element to unit element; and unless explicitly mentioned otherwise, all subrings of a ring A are assumed to contain the unit element of A. We generally consider commutative rings, and when we say ring without specifying, we understand this to mean a commutative ring. If A is a not necessarily commutative ring, we consider every A module to be a left A- module, unless we expressly say otherwise. (1.0.2) Let A and B be not necessarily commutative rings, φ : A ! B a homomorphism. Every left (respectively right) B-module M inherits the structure of a left (resp. right) A-module by the formula a:m = φ(a):m (resp m:a = m.φ(a)). When it is necessary to distinguish the A-module structure from the B-module structure on M, we use M[φ] to denote the left (resp. right) A-module so defined. If L is an A module, a homomorphism u : L ! M[φ] is therefore a homomorphism of commutative groups such that u(a:x) = φ(a):u(x) for a 2 A, x 2 L; one also calls this a φ-homomorphism L ! M, and the pair (u,φ) (or, by abuse of language, u) is a di-homomorphism from (A, L) to (B, M). The pair (A,L) made up of a ring A and an A module L therefore form the objects of a category where the morphisms are di-homomorphisms. -
An Elementary Approach to Boolean Algebra
Eastern Illinois University The Keep Plan B Papers Student Theses & Publications 6-1-1961 An Elementary Approach to Boolean Algebra Ruth Queary Follow this and additional works at: https://thekeep.eiu.edu/plan_b Recommended Citation Queary, Ruth, "An Elementary Approach to Boolean Algebra" (1961). Plan B Papers. 142. https://thekeep.eiu.edu/plan_b/142 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Plan B Papers by an authorized administrator of The Keep. For more information, please contact [email protected]. r AN ELEr.:ENTARY APPRCACH TC BCCLF.AN ALGEBRA RUTH QUEAHY L _J AN ELE1~1ENTARY APPRCACH TC BC CLEAN ALGEBRA Submitted to the I<:athematics Department of EASTERN ILLINCIS UNIVERSITY as partial fulfillment for the degree of !•:ASTER CF SCIENCE IN EJUCATION. Date :---"'f~~-----/_,_ffo--..i.-/ _ RUTH QUEARY JUNE 1961 PURPOSE AND PLAN The purpose of this paper is to provide an elementary approach to Boolean algebra. It is designed to give an idea of what is meant by a Boclean algebra and to supply the necessary background material. The only prerequisite for this unit is one year of high school algebra and an open mind so that new concepts will be considered reason able even though they nay conflict with preconceived ideas. A mathematical science when put in final form consists of a set of undefined terms and unproved propositions called postulates, in terrrs of which all other concepts are defined, and from which all other propositions are proved. -
Littlewood–Richardson Coefficients and Birational Combinatorics
Littlewood{Richardson coefficients and birational combinatorics Darij Grinberg 28 August 2020 [corrected version] Algebraic and Combinatorial Perspectives in the Mathematical Sciences slides: http: //www.cip.ifi.lmu.de/~grinberg/algebra/acpms2020.pdf paper: arXiv:2008.06128 aka http: //www.cip.ifi.lmu.de/~grinberg/algebra/lrhspr.pdf 1 / 43 The proof is a nice example of birational combinatorics: the use of birational transformations in elementary combinatorics (specifically, here, in finding and proving a bijection). Manifest I shall review the Littlewood{Richardson coefficients and some of their classical properties. I will then state a \hidden symmetry" conjectured by Pelletier and Ressayre (arXiv:2005.09877) and outline how I proved it. 2 / 43 Manifest I shall review the Littlewood{Richardson coefficients and some of their classical properties. I will then state a \hidden symmetry" conjectured by Pelletier and Ressayre (arXiv:2005.09877) and outline how I proved it. The proof is a nice example of birational combinatorics: the use of birational transformations in elementary combinatorics (specifically, here, in finding and proving a bijection). 2 / 43 Manifest I shall review the Littlewood{Richardson coefficients and some of their classical properties. I will then state a \hidden symmetry" conjectured by Pelletier and Ressayre (arXiv:2005.09877) and outline how I proved it. The proof is a nice example of birational combinatorics: the use of birational transformations in elementary combinatorics (specifically, here, in finding and proving a bijection). 2 / 43 Chapter 1 Chapter 1 Littlewood{Richardson coefficients References (among many): Richard Stanley, Enumerative Combinatorics, vol. 2, Chapter 7. Darij Grinberg, Victor Reiner, Hopf Algebras in Combinatorics, arXiv:1409.8356. -
On the Relation Between Hyperrings and Fuzzy Rings
ON THE RELATION BETWEEN HYPERRINGS AND FUZZY RINGS JEFFREY GIANSIRACUSA, JAIUNG JUN, AND OLIVER LORSCHEID ABSTRACT. We construct a full embedding of the category of hyperfields into Dress’s category of fuzzy rings and explicitly characterize the essential image — it fails to be essentially surjective in a very minor way. This embedding provides an identification of Baker’s theory of matroids over hyperfields with Dress’s theory of matroids over fuzzy rings (provided one restricts to those fuzzy rings in the essential image). The embedding functor extends from hyperfields to hyperrings, and we study this extension in detail. We also analyze the relation between hyperfields and Baker’s partial demifields. 1. Introduction The important and pervasive combinatorial notion of matroids has spawned a number of variants over the years. In [Dre86] and [DW91], Dress and Wenzel developed a unified framework for these variants by introducing a generalization of rings called fuzzy rings and defining matroids with coefficients in a fuzzy ring. Various flavors of matroids, including ordinary matroids, oriented matroids, and the valuated matroids introduced in [DW92], correspond to different choices of the coefficient fuzzy ring. Roughly speaking, a fuzzy ring is a set S with single-valued unital addition and multiplication operations that satisfy a list of conditions analogous to those of a ring, such as distributivity, but only up to a tolerance prescribed by a distinguished ideal-like subset S0. Beyond the work of Dress and Wenzel, fuzzy rings have not yet received significant attention in the literature. A somewhat different generalization of rings, known as hyperrings, has been around for many decades and has been studied very broadly in the literature. -
On Kleene Algebras and Closed Semirings
On Kleene Algebras and Closed Semirings y Dexter Kozen Department of Computer Science Cornell University Ithaca New York USA May Abstract Kleene algebras are an imp ortant class of algebraic structures that arise in diverse areas of computer science program logic and semantics relational algebra automata theory and the design and analysis of algorithms The literature contains several inequivalent denitions of Kleene algebras and related algebraic structures In this pap er we establish some new relationships among these structures Our main results are There is a Kleene algebra in the sense of that is not continuous The categories of continuous Kleene algebras closed semirings and Salgebras are strongly related by adjunctions The axioms of Kleene algebra in the sense of are not complete for the universal Horn theory of the regular events This refutes a conjecture of Conway p Righthanded Kleene algebras are not necessarily lefthanded Kleene algebras This veries a weaker version of a conjecture of Pratt In Rovan ed Proc Math Found Comput Scivolume of Lect Notes in Comput Sci pages Springer y Supp orted by NSF grant CCR Intro duction Kleene algebras are algebraic structures with op erators and satisfying certain prop erties They have b een used to mo del programs in Dynamic Logic to prove the equivalence of regular expressions and nite automata to give fast algorithms for transitive closure and shortest paths in directed graphs and to axiomatize relational algebra There has b een some disagreement -
Geometry, Combinatorial Designs and Cryptology Fourth Pythagorean Conference
Geometry, Combinatorial Designs and Cryptology Fourth Pythagorean Conference Sunday 30 May to Friday 4 June 2010 Index of Talks and Abstracts Main talks 1. Simeon Ball, On subsets of a finite vector space in which every subset of basis size is a basis 2. Simon Blackburn, Honeycomb arrays 3. G`abor Korchm`aros, Curves over finite fields, an approach from finite geometry 4. Cheryl Praeger, Basic pregeometries 5. Bernhard Schmidt, Finiteness of circulant weighing matrices of fixed weight 6. Douglas Stinson, Multicollision attacks on iterated hash functions Short talks 1. Mari´en Abreu, Adjacency matrices of polarity graphs and of other C4–free graphs of large size 2. Marco Buratti, Combinatorial designs via factorization of a group into subsets 3. Mike Burmester, Lightweight cryptographic mechanisms based on pseudorandom number generators 4. Philippe Cara, Loops, neardomains, nearfields and sets of permutations 5. Ilaria Cardinali, On the structure of Weyl modules for the symplectic group 6. Bill Cherowitzo, Parallelisms of quadrics 7. Jan De Beule, Large maximal partial ovoids of Q−(5, q) 8. Bart De Bruyn, On extensions of hyperplanes of dual polar spaces 1 9. Frank De Clerck, Intriguing sets of partial quadrangles 10. Alice Devillers, Symmetry properties of subdivision graphs 11. Dalibor Froncek, Decompositions of complete bipartite graphs into generalized prisms 12. Stelios Georgiou, Self-dual codes from circulant matrices 13. Robert Gilman, Cryptology of infinite groups 14. Otokar Groˇsek, The number of associative triples in a quasigroup 15. Christoph Hering, Latin squares, homologies and Euler’s conjecture 16. Leanne Holder, Bilinear star flocks of arbitrary cones 17. Robert Jajcay, On the geometry of cages 18. -
Exploring the Distributive Property; Patterns, Functions, and Algebra; 5.19
Mathematics Enhanced Scope and Sequence – Grade 5 Exploring the Distributive Property Reporting Category Patterns, Functions, and Algebra Topic Investigating and recognizing the distributive property Primary SOL 5.19 The student will investigate and recognize the distributive property of multiplication over addition. Related SOL 5.7 Materials Base-10 blocks Exploring the Distributive Property Recording Sheet (attached) Colored pencils or markers Drawing paper Vocabulary distributive property Student/Teacher Actions (what students and teachers should be doing to facilitate learning) 1. Begin the lesson by asking students to compute 4 × 53 mentally. Ask volunteers to share different methods of mental computation for this problem, and write their suggested methods on the board. Spotlight any method that uses the distributive property: 4 × 53 = 4 × 50 + 4 × 3 = 200 + 12 = 212 Point out how the number 53 was broken into 50 + 3, making it easier to multiply and add mentally. Thus, this problem could be written as follows: 4 × (50 + 3) = (4 × 50) + (4 × 3) = 200 + 12 = 212 2. Have students use base-10 blocks to model 4 × 53 by showing 4 groups of 53. Guide student to see that if = 10 units and = 1 unit, they can make 4 groups of 50 and 4 groups of 3, as shown below: Using the base-10 blocks, students can see that the 4 groups of 50 = 200 (skip count the rods by 10), and the 4 groups of 3 = 12. Therefore, 200 + 12 = 212. Have students record their drawings and solution in symbols on their recording sheets. 3. Present students with another problem, 6 × 24, and ask them to model this problem with base-10 pieces. -
“The Distributive Property: the Core of Multiplication” Appendix (Page 1 of 5)
» “The Distributive Property: The Core of Multiplication” appendix (page 1 of 5) Activity 1: Go fi sh This game is like the traditional Go Fish game, except that the goal is to put down sets of three cards that make an addition equation. The game may be played in grades 1–5. Materials • A standard deck of cards for each group of 2–4 students. (Be sure to remove the jokers.) Other kinds of numbered decks (like Uno cards) will also work. • Counters, such as coins or tokens for younger children Purpose • To gain fl uency in decomposing the numbers from 0–10 • To form a foundation for mental addition of a one-digit number to a two-digit number Rules 1. The game is played by a group of 2–4 players. The fi rst player to eliminate all his or her cards wins. If the deck runs out, the player with the fewest cards in his or her hand wins. 2. Shuffl e the cards, and deal seven cards to each player. Place the remainder of the deck in a pile, facedown. 3. Players may look at their own cards but not at each others’ cards. 4. At the beginning or the end of their turn, players with three cards in their hand that make an addition sentence may place those three cards in a group, faceup on the table in front of them, as in the picture above. 5. On your turn, choose another player, and ask for a card. For example, “Janice, do you have a king?” If Janice has a king, she must give it to you.