The Taxonomic Diversity of the Colobinae of Africa

Total Page:16

File Type:pdf, Size:1020Kb

The Taxonomic Diversity of the Colobinae of Africa JASs Invited Reviews Journal of Anthropological Sciences Vol. 85 (2007), pp. 7-34 The taxonomic diversity of the Colobinae of Africa Colin P. Groves School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia e-mail: [email protected] Summary - Th e colobine monkeys of Africa are much more diverse than is often realized; in the case of Red Colobus (genus Piliocolobus), this is because the species replace each other geographically, and there is even some interbreeding where their ranges meet. It is not possible to make a modern taxonomic revision of Black-and-white Colobus (genus Colobus), in the absence of a thorough modern study to determine consistency of the diff erences between the taxa deemed to be subspecies of the two polytypic species, C. angolensis and C. guereza. Red Colobus, in particular, are by their behaviour extremely vulnerable, and one species is presumed extinct, and another has not been seen for some years. Keywords - Colobus, Taxonomy, Biogeography, Piliocolobus, Procolobus, Africa, Cercopithecoidea. Introduction the mouth of the Saccus, but its exact function is unknown. Liquid ingesta, especially fruit Th e Old World monkeys are divided into two juices, bypass the fermentation chamber, going subfamilies: Cercopithecinae and Colobinae. Th e directly via a groove (which is closed off into a Colobinae are commonly known as ‘leaf eaters’, tube by longitudinal muscle bands) into the Pars but this is too sweeping: while it is true that they Pylorica. Th e colobine multipartite stomach are capable of subsisting on leaves to a much has been likened to the ruminant stomach, greater degree than probably any other primate, although structurally and probably functionally detailed fi eld study has shown that many species the stomach of Macropodidae (kangaroos and are in fact specialized seed eaters as much as leaf wallabies) is probably a better comparison. In all eaters. Th e stomach has been described by Kuhn three cases, however, the system enables the animal (1964). In all of the Colobinae it consists of to extract much more energy from its food than three (or four) parts. Th e most conspicuous part can other herbivores, by making complete use is the Saccus Gastricus, an enormous blind sac of the structural carbohydrates in cellulose and in which symbiotic bacteria attack (and possibly hemicellulose. Th is is the secret to ‘leaf eating’. detoxify) solid ingesta, fermenting cellulose Th e stomach, when full, extends the belly and hemicellulose, releasing short-chain fatty and accounts for between 10.8 and 24.9% of acids which are directly absorbed into the the body weight in records of 14 specimens bloodstream. Th e bacterial pap, now enriched (10 Colobus guereza, three C. angolensis, in protein, moves into the next part, the Tubus one Piliocolobus tephrosceles) in the Kenya Gastricus, where pH gradually drops until the National Museum, Nairobi. Th e molar and fi nal part, the Pars Pylorica, which corresponds premolar teeth of Colobinae are distinguished to the simple stomach of other primates and from those of Cercopithecinae by their high where proper digestion begins. Some genera, crowns and occlusal relief, and the shortened including Procolobus and Piliocolobus, have a trigonids. Skeletally, they are characterised by fourth stomach compartment, the Praesaccus, at thumbs being short or absent, and somewhat the JASs is published by the Istituto Italiano di Antropologia www.isita-org.com 8 African colobines shortened second toes on the foot. Strasser Systematic account (1994) detailed other specialisations of the foot morphology. In the skull, mandibular Colobus. Black-and-White Colobus. corpus deepens posteriorly, and generally the Diagnosis: Skull prognathous but supraorbital interorbital pillar is very broad, although in two torus not strongly developed; sagittal crest hardly Asian genera, Nasalis and Simias, it is narrow as ever developed; no suborbital fossa; borders of in the Cercopithecinae. Th e African genera of pyriform aperture rounded; no anterior nasal the Colobinae (which are all known popularly spine; posterior palatal canals not in deep fossae; as colobus monkeys) can be distinguished from choanae and pterygoid fossa narrow, basisphenoid the Asian genera (which are broadly known as crested, laterally guttered. langurs) by lacking a thumb (Fig. 1). In some In mandible, digastric fossae poorly imprinted; individuals, a tiny nubbin of a thumb is present, lower margin of jaw curved upward especially at but there is never more than a rudimentary anterior end; ascending ramus upright; coronoid proximal phalanx. In the past, all colobus process hooked backward; no symphyseal foramen. were commonly put together in a single genus, Maxillary incisors elongated, narrow, with Colobus; Verheyen (1962) retained Black-and- no lingual cingulum or tubercle; tips of lateral white and Red Colobus together in this genus pair point mediosagittally. Postcanine dentition but split off Olive Colobus into a separate genus heavy. Th e larynx is enlarged, measuring in a male Procolobus; Kuhn (1967), followed by Grubb et C. vellerosus 59mm long by 36mm dorsoventrally al. (2003), transferred Red Colobus to Procolobus, and 34mm wide (Hill & Booth, 1957). External but kept them apart from Olive Colobus in a nose convex, its septum extending onto upper lip. separate subgenus, Piliocolobus; while Groves Ischial callosities in male fused across midline. (2001) recognised all three as separate genera. No perineal swellings. Fur black, with white areas I continue to regard all three as separate genera. in four out of the fi ve species; infant coat white. Fig. 1 - African colobines, such as this Colobus polykomos, lack thumbs (photo S. Gippoliti). C.P. Groves 9 Procolobus. Olive Colobus. populations would or would not interbreed Diagnosis: Skull not very prognathous, were their ranges to meet, or according to one’s premaxillae vertical; supraorbital arcades thin, hypothesis of interrelationships: we should curved; sagittal crest develops in adult males; classify species according to how things are suborbital fossa present; pyriform aperture with observed to be, given the available evidence, not sharp margin, often an incipient anterior nasal spine; according to how we think things ought to be! posterior palatal canals in deep fossae; choanae Th ere are two drawbacks to this way of viewing and pterygoid fossa broad, basisphenoid fl at. In species, both of them illustrated by colobus mandible, digastric fossae deep, well separated; taxonomy. First is that diff erent species may upper and lower margins of mandible straight, indeed interbreed where their ranges meet, and parallel; ascending ramus slopes back; coronoid even form an inextricable hybrid swarm. We process rounded; a labial symphyseal foramen. just have to acknowledge this as a fact of nature, Maxillary incisors relatively broad, low, and we must treat hybrid swarms as valuable with a lingual cingulum and tubercle; lateral populations for conservation purposes in their incisors somewhat caniniform, their points own right, as illustrating the operation of directed downward. Postcanine dentition not as natural processes. Th e second drawback is that massive as Colobus, but M3 with a tuberculum the state of research in diff erent genera may be sextum. Th e larynx is not enlarged: 20 x 12 x at very diff erent stages of understanding; this is 14 mm (Hill & Booth, 1957). External nose the case for the African Colobinae. I have myself simple. Ischial callosities separate in both carefully studied available specimens of Red sexes. Perineal swellings developed periodically Colobus in European and some other museums, in adult females and temporarily in subadult and feel confi dent that I have identifi ed the males. Pelage predominately phaeomelanic; units, whereas such study as I have made on infant coat not strikingly diff erent from adult's. Black-and-white Colobus is incomplete (with the exception of the West African taxa), and Piliocolobus. Red Colobus. I have no option but to accept the revisions Skull generally prognathous, with good made, using diff erent species concepts, by supraorbital development; supraorbital arcades Colyn (1991) and by David Hull (personal straight, robust; sagittal crest develops in adult communication). If this results in a rather males; suborbital fossa present; borders of unbalanced treatment, it is to be regretted but I pyriform aperture rounded; no anterior nasal feel I have no option, as I have no evidence as to spine; posterior palatal canals not in deep fossae; what diagnosable units (phylogenetic species) choanae and pterygoid fossa narrow, basisphenoid might exist within Colobus angolensis or Colobus crested, laterally guttered. Mandible more as in guereza as presently recognised. Procolobus but with no symphyseal foramen. Dentition more as Colobus but with no incisor cingulum or tubercle; no tuberculum sextum. Genus COLOBUS Larynx is barely larger than in Procolobus: Illiger, 1811. 24 x 16 x 15mm (Hill & Booth, 1957). External characters in general as in Procolobus. Colobus Illiger, 1811, Prodr. Syst. Mamm. Avium, 69. As for species, I employ the Phylogenetic Colobolus Gray, 1821, London Med.Repos.15: Species Concept (Cracraft, 1983), as argued 298. in detail in Groves (2001). In this view, species Guereza Gray, 1870, Cat. Monkeys, Lemurs & are units essentially diagnosed by the possession Fruit-eating Bats, Brit.Mus.,V and 19. of fi xed heritable diff erences from other such Stachycolobus Rochebrune, 1887,
Recommended publications
  • Primates of the Southern Mentawai Islands
    Primate Conservation 2018 (32): 193-203 The Status of Primates in the Southern Mentawai Islands, Indonesia Ahmad Yanuar1 and Jatna Supriatna2 1Department of Biology and Post-graduate Program in Biology Conservation, Tropical Biodiversity Conservation Center- Universitas Nasional, Jl. RM. Harsono, Jakarta, Indonesia 2Department of Biology, FMIPA and Research Center for Climate Change, University of Indonesia, Depok, Indonesia Abstract: Populations of the primates native to the Mentawai Islands—Kloss’ gibbon Hylobates klossii, the Mentawai langur Presbytis potenziani, the Mentawai pig-tailed macaque Macaca pagensis, and the snub-nosed pig-tailed monkey Simias con- color—persist in disturbed and undisturbed forests and forest patches in Sipora, North Pagai and South Pagai. We used the line-transect method to survey primates in Sipora and the Pagai Islands and estimate their population densities. We walked 157.5 km and 185.6 km of line transects on Sipora and on the Pagai Islands, respectively, and obtained 93 sightings on Sipora and 109 sightings on the Pagai Islands. On Sipora, we estimated population densities for H. klossii, P. potenziani, and S. concolor in an area of 9.5 km², and M. pagensis in an area of 12.6 km². On the Pagai Islands, we estimated the population densities of the four primates in an area of 11.1 km². Simias concolor was found to have the lowest group densities on Sipora, whilst P. potenziani had the highest group densities. On the Pagai Islands, H. klossii was the least abundant and M. pagensis had the highest group densities. Primate populations, notably of the snub-nosed pig-tailed monkey and Kloss’ gibbon, are reduced and threatened on the southern Mentawai Islands.
    [Show full text]
  • Hunting, Law Enforcement, and African Primate Conservation
    Research Note Hunting, Law Enforcement, and African Primate Conservation PAUL K. N’GORAN,∗†‡§ CHRISTOPHE BOESCH,∗†‡ ROGER MUNDRY,∗ ELIEZER K. N’GORAN,∗∗ ILKA HERBINGER,‡ FABRICE A. YAPI,†† AND HJALMAR S. KUHL¨ ∗‡‡ ∗Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany †Centre Suisse de Recherches Scientifiques en Cote-d’Ivoire,ˆ 01 BP 1303 Abidjan 01, Coteˆ d’Ivoire ‡Wild Chimpanzee Foundation s/c CSRS 01 BP 1303 Abidjan 01, Coteˆ d’Ivoire §UFR Sciences de la Nature, Universite´ d’Abobo-Adjame,´ 02 BP 801 Abidjan 02, Coteˆ d’Ivoire ∗∗UFR Biosciences, Universite´ de Cocody, 01 BP V34 Abidjan 01, Coteˆ d’Ivoire ††Office Ivoirien des Parcs et Reserves,´ Direction de Zone Sud-Ouest, BP 1342 Soubre,´ Coteˆ d’Ivoire Abstract: Primates are regularly hunted for bushmeat in tropical forests, and systematic ecological monitor- ing can help determine the effect hunting has on these and other hunted species. Monitoring can also be used to inform law enforcement and managers of where hunting is concentrated. We evaluated the effects of law enforcement informed by monitoring data on density and spatial distribution of 8 monkey species in Ta¨ıNa- tional Park, Coteˆ d’Ivoire. We conducted intensive surveys of monkeys and looked for signs of human activity throughout the park. We also gathered information on the activities of law-enforcement personnel related to hunting and evaluated the relative effects of hunting, forest cover and proximity to rivers, and conservation effort on primate distribution and density. The effects of hunting on monkeys varied among species. Red colobus monkeys (Procolobus badius) were most affected and Campbell’s monkeys (Cercopithecus campbelli) were least affected by hunting.
    [Show full text]
  • Habitat Utilization and Feeding Biology of Himalayan Grey Langur
    动 物 学 研 究 2010,Apr. 31(2):177−188 CN 53-1040/Q ISSN 0254-5853 Zoological Research DOI:10.3724/SP.J.1141.2010.02177 Habitat Utilization and Feeding Biology of Himalayan Grey Langur (Semnopithecus entellus ajex) in Machiara National Park, Azad Jammu and Kashmir, Pakistan Riaz Aziz Minhas1,*, Khawaja Basharat Ahmed2, Muhammad Siddique Awan2, Naeem Iftikhar Dar3 (1. World Wide Fund for Nature-Pakistan (WWF-Pakistan) AJK Office Muzaffarabad, Azad Jammu and Kashmir 13100, Pakistan; 2. Department ofZoology, University of Azad Jammu and Kashmir Muzaffarabad, Azad Jammu and Kashmir 13100, Pakistan; 3. Department of Wildlife and Fisheries, Government of Azad Jammu and Kashmir, Muzaffarabad, Azad Jammu and Kashmir 13100, Pakistan) Abstract: Habitat utilization and feeding biology of Himalayan Grey Langur (Semnopithecus entellus ajex) were studied from April, 2006 to April, 2007 in Machiara National Park, Azad Jammu and Kashmir, Pakistan. The results showed that in the winter season the most preferred habitat of the langurs was the moist temperate coniferous forests interspersed with deciduous trees, while in the summer season they preferred to migrate into the subalpine scrub forests at higher altitudes. Langurs were folivorous in feeding habit, recorded as consuming more than 49 plant species (27 in summer and 22 in winter) in the study area. The mature leaves (36.12%) were preferred over the young leaves (27.27%) while other food components comprised of fruits (17.00%), roots (9.45%), barks (6.69%), flowers (2.19%) and stems (1.28%) of various plant species. Key words: Himalayan Grey Langur; Habitat; Food biology; Machiara National Park 喜马拉雅灰叶猴栖息地利用和食性生物学 Riaz Aziz Minhas1,*, Khawaja Basharat Ahmed2, Muhammad Siddique Awan2, Naeem Iftikhar Dar3 (1.
    [Show full text]
  • The Role of Exposure in Conservation
    Behavioral Application in Wildlife Photography: Developing a Foundation in Ecological and Behavioral Characteristics of the Zanzibar Red Colobus Monkey (Procolobus kirkii) as it Applies to the Development Exhibition Photography Matthew Jorgensen April 29, 2009 SIT: Zanzibar – Coastal Ecology and Natural Resource Management Spring 2009 Advisor: Kim Howell – UDSM Academic Director: Helen Peeks Table of Contents Acknowledgements – 3 Abstract – 4 Introduction – 4-15 • 4 - The Role of Exposure in Conservation • 5 - The Zanzibar Red Colobus (Piliocolobus kirkii) as a Conservation Symbol • 6 - Colobine Physiology and Natural History • 8 - Colobine Behavior • 8 - Physical Display (Visual Communication) • 11 - Vocal Communication • 13 - Olfactory and Tactile Communication • 14 - The Importance of Behavioral Knowledge Study Area - 15 Methodology - 15 Results - 16 Discussion – 17-30 • 17 - Success of the Exhibition • 18 - Individual Image Assessment • 28 - Final Exhibition Assessment • 29 - Behavioral Foundation and Photography Conclusion - 30 Evaluation - 31 Bibliography - 32 Appendices - 33 2 To all those who helped me along the way, I am forever in your debt. To Helen Peeks and Said Hamad Omar for a semester of advice, and for trying to make my dreams possible (despite the insurmountable odds). Ali Ali Mwinyi, for making my planning at Jozani as simple as possible, I thank you. I would like to thank Bi Ashura, for getting me settled at Jozani and ensuring my comfort during studies. Finally, I am thankful to the rangers and staff of Jozani for welcoming me into the park, for their encouragement and support of my project. To Kim Howell, for agreeing to support a project outside his area of expertise, I am eternally grateful.
    [Show full text]
  • Online Appendix for “The Impact of the “World's 25 Most Endangered
    Online appendix for “The impact of the “World’s 25 Most Endangered Primates” list on scientific publications and media” Table A1. List of species included in the Top25 most endangered primate list from the list of 2000-2002 to 2010-2012 and used in the scientific publication analysis. There is the year of their first mention in the Top25 list and the consecutive mentions in the following Top25 lists. Species names are the current species names (based on IUCN) and not the name used at the time of the Top25 list release. First Second Third Fourth Fifth Sixth Species mention mention mention mention mention mention Ateles fusciceps 2006 Ateles hybridus 2006 2008 2010 Ateles hybridus brunneus 2004 Brachyteles hypoxanthus 2000 2002 2004 Callicebus barbarabrownae 2010 Cebus flavius 2010 Cebus xanthosternos 2000 2002 2004 Cercocebus atys lunulatus 2000 2002 2004 Cercocebus galeritus galeritus 2002 Cercocebus sanjei 2000 2002 2004 Cercopithecus roloway 2002 2006 2008 2010 Cercopithecus sclateri 2000 Eulemur cinereiceps 2004 2006 2008 Eulemur flavifrons 2008 2010 Galagoides rondoensis 2006 2008 2010 Gorilla beringei graueri 2010 Gorilla beringei beringei 2000 2002 2004 Gorilla gorilla diehli 2000 2002 2004 2006 2008 Hapalemur aureus 2000 Hapalemur griseus alaotrensis 2000 Hoolock hoolock 2006 2008 Hylobates moloch 2000 Lagothrix flavicauda 2000 2006 2008 2010 Leontopithecus caissara 2000 2002 2004 Leontopithecus chrysopygus 2000 Leontopithecus rosalia 2000 Lepilemur sahamalazensis 2006 Lepilemur septentrionalis 2008 2010 Loris tardigradus nycticeboides
    [Show full text]
  • Colobus Angolensis Palliatus) in an East African Coastal Forest
    African Primates 7 (2): 203-210 (2012) Activity Budgets of Peters’ Angola Black-and-White Colobus (Colobus angolensis palliatus) in an East African Coastal Forest Zeno Wijtten1, Emma Hankinson1, Timothy Pellissier2, Matthew Nuttall1 & Richard Lemarkat3 1Global Vision International (GVI) Kenya 2University of Winnipeg, Winnipeg, Canada 3Kenyan Wildlife Services (KWS), Kenya Abstract: Activity budgets of primates are commonly associated with strategies of energy conservation and are affected by a range of variables. In order to establish a solid basis for studies of colobine monkey food preference, food availability, group size, competition and movement, and also to aid conservation efforts, we studied activity of individuals from social groups of Colobus angolensis palliatus in a coastal forest patch in southeastern Kenya. Our observations (N = 461 hours) were conducted year-round, over a period of three years. In our Colobus angolensis palliatus study population, there was a relatively low mean group size of 5.6 ± SD 2.7. Resting, feeding, moving and socializing took up 64%, 22%, 3% and 4% of their time, respectively. In the dry season, as opposed to the wet season, the colobus increased the time they spent feeding, traveling, and being alert, and decreased the time they spent resting. General activity levels and group sizes are low compared to those for other populations of Colobus spp. We suggest that Peters’ Angola black-and-white colobus often live (including at our study site) under low preferred-food availability conditions and, as a result, are adapted to lower activity levels. With East African coastal forest declining rapidly, comparative studies focusing on C.
    [Show full text]
  • Abstract Book
    EAZA NUTRITION GROUP & ZOOLOGICKÁ ZAHRADA LIBEREC ABSTRACT BOOK Editors Liberec Zoological Garden Marcus Clauss Lidové sady 425/1 Anouk Fens 460 01 Liberec 1 Joeke Nijboer Czech Republic Foreword Dear friends and colleagues, Time flies! After the first European Zoo Nutrition Conference in Rotterdam, in 1999, we are happy to present you the 9th European Zoo Nutrition Conference in Liberec, the Czech Republic. The European Nutrition Group (ENG) has proven to be an active group within EAZA. Certainly, it means that the animals in the European zoos will benefit from the improved diets as a result of presentations, posters, workshops and discussions held at the conferences and by the other activities organised by the ENG. One of the promoters of the ENG, Andrea Fidgett, resigned after chairing the group for more than 10 years, as she accepted a position in the USA. Ollie Szyszka, nutritionist in Marwell Zoo, will be the new chair and intends to stimulate and promote zoo animal nutrition within the ENG and European zoo community. The organising committee is pleased to present you a wide range of talks and posters, varying from sustainable palm oil, rhinoceros feeding, contraception by feeding, dietary drift, fertility in birds, milk composition, insects as feed for zoo animals to pest control in zoos. Prior to the conference, the EAZA Academy in cooperation with ENG, organises a workshop on January 26th titled: pellet formulation. After the success of the practical workstations during the last conference in Arnhem Zoo, we will have several workstation again during the zoo visit on Saturday, where information will be presented on specific zoo animal nutrition items during.
    [Show full text]
  • World's Most Endangered Primates
    Primates in Peril The World’s 25 Most Endangered Primates 2016–2018 Edited by Christoph Schwitzer, Russell A. Mittermeier, Anthony B. Rylands, Federica Chiozza, Elizabeth A. Williamson, Elizabeth J. Macfie, Janette Wallis and Alison Cotton Illustrations by Stephen D. Nash IUCN SSC Primate Specialist Group (PSG) International Primatological Society (IPS) Conservation International (CI) Bristol Zoological Society (BZS) Published by: IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), Bristol Zoological Society (BZS) Copyright: ©2017 Conservation International All rights reserved. No part of this report may be reproduced in any form or by any means without permission in writing from the publisher. Inquiries to the publisher should be directed to the following address: Russell A. Mittermeier, Chair, IUCN SSC Primate Specialist Group, Conservation International, 2011 Crystal Drive, Suite 500, Arlington, VA 22202, USA. Citation (report): Schwitzer, C., Mittermeier, R.A., Rylands, A.B., Chiozza, F., Williamson, E.A., Macfie, E.J., Wallis, J. and Cotton, A. (eds.). 2017. Primates in Peril: The World’s 25 Most Endangered Primates 2016–2018. IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), and Bristol Zoological Society, Arlington, VA. 99 pp. Citation (species): Salmona, J., Patel, E.R., Chikhi, L. and Banks, M.A. 2017. Propithecus perrieri (Lavauden, 1931). In: C. Schwitzer, R.A. Mittermeier, A.B. Rylands, F. Chiozza, E.A. Williamson, E.J. Macfie, J. Wallis and A. Cotton (eds.), Primates in Peril: The World’s 25 Most Endangered Primates 2016–2018, pp. 40-43. IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), and Bristol Zoological Society, Arlington, VA.
    [Show full text]
  • Gastrointestinal Parasites of the Colobus Monkeys of Uganda
    J. Parasitol., 91(3), 2005, pp. 569±573 q American Society of Parasitologists 2005 GASTROINTESTINAL PARASITES OF THE COLOBUS MONKEYS OF UGANDA Thomas R. Gillespie*², Ellis C. Greiner³, and Colin A. Chapman²§ Department of Zoology, University of Florida, Gainesville, Florida 32611. e-mail: [email protected] ABSTRACT: From August 1997 to July 2003, we collected 2,103 fecal samples from free-ranging individuals of the 3 colobus monkey species of UgandaÐthe endangered red colobus (Piliocolobus tephrosceles), the eastern black-and-white colobus (Co- lobus guereza), and the Angolan black-and-white colobus (C. angolensis)Ðto identify and determine the prevalence of gastro- intestinal parasites. Helminth eggs, larvae, and protozoan cysts were isolated by sodium nitrate ¯otation and fecal sedimentation. Coprocultures facilitated identi®cation of helminths. Seven nematodes (Strongyloides fulleborni, S. stercoralis, Oesophagostomum sp., an unidenti®ed strongyle, Trichuris sp., Ascaris sp., and Colobenterobius sp.), 1 cestode (Bertiella sp.), 1 trematode (Dicro- coeliidae), and 3 protozoans (Entamoeba coli, E. histolytica, and Giardia lamblia) were detected. Seasonal patterns of infection were not apparent for any parasite species infecting colobus monkeys. Prevalence of S. fulleborni was higher in adult male compared to adult female red colobus, but prevalence did not differ for any other shared parasite species between age and sex classes. Colobinae is a large subfamily of leaf-eating, Old World 19 from Angolan black-and-white colobus. Red colobus are sexually monkeys represented in Africa by species of 3 genera, Colobus, dimorphic, with males averaging 10.5 kg and females 7.0 kg (Oates et al., 1994); they display a multimale±multifemale social structure and Procolobus, and Piliocolobus (Grubb et al., 2002).
    [Show full text]
  • Primate Conservation 2006 (20): 1–28
    Contents General Primates in Peril: The World’s 25 Most Endangered Primates, 2004–2006 ..................................................................................1 Russell A. Mittermeier, Cláudio Valladares-Pádua, Anthony B. Rylands, Ardith A. Eudey, Thomas M. Butynski, Jörg U. Ganzhorn, Rebecca Kormos, John M. Aguiar and Sally Walker Neotropical Region On a New Species of Titi Monkey, Genus Callicebus Thomas (Primates, Pitheciidae), from Western Bolivia with Preliminary Notes on Distribution and Abundance ...............................................................................................................29 Robert. B. Wallace, Humberto Gómez, Annika Felton and Adam M. Felton Identifi cation, Behavioral Observations, and Notes on the Distribution of the Titi Monkeys Callicebus modestus Lönnberg, 1939 and Callicebus olallae Lönnberg, 1939 ..............................................................................41 Adam Felton, Annika M. Felton, Robert B. Wallace and Humberto Gómez A Survey of Primate Populations in Northeastern Venezuelan Guayana .....................................................................................47 Bernardo Urbani A History of Long-term Research and Conservation of Northern Muriquis (Brachyteles hypoxanthus) at the Estação Biológica de Caratinga/RPPN-FMA .......................................................................................................................53 Karen B. Strier and Jean Philippe Boubli Africa English Common Names for Subspecies and Species of African Primates
    [Show full text]
  • Primate Occurrence Across a Human- Impacted Landscape In
    Primate occurrence across a human- impacted landscape in Guinea-Bissau and neighbouring regions in West Africa: using a systematic literature review to highlight the next conservation steps Elena Bersacola1,2, Joana Bessa1,3, Amélia Frazão-Moreira1,4, Dora Biro3, Cláudia Sousa1,4,† and Kimberley Jane Hockings1,4,5 1 Centre for Research in Anthropology (CRIA/NOVA FCSH), Lisbon, Portugal 2 Anthropological Centre for Conservation, the Environment and Development (ACCEND), Department of Humanities and Social Sciences, Oxford Brookes University, Oxford, United Kingdom 3 Department of Zoology, University of Oxford, Oxford, United Kingdom 4 Department of Anthropology, Faculty of Social Sciences and Humanities, Universidade NOVA de Lisboa, Lisbon, Portugal 5 Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall, United Kingdom † Deceased. ABSTRACT Background. West African landscapes are largely characterised by complex agroforest mosaics. Although the West African forests are considered a nonhuman primate hotspot, knowledge on the distribution of many species is often lacking and out- of-date. Considering the fast-changing nature of the landscapes in this region, up- to-date information on primate occurrence is urgently needed, particularly of taxa such as colobines, which may be more sensitive to habitat modification than others. Understanding wildlife occurrence and mechanisms of persistence in these human- dominated landscapes is fundamental for developing effective conservation strategies. Submitted 2 March 2018 Accepted 6 May 2018 Methods. In this paper, we aim to review current knowledge on the distribution of Published 23 May 2018 three threatened primates in Guinea-Bissau and neighbouring regions, highlighting Corresponding author research gaps and identifying priority research and conservation action.
    [Show full text]
  • Influence of Plant and Soil Chemistry on Food Selection, Ranging Patterns, and Biomass of Colobus Guereza in Kakamega Forest, Ke
    International Journal of Primatology, Vol. 28, No. 3, June 2007 (C 2007) DOI: 10.1007/s10764-006-9096-2 Influence of Plant and Soil Chemistry on Food Selection, Ranging Patterns, and Biomass of Colobus guereza in Kakamega Forest, Kenya Peter J. Fashing,1,2,3,7 Ellen S. Dierenfeld,4,5 and Christopher B. Mowry6 Received February 22, 2006; accepted May 26, 2006; Published Online May 24, 2007 Nutritional factors are among the most important influences on primate food choice. We examined the influence of macronutrients, minerals, and sec- ondary compounds on leaf choices by members of a foli-frugivorous popula- tion of eastern black-and-white colobus—or guerezas (Colobus guereza)— inhabiting the Kakamega Forest, Kenya. Macronutrients exerted a complex influence on guereza leaf choice at Kakamega. At a broad level, protein con- tent was the primary factor determining whether or not guerezas consumed specific leaf items, with eaten leaves at or above a protein threshold of ca. 14% dry matter. However, a finer grade analysis considering the selection ra- tios of only items eaten revealed that fiber played a much greater role than protein in influencing the rates at which different items were eaten relative to their abundance in the forest. Most minerals did not appear to influence leaf choice, though guerezas did exhibit strong selectivity for leaves rich in zinc. Guerezas avoided most leaves high in secondary compounds, though their top food item (Prunus africana mature leaves) contained some of the high- est condensed tannin concentrations of any leaves in their diet. Kakamega 1Department of Science and Conservation, Pittsburgh Zoo and PPG Aquarium, One Wild Place, Pittsburgh, Pennsylvania 15206.
    [Show full text]