8 Equivariant Cohomology

Total Page:16

File Type:pdf, Size:1020Kb

8 Equivariant Cohomology 8 Equivariant Cohomology References: Audin §5, Berline-Getzler-Vergne §7 . Definition 8.1 Let G be a compact Lie group. The universal bundle EG is a con- tractible space on which G acts freely. Definition 8.2 The classifying space BG is BG = EG/G. Proposition 8.3 H∗(BG)= S(g∗)G = S(t∗)W (polynomials on g invariant under the adjoint action, or polynomials on t invariant under the Weyl group action) Here, the degree in H∗(BG) is twice the degree as a polynomial on g. (Chern-Weil: evaluate polynomials on curvature) Example 8.4 S1 acts freely on all S2n+1, and these have homology only in dimen- sions 0 and 2n + 1. The universal space EU(1) is ∞ 2 S = {(z1, z2,...) ∈ C ⊗ Z : only finitely many nonzero terms, |zj| = 1} Xj = S1 ∪ S3 ∪ . 2n−1 2n+1 ∞ where S → S via (z1,...,zn) 7→ (z1,...,zn, 0). The space S is in fact contractible, so it is EU(1). Lemma 8.5 BU(1) = EU(1)/U(1) = CP ∞ Proposition 8.6 H∗(BU(1)) = C[x] where x has degree 2. Recall C[x] H∗(CP n)= . < xn+1 = 0 > 8.1 Homotopy quotients Suppose M is a manifold acted on by a compact Lie group (not necessarily freely). We want to find a substitute for the cohomology of M/G, which is in general not a manifold. Definition 8.7 ∗ ∗ HG(M)= H (MG) where we define the homotopy quotient MG =(M × EG)/G. 35 Proposition 8.8 If G acts freely on M then M/G is a smooth manifold and ∗ ∗ HG(M)= H (M/G) ∗ More generally, HG(M) is a module over the ring ∗ ∗ ∗ HG = HG(pt) = H (BG). 8.2 The Cartan model ∗ De Rham cohomology version of H (MG): Definition 8.9 ∗ ∗ ∗ G ΩG(M)=(Ω (M) ⊗ S(g )) where we have defined S(g∗)= {f : g → R : fis a polynomial} Here, S(g∗) is acted on by G through the coadjoint action of G on g∗. Example 8.10 T abelian: ∗ ∗ T ∗ ΩT (M) = Ω (M) ⊗ S(t ) since all polynomials on t are automatically invariant, because the action of T on t is trivial. Lemma 8.11 ∗ S(t )= C[x1,...,xℓ] where ℓ = dim(T ) Proposition 8.12 S(g∗)G = S(t∗)W where the Weyl group W acts on t ∗ Let X be a vector field on M. An element f ∈ ΩG(M) may be thought of as a G- equivariant map f : g → Ω∗(M), where the dependence of f(X) ∈ Ω∗(M) on X ∈ g ∗ is polynomial. The grading on ΩG(M) is defined by deg(f)= n + 2p if X 7→ f(X) is p-linear in X and f(X) ∈ Ωn(M). We may define a differential ∗ ∗ D : ΩG(M) → ΩG(M) by (Df)(X)= d(f(X)) − ιX# f(X) where X# is the vector field on M generated by the action of X ∈ g and ι denotes ∗ the interior product. Then D ◦ D = 0 and D increases the degree in ΩG(M) by 1. 36 ∗ Theorem 8.13 (Cartan [13]) HG(M) is naturally isomorphic to the cohomology ∗ ∗ H (ΩG(M),D) of this complex. ∗ ∗ ∗ ∗ G In particular, since D = 0 on ΩG, we see that HG = HG(pt)= S(g ) . If (M,ω) is a symplectic manifold equipped with the Hamiltonian action of a compact group G, with moment map Φ, we define 2 ω¯(X)= ω + ΦX ∈ ΩG(M). Lemma 8.14 Dω¯ = 0 Proof: (Dω¯)(X)= dω − iX# ω + dΦX But iX# ω = dΦX by definition of Hamiltonian group actions. 2 So Dω¯ = 0 and we can define [¯ω] ∈ HG(M). Definition 8.15 A principal circle bundle over a point p equipped with the action of a torus T is P = S1 equipped with a weight β ∈ Hom(T, U(1)). Thus T acts on S1 by t ∈ T : z ∈ S1 7→ β(t)z. Denote this bundle by Pβ. Example 8.16 T = U(1), β(t)= tm for m ∈ Z Denote this bundle by Pm. 8.3 Characteristic classes of bundles over BU(1) and BT Example 8.17 EU(1) ×U(1) Pm is the homotopy quotient of Pm. Explicitly this means {(z,w) ∈ EU(1) ×U(1) Pm}/ ∼ where (z,w) ∼ (zu−1, umw). Every point (z,w) is equivalent to a point (z′, 1) by choosing u = w−1/m so (z,w) ∼ (zw1/m, 1). 37 Since there are m solutions to u = w−1/m, any two of which differ by multiplication by a power of e2πi/m, we see that EU(1) ×U(1) Pm = EU(1)/Zm where 2πir/m Zm = {e , r = 0,...,m − 1}. Connection form θm on EU(1) ×U(1) Pm: Note that a connection form θ on EU(1) satisfies π−1(b) θ = 1. We also expect θm to satisfy R θm = 1. −1 Zπm (b) But since each fibre of EU(1) may be written as {eiφ,φ ∈ [0, 2π]} and the fibre of πm iφ 1 EU(1)/Z → BU(1) corresponds to {e ,φ ∈ [0, 2π/m]} , we have −1 θ = so m πm (b) m we need R Lemma 8.18 θm = mθ in terms of our earlier θ. It follows that the first Chern class c1(Pm) of the principal circle bundle Pm (which is represented in Chern-Weil theory by the curvature of dθm) satisfies Lemma 8.19 c1(Pm)(X)= mX ∗ where c = c1(EU(1) → BU(1)) is the generator of H (BU(1)). This is a special case of Lemma 8.20 Let T → P → M be a principal T -bundle with connection 1 θ =(θ1,...,θℓ) ∈ Ω (P ) ⊗ t. 1 Let β ∈ Hom(T, U(1)). Form the associated principal circle bundle P ×T S := {(p,s) ∈ P × S1}/ ∼ where (p,s) ∼ (pt,β(t−1)s) for t ∈ T . Write Lie(β) : t → R. Lie(β)= {(b1, . , bℓ)} 1 (bj ∈ Z). Then a connection form on P ×T S is ℓ bjθj = Lie(β)(θ). Xj=1 38 2 ∗ Lemma 8.21 If (x1,...,xℓ) ∈ H (BT ) are the generators of H (BT ) for a torus T of rank ℓ, then the first Chern class of the associated principal circle bundle 1 ET ×T (S )β specified by the weight β is ℓ 1 c1(ET ×T (S )β)= bjxj. Xj=1 8.4 Characteristic classes in terms of the Cartan model Definition 8.22 A G-equivariant vector bundle over a G-manifold M is a vector bundle V → M with an action of G on the total space covering the action of G on M. An equivariant principal circle bundle P → M is a principal circle bundle with the action of G on the total space P covering the action of M. Lemma 8.23 Suppose P → M is a principal circle bundle with connection θ ∈ 1 Ω (P ). Its first Chern class is represented in de Rham cohomology by c1(P ) = [dθ]. Lemma 8.24 If P →π M is a G-equivariant principal U(1)-bundle then its equivari- ant first Chern class is represented in the Cartan model by G c1 (P ) = [Dθ] = [dθ − iX# θ] where X# is the vector field on P generated by X ∈ g. ∗ Proof: For a collection of sections sα : Uα ⊂ M → P , sαDθ is closed but not ∗ exact in ΩG(M). In particular, if M is a point and P = Pβ = U(1) equipped with β ∈ Hom(T, U(1)), then c1(Pβ) = [Dθ]= −(Lie(β))(X)= −iX# θ (since dθ =0 on M). Lemma 8.25 If P → M is a principal U(1) bundle with T action, and the T action on M is trivial (but the T action on the total space of P is not trivial), then on each fibre π−1(m) ∼= S1, the T action is given by a weight β ∈ Hom(T, U(1)). Then T c1 (P ) = [Dθ] = [dθ − β(X)]. Remark 8.26 Atiyah-Bott p. 9 have a different convention on characteristic num- bers. One obtains their convention from ours by replacing X by −X. Our convention is consistent with Berline-Getzler-Vergne §7.1. The situation of the preceding Lemma arises in the following context: Lemma 8.27 Let M be equipped with a T action, and let F be a component of M T . ∗ For α ∈ HT (M) and iF : F → M the inclusion map, ∗ ∗ ∗ ∗ ∗ R iF α ∈ HT (F )= H (F ) ⊗ HT (pt) = H (F ) ⊗ [x1,...,xℓ]. 39 8.5 Equivariant first Chern class of a prequantum line bundle Definition 8.28 Let (M,ω) be a symplectic manifold with a Hamiltonian action of a group G. A prequantum bundle with connection is a principal circle bundle P → M ∗ for which c1(P ) = [ω], equipped with a connection θ for which dθ = π ω. Lemma 8.29 If we impose the condition that LX# θ = 0, then diX# θ = −iX# dθ = −iX# ω = −dΦX . It is thus natural to also impose the condition iX# θ = −ΦX . Thus the specification of a moment map for the group action is equivalent to specifying a lift of the action of T from M to the total space P . Lemma 8.30 If F ⊂ M is a component of the fixed point set, then ∗ 2 iF ω¯(X) ∈ ΩT (F ) = ω|F + ΦX (F ). 1 Proof: For any f ∈ F , P |f is a copy of S on which T acts using a weight βF ∈ Hom(T, U(1)).
Recommended publications
  • Realizing Cohomology Classes As Euler Classes 1
    Ó DOI: 10.2478/s12175-012-0057-2 Math. Slovaca 62 (2012), No. 5, 949–966 REALIZING COHOMOLOGY CLASSES AS EULER CLASSES Aniruddha C Naolekar (Communicated by J´ulius Korbaˇs ) s ◦ ABSTRACT. For a space X,letEk(X), Ek(X)andEk (X) denote respectively the set of Euler classes of oriented k-plane bundles over X, the set of Euler classes of stably trivial k-plane bundles over X and the spherical classes in Hk(X; Z). s ◦ We prove some general facts about the sets Ek(X), Ek(X)andEk (X). We also compute these sets in the cases where X is a projective space, the Dold manifold P (m, 1) and obtain partial computations in the case that X is a product of spheres. c 2012 Mathematical Institute Slovak Academy of Sciences 1. Introduction Given a topological space X, we address the question of which classes x ∈ Hk(X; Z) can be realized as the Euler class e(ξ)ofanorientedk-plane bundle ξ over X. We also look at the question of which integral cohomology classes are spherical. It is convenient to make the following definition. s º ≥ ÒØÓÒ 1.1 For a space X and an integer k 1, the sets Ek(X), Ek(X) ◦ and Ek (X) are defined to be k Ek(X)= e(ξ) ∈ H (X; Z) | ξ is an oriented k-plane bundle over X s k Ek(X)= e(ξ) ∈ H (X; Z) | ξ is a stably trivial k-plane bundle over X ◦ k k ∗ Ek (X)= x ∈ H (X; Z) | there exists f : S −→ X with f (x) =0 .
    [Show full text]
  • Connections on Bundles Md
    Dhaka Univ. J. Sci. 60(2): 191-195, 2012 (July) Connections on Bundles Md. Showkat Ali, Md. Mirazul Islam, Farzana Nasrin, Md. Abu Hanif Sarkar and Tanzia Zerin Khan Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh, Email: [email protected] Received on 25. 05. 2011.Accepted for Publication on 15. 12. 2011 Abstract This paper is a survey of the basic theory of connection on bundles. A connection on tangent bundle , is called an affine connection on an -dimensional smooth manifold . By the general discussion of affine connection on vector bundles that necessarily exists on which is compatible with tensors. I. Introduction = < , > (2) In order to differentiate sections of a vector bundle [5] or where <, > represents the pairing between and ∗. vector fields on a manifold we need to introduce a Then is a section of , called the absolute differential structure called the connection on a vector bundle. For quotient or the covariant derivative of the section along . example, an affine connection is a structure attached to a differentiable manifold so that we can differentiate its Theorem 1. A connection always exists on a vector bundle. tensor fields. We first introduce the general theorem of Proof. Choose a coordinate covering { }∈ of . Since connections on vector bundles. Then we study the tangent vector bundles are trivial locally, we may assume that there is bundle. is a -dimensional vector bundle determine local frame field for any . By the local structure of intrinsically by the differentiable structure [8] of an - connections, we need only construct a × matrix on dimensional smooth manifold . each such that the matrices satisfy II.
    [Show full text]
  • The Extension Problem in Complex Analysis II; Embeddings with Positive Normal Bundle Author(S): Phillip A
    The Extension Problem in Complex Analysis II; Embeddings with Positive Normal Bundle Author(s): Phillip A. Griffiths Source: American Journal of Mathematics, Vol. 88, No. 2 (Apr., 1966), pp. 366-446 Published by: The Johns Hopkins University Press Stable URL: http://www.jstor.org/stable/2373200 Accessed: 25/10/2010 12:00 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=jhup. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The Johns Hopkins University Press is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Mathematics. http://www.jstor.org THE EXTENSION PROBLEM IN COMPLEX ANALYSIS II; EMBEDDINGS WITH POSITIVE NORMAL BUNDLE.
    [Show full text]
  • Vector Bundles on Projective Space
    Vector Bundles on Projective Space Takumi Murayama December 1, 2013 1 Preliminaries on vector bundles Let X be a (quasi-projective) variety over k. We follow [Sha13, Chap. 6, x1.2]. Definition. A family of vector spaces over X is a morphism of varieties π : E ! X −1 such that for each x 2 X, the fiber Ex := π (x) is isomorphic to a vector space r 0 0 Ak(x).A morphism of a family of vector spaces π : E ! X and π : E ! X is a morphism f : E ! E0 such that the following diagram commutes: f E E0 π π0 X 0 and the map fx : Ex ! Ex is linear over k(x). f is an isomorphism if fx is an isomorphism for all x. A vector bundle is a family of vector spaces that is locally trivial, i.e., for each x 2 X, there exists a neighborhood U 3 x such that there is an isomorphism ': π−1(U) !∼ U × Ar that is an isomorphism of families of vector spaces by the following diagram: −1 ∼ r π (U) ' U × A (1.1) π pr1 U −1 where pr1 denotes the first projection. We call π (U) ! U the restriction of the vector bundle π : E ! X onto U, denoted by EjU . r is locally constant, hence is constant on every irreducible component of X. If it is constant everywhere on X, we call r the rank of the vector bundle. 1 The following lemma tells us how local trivializations of a vector bundle glue together on the entire space X.
    [Show full text]
  • Notes on the Atiyah-Singer Index Theorem Liviu I. Nicolaescu
    Notes on the Atiyah-Singer Index Theorem Liviu I. Nicolaescu Notes for a topics in topology course, University of Notre Dame, Spring 2004, Spring 2013. Last revision: November 15, 2013 i The Atiyah-Singer Index Theorem This is arguably one of the deepest and most beautiful results in modern geometry, and in my view is a must know for any geometer/topologist. It has to do with elliptic partial differential opera- tors on a compact manifold, namely those operators P with the property that dim ker P; dim coker P < 1. In general these integers are very difficult to compute without some very precise information about P . Remarkably, their difference, called the index of P , is a “soft” quantity in the sense that its determination can be carried out relying only on topological tools. You should compare this with the following elementary situation. m n Suppose we are given a linear operator A : C ! C . From this information alone we cannot compute the dimension of its kernel or of its cokernel. We can however compute their difference which, according to the rank-nullity theorem for n×m matrices must be dim ker A−dim coker A = m − n. Michael Atiyah and Isadore Singer have shown in the 1960s that the index of an elliptic operator is determined by certain cohomology classes on the background manifold. These cohomology classes are in turn topological invariants of the vector bundles on which the differential operator acts and the homotopy class of the principal symbol of the operator. Moreover, they proved that in order to understand the index problem for an arbitrary elliptic operator it suffices to understand the index problem for a very special class of first order elliptic operators, namely the Dirac type elliptic operators.
    [Show full text]
  • 1.10 Partitions of Unity and Whitney Embedding 1300Y Geometry and Topology
    1.10 Partitions of unity and Whitney embedding 1300Y Geometry and Topology Theorem 1.49 (noncompact Whitney embedding in R2n+1). Any smooth n-manifold may be embedded in R2n+1 (or immersed in R2n). Proof. We saw that any manifold may be written as a countable union of increasing compact sets M = [Ki, and that a regular covering f(Ui;k ⊃ Vi;k;'i;k)g of M can be chosen so that for fixed i, fVi;kgk is a finite ◦ ◦ cover of Ki+1nKi and each Ui;k is contained in Ki+2nKi−1. This means that we can express M as the union of 3 open sets W0;W1;W2, where [ Wj = ([kUi;k): i≡j(mod3) 2n+1 Each of the sets Ri = [kUi;k may be injectively immersed in R by the argument for compact manifolds, 2n+1 since they have a finite regular cover. Call these injective immersions Φi : Ri −! R . The image Φi(Ri) is bounded since all the charts are, by some radius ri. The open sets Ri; i ≡ j(mod3) for fixed j are disjoint, and by translating each Φi; i ≡ j(mod3) by an appropriate constant, we can ensure that their images in R2n+1 are disjoint as well. 0 −! 0 2n+1 Let Φi = Φi + (2(ri−1 + ri−2 + ··· ) + ri) e 1. Then Ψj = [i≡j(mod3)Φi : Wj −! R is an embedding. 2n+1 Now that we have injective immersions Ψ0; Ψ1; Ψ2 of W0;W1;W2 in R , we may use the original argument for compact manifolds: Take the partition of unity subordinate to Ui;k and resum it, obtaining a P P 3-element partition of unity ff1; f2; f3g, with fj = i≡j(mod3) k fi;k.
    [Show full text]
  • K-Theoryand Characteristic Classes
    MATH 6530: K-THEORY AND CHARACTERISTIC CLASSES Taught by Inna Zakharevich Notes by David Mehrle [email protected] Cornell University Fall 2017 Last updated November 8, 2018. The latest version is online here. Contents 1 Vector bundles................................ 3 1.1 Grassmannians ............................ 8 1.2 Classification of Vector bundles.................... 11 2 Cohomology and Characteristic Classes................. 15 2.1 Cohomology of Grassmannians................... 18 2.2 Characteristic Classes......................... 22 2.3 Axioms for Stiefel-Whitney classes................. 26 2.4 Some computations.......................... 29 3 Cobordism.................................. 35 3.1 Stiefel-Whitney Numbers ...................... 35 3.2 Cobordism Groups.......................... 37 3.3 Geometry of Thom Spaces...................... 38 3.4 L-equivalence and Transversality.................. 42 3.5 Characteristic Numbers and Boundaries.............. 47 4 K-Theory................................... 49 4.1 Bott Periodicity ............................ 49 4.2 The K-theory spectrum........................ 56 4.3 Some properties of K-theory..................... 58 4.4 An example: K-theory of S2 ..................... 59 4.5 Power Operations............................ 61 4.6 When is the Hopf Invariant one?.................. 64 4.7 The Splitting Principle........................ 66 5 Where do we go from here?........................ 68 5.1 The J-homomorphism ........................ 70 5.2 The Chern Character and e invariant...............
    [Show full text]
  • Characteristic Classes and K-Theory Oscar Randal-Williams
    Characteristic classes and K-theory Oscar Randal-Williams https://www.dpmms.cam.ac.uk/∼or257/teaching/notes/Kthy.pdf 1 Vector bundles 1 1.1 Vector bundles . 1 1.2 Inner products . 5 1.3 Embedding into trivial bundles . 6 1.4 Classification and concordance . 7 1.5 Clutching . 8 2 Characteristic classes 10 2.1 Recollections on Thom and Euler classes . 10 2.2 The projective bundle formula . 12 2.3 Chern classes . 14 2.4 Stiefel–Whitney classes . 16 2.5 Pontrjagin classes . 17 2.6 The splitting principle . 17 2.7 The Euler class revisited . 18 2.8 Examples . 18 2.9 Some tangent bundles . 20 2.10 Nonimmersions . 21 3 K-theory 23 3.1 The functor K ................................. 23 3.2 The fundamental product theorem . 26 3.3 Bott periodicity and the cohomological structure of K-theory . 28 3.4 The Mayer–Vietoris sequence . 36 3.5 The Fundamental Product Theorem for K−1 . 36 3.6 K-theory and degree . 38 4 Further structure of K-theory 39 4.1 The yoga of symmetric polynomials . 39 4.2 The Chern character . 41 n 4.3 K-theory of CP and the projective bundle formula . 44 4.4 K-theory Chern classes and exterior powers . 46 4.5 The K-theory Thom isomorphism, Euler class, and Gysin sequence . 47 n 4.6 K-theory of RP ................................ 49 4.7 Adams operations . 51 4.8 The Hopf invariant . 53 4.9 Correction classes . 55 4.10 Gysin maps and topological Grothendieck–Riemann–Roch . 58 Last updated May 22, 2018.
    [Show full text]
  • The Atiyah-Singer Index Theorem*
    CHAPTER 5 The Atiyah-Singer Index Theorem* Peter B. Gilkey Mathematics Department, University of Oregon, Eugene, OR 97403, USA E-mail: gilkey@ math. uo regon, edu Contents 0. Introduction ................................................... 711 1. Clifford algebras and spin structures ..................................... 711 2. Spectral theory ................................................. 718 3. The classical elliptic complexes ........................................ 725 4. Characteristic classes of vector bundles .................................... 730 5. Characteristic classes of principal bundles .................................. 737 6. The index theorem ............................................... 739 References ..................................................... 745 *Research partially supported by the NSF (USA) and MPIM (Germany). HANDBOOK OF DIFFERENTIAL GEOMETRY, VOL. I Edited by EJ.E. Dillen and L.C.A. Verstraelen 2000 Elsevier Science B.V. All fights reserved 709 The Atiyah-Singer index theorem 711 O. Introduction Here is a brief outline to the paper. In Section 1, we review some basic facts concerning Clifford algebras and spin structures. In Section 2, we discuss the spectral theory of self- adjoint elliptic partial differential operators and give the Hodge decomposition theorem. In Section 3, we define the classical elliptic complexes: de Rham, signature, spin, spin c, Yang-Mills, and Dolbeault; these elliptic complexes are all of Dirac type. In Section 4, we define the various characteristic classes for vector bundles that we shall need: Chern forms, Pontrjagin forms, Chern character, Euler form, Hirzebruch L polynomial, A genus, and Todd polynomial. In Section 5, we discuss the characteristic classes for principal bundles. In Section 6, we give the Atiyah-Singer index theorem; the Chern-Gauss-Bonnet formula, the Hirzebruch signature formula, and the Riemann-Roch formula are special cases of the index theorem. We also discuss the equivariant index theorem and the index theorem for manifolds with boundary.
    [Show full text]
  • Formal GAGA for Good Moduli Spaces
    FORMAL GAGA FOR GOOD MODULI SPACES ANTON GERASCHENKO AND DAVID ZUREICK-BROWN Abstract. We prove formal GAGA for good moduli space morphisms under an assumption of “enough vector bundles” (which holds for instance for quotient stacks). This supports the philoso- phy that though they are non-separated, good moduli space morphisms largely behave like proper morphisms. 1. Introduction Good moduli space morphisms are a common generalization of good quotients by linearly re- ductive group schemes [GIT] and coarse moduli spaces of tame Artin stacks [AOV08, Definition 3.1]. Definition ([Alp13, Definition 4.1]). A quasi-compact and quasi-separated morphism of locally Noetherian algebraic stacks φ: X → Y is a good moduli space morphism if • (φ is Stein) the morphism OY → φ∗OX is an isomorphism, and • (φ is cohomologically affine) the functor φ∗ : QCoh(OX ) → QCoh(OY ) is exact. If φ: X → Y is such a morphism, then any morphism from X to an algebraic space factors through φ [Alp13, Theorem 6.6].1 In particular, if there exists a good moduli space morphism φ: X → X where X is an algebraic space, then X is determined up to unique isomorphism. In this case, X is said to be the good moduli space of X . If X = [U/G], this corresponds to X being a good quotient of U by G in the sense of [GIT] (e.g. for a linearly reductive G, [Spec R/G] → Spec RG is a good moduli space). In many respects, good moduli space morphisms behave like proper morphisms. They are uni- versally closed [Alp13, Theorem 4.16(ii)] and weakly separated [ASvdW10, Proposition 2.17], but since points of X can have non-proper stabilizer groups, good moduli space morphisms are gen- erally not separated (e.g.
    [Show full text]
  • Classifying Spaces for 1-Truncated Compact Lie Groups
    CLASSIFYING SPACES FOR 1-TRUNCATED COMPACT LIE GROUPS CHARLES REZK Abstract. A 1-truncated compact Lie group is any extension of a finite group by a torus. In G this note we compute the homotopy types of Map(BG; BH) and (BGH) for compact Lie groups G and H with H 1-truncated, showing that they are computed entirely in terms of spaces of homomorphisms from G to H. These results generalize the well-known case when H is finite, and the case of H compact abelian due to Lashof, May, and Segal. 1. Introduction By a 1-truncated compact Lie group H, we mean one whose homotopy groups vanish in dimensions 2 and greater. Equivalently, H is a compact Lie group with identity component H0 a torus (isomorphic to some U(1)d); i.e., an extension of a finite group by a torus. The class of 1-truncated compact Lie groups includes (i) all finite groups, and (ii) all compact abelian Lie groups, both of which are included in the class (iii) all groups which are isomorphic to a product of a compact abelian Lie group with a finite group, or equivalently a product of a torus with a finite group. The goal of this paper is to extend certain results, which were already known for finite groups, compact abelian Lie groups, or products thereof, to all 1-truncated compact Lie groups. We write Hom(G; H) for the space of continuous homomorphisms, equipped with the compact- open topology. Our first theorem relates this to the space of based maps between classifying spaces.
    [Show full text]
  • On the Product in Negative Tate Cohomology for Finite Groups 2
    ON THE PRODUCT IN NEGATIVE TATE COHOMOLOGY FOR FINITE GROUPS HAGGAI TENE Abstract. Our aim in this paper is to give a geometric description of the cup product in negative degrees of Tate cohomology of a finite group with integral coefficients. By duality it corresponds to a product in the integral homology of BG: Hn(BG, Z) ⊗ Hm(BG, Z) → Hn+m+1(BG, Z) for n,m > 0. We describe this product as join of cycles, which explains the shift in dimensions. Our motivation came from the product defined by Kreck using stratifold homology. We then prove that for finite groups the cup product in negative Tate cohomology and the Kreck product coincide. The Kreck product also applies to the case where G is a compact Lie group (with an additional dimension shift). Introduction For a finite group G one defines Tate cohomology with coefficients in a Z[G] module M, denoted by H∗(G, M). This is a multiplicative theory: b Hn(G, M) ⊗ Hm(G, M ′) → Hn+m(G, M ⊗ M ′) b b b and the product is called cup product. For n > 0 there is a natural isomor- phism Hn(G, M) → Hn(G, M), and for n < −1 there is a natural isomorphism b Hn(G, M) → H (G, M). We restrict ourselves to coefficients in the triv- b −n−1 ial module Z. In this case, H∗(G, Z) is a graded ring. Also, in this case the b group cohomology and homology are actually the cohomology and homology of a topological space, namely BG, the classifying space of principal G bundles - n n arXiv:0911.3014v2 [math.AT] 27 Jul 2011 H (G, Z) =∼ H (BG, Z) and Hn(G, Z) =∼ Hn(BG, Z).
    [Show full text]