Flowering Plants (Angiosperms)

Total Page:16

File Type:pdf, Size:1020Kb

Flowering Plants (Angiosperms) Flowering Plants (Angiosperms) Angiosperms or flowering plants are “protected seed vascular plants” because their seeds are protected inside a fruit. They include herbaceous plants, grasses and deciduous or hardwood trees. There are thought to be more than 235,000 species of angiosperms. Physical Traits: Angiosperms can be the tiniest pondweed to most giant sugar maple tree. Their powerful vascu- lar tissue allows them to grow quite large with xylem tissue bringing water and minerals from deep in the ground to branches sometimes eighty feet in the air. Woody angiosperms are called hardwood trees. They have two important traits which make them different from gymnosperms and perhaps more successful in their own niche. They have flowers, inside which are the sexual organs, both male and female. The flower attracts pollinators like insects, bats and birds. Once pollinated, it develops seeds inside some form of fruit. The fruit can be fleshy, dry or highly adapted for dispersal. Angiosperms can be divided into two classes - monocots and dicots. The monocots are herbaceous plants with: • flower parts divided into 3 parts • parallel leaf veins • scattered vascular bundles in the stem • one cotyledon (seed leaf) These include lilies, palms corn, rice, etc. The dicots are herbaceous or woody plants with: • flower parts divided into 4 and 5 parts • a net leaf vein pattern • vascular bundles arranged in a circle in the stem • 2 cotyledons (seed leaves) These include the maples, mustards, peas, cactus, buttercups, pinks and rose families (common fruits). ©Sheri Amsel www.exploringnature.org Flowering Plant Reproduction: Flower can take many different forms and can be very simple or very complex. In general, they are made up of rings of leaf-like structures that sit on a receptacle. 1) The first ring is made up of thesepals , which are often green and cover and protect the flower before it blooms. 2) Inside the sepals, the next ring is made up of petals. They are usually large, colorful and showy to attract pollinators. 3) Then comes a ring of stamen - the male part of the flower that produces pollen. Each stamen is made up of a long, thin filament topped with a pollen-covered anther. It is in the anther where the microspores develop into pollen grains. The pollen is then transport by wind or animal pollinators to the female parts of the flower (or other flowers). 4) The stamens generally encircle the female part of the flower - thepistil . The pistil has 3 parts. • The stigma is the sticky tip where pollen grains stick. • The ovary is at the base of the pistil and contains the ovules. • The style is the thin stalk that connects the stigma down to the ovary. After the pollen grains land on the stigma, they grow pollen tubes down the style into the ovule. They each release two sperm into the ovule. One fertilizes the egg and the other fuses with other the divided polar nuclei to form the food for the developing seed, called endosperm. This double fertilization allows flowering plants to produce seed that contain the embryo, food and a protective seed coat. The wall of the ovary then develops into a fruit that surrounds the seeds - the so-called covered seeds of the angiosperm. The fruit protects the seeds and attracts animals that will carry the seeds away to grow elsewhere (seed dispersal). Plant Reproduction - A General Explanation Plant life cycles are more complex than animal life cycles. In animals, we get half our hereditary material (genes) from our mother and half from our father. The one-cell egg and one-cell sperm each contain half, so are said to be haploid. It isnt until the egg is fertilized by the sperm that it becomes diploid - containing a whole set of genetic information. Plants have both a haploid and diploid phase of reproduction, which are both multi-cellular. In the life cycle of a plant, they go back and forth between these two phases. This is calledalternation of generations. The two phases of reproduction are called the sporophyte and the gametophyte. • In nonvascular plants (mosses) the gametophyte generation is the phase we see as the plant in the forest. • In vascular plants (flowering plants and conifers) the sporophyte generation is the phase we see. Vascular plants are adapted for life on dry land with seeds protected from drying out by a seed coat. They also have ways to collect water (roots) and food (leaves) and move it through the plant (xylem and phloem). The gametophyte generation forms the gametes (sperm and egg) that are haploid (n) (with only half the genetic material). During fertilization (pollination), they fuse together and form a diploid (2n) plant with its full compliment of genes. This is the sporophyte generation. Summary:The gametophyte generation is haploid and the sporophyte generation is diploid. ©Sheri Amsel www.exploringnature.org .
Recommended publications
  • Gymnosperms the MESOZOIC: ERA of GYMNOSPERM DOMINANCE
    Chapter 24 Gymnosperms THE MESOZOIC: ERA OF GYMNOSPERM DOMINANCE THE VASCULAR SYSTEM OF GYMNOSPERMS CYCADS GINKGO CONIFERS Pinaceae Include the Pines, Firs, and Spruces Cupressaceae Include the Junipers, Cypresses, and Redwoods Taxaceae Include the Yews, but Plum Yews Belong to Cephalotaxaceae Podocarpaceae and Araucariaceae Are Largely Southern Hemisphere Conifers THE LIFE CYCLE OF PINUS, A REPRESENTATIVE GYMNOSPERM Pollen and Ovules Are Produced in Different Kinds of Structures Pollination Replaces the Need for Free Water Fertilization Leads to Seed Formation GNETOPHYTES GYMNOSPERMS: SEEDS, POLLEN, AND WOOD THE ECOLOGICAL AND ECONOMIC IMPORTANCE OF GYMNOSPERMS The Origin of Seeds, Pollen, and Wood Seeds and Pollen Are Key Reproductive SUMMARY Innovations for Life on Land Seed Plants Have Distinctive Vegetative PLANTS, PEOPLE, AND THE Features ENVIRONMENT: The California Coast Relationships among Gymnosperms Redwood Forest 1 KEY CONCEPTS 1. The evolution of seeds, pollen, and wood freed plants from the need for water during reproduction, allowed for more effective dispersal of sperm, increased parental investment in the next generation and allowed for greater size and strength. 2. Seed plants originated in the Devonian period from a group called the progymnosperms, which possessed wood and heterospory, but reproduced by releasing spores. Currently, five lineages of seed plants survive--the flowering plants plus four groups of gymnosperms: cycads, Ginkgo, conifers, and gnetophytes. Conifers are the best known and most economically important group, including pines, firs, spruces, hemlocks, redwoods, cedars, cypress, yews, and several Southern Hemisphere genera. 3. The pine life cycle is heterosporous. Pollen strobili are small and seasonal. Each sporophyll has two microsporangia, in which microspores are formed and divide into immature male gametophytes while still retained in the microsporangia.
    [Show full text]
  • California's Native Ferns
    CALIFORNIA’S NATIVE FERNS A survey of our most common ferns and fern relatives Native ferns come in many sizes and live in many habitats • Besides living in shady woodlands and forests, ferns occur in ponds, by streams, in vernal pools, in rock outcrops, and even in desert mountains • Ferns are identified by producing fiddleheads, the new coiled up fronds, in spring, and • Spring from underground stems called rhizomes, and • Produce spores on the backside of fronds in spore sacs, arranged in clusters called sori (singular sorus) Although ferns belong to families just like other plants, the families are often difficult to identify • Families include the brake-fern family (Pteridaceae), the polypody family (Polypodiaceae), the wood fern family (Dryopteridaceae), the blechnum fern family (Blechnaceae), and several others • We’ll study ferns according to their habitat, starting with species that live in shaded places, then moving on to rock ferns, and finally water ferns Ferns from moist shade such as redwood forests are sometimes evergreen, but also often winter dormant. Here you see the evergreen sword fern Polystichum munitum Note that sword fern has once-divided fronds. Other features include swordlike pinnae and round sori Sword fern forms a handsome coarse ground cover under redwoods and other coastal conifers A sword fern relative, Dudley’s shield fern (Polystichum dudleyi) differs by having twice-divided pinnae. Details of the sori are similar to sword fern Deer fern, Blechnum spicant, is a smaller fern than sword fern, living in constantly moist habitats Deer fern is identified by having separate and different looking sterile fronds and fertile fronds as seen in the previous image.
    [Show full text]
  • Reproduction in Plants Which But, She Has Never Seen the Seeds We Shall Learn in This Chapter
    Reproduction in 12 Plants o produce its kind is a reproduction, new plants are obtained characteristic of all living from seeds. Torganisms. You have already learnt this in Class VI. The production of new individuals from their parents is known as reproduction. But, how do Paheli thought that new plants reproduce? There are different plants always grow from seeds. modes of reproduction in plants which But, she has never seen the seeds we shall learn in this chapter. of sugarcane, potato and rose. She wants to know how these plants 12.1 MODES OF REPRODUCTION reproduce. In Class VI you learnt about different parts of a flowering plant. Try to list the various parts of a plant and write the Asexual reproduction functions of each. Most plants have In asexual reproduction new plants are roots, stems and leaves. These are called obtained without production of seeds. the vegetative parts of a plant. After a certain period of growth, most plants Vegetative propagation bear flowers. You may have seen the It is a type of asexual reproduction in mango trees flowering in spring. It is which new plants are produced from these flowers that give rise to juicy roots, stems, leaves and buds. Since mango fruit we enjoy in summer. We eat reproduction is through the vegetative the fruits and usually discard the seeds. parts of the plant, it is known as Seeds germinate and form new plants. vegetative propagation. So, what is the function of flowers in plants? Flowers perform the function of Activity 12.1 reproduction in plants. Flowers are the Cut a branch of rose or champa with a reproductive parts.
    [Show full text]
  • Seed and Seed Dispersal
    1st GRADE SEEDS AND SEED DISPERSAL Summary: This lab is all about seeds. First, students take apart a swollen lima bean seed and find the seed coat, food storage area, and the plant embryo. Second, the students sort a bag of seeds into groups and notice that all seeds look different but have the same three seed parts. Finally, students sort seeds that are dispersed in different ways. Students identify seeds that are dispersed by wind, hitchiking, animals carrying and burying, and animals eating and pooping. Intended Learning Outcomes for 1st Grade: Objective 1: Framing questions. Conducting investigations. Drawing conclusions. Objective 2: Developing social interaction skills with peers. Sharing ideas with peers. Connecting ideas with reasons. Objective 3: Ideas are supported by reasons. Communicaiton of ideas in science is important for helping to check the reasons for ideas. Utah State Core Curriculum Tie: Standard 4 Objective 1: Life Science Analyze the individual similarities and differences within and across larger groups. Standard 4 Objective 2: Life Science Describe and model life cycles of living things. Make observations about living things and their environment using the five senses. Preparation time: 1 hour to locate seeds the first time, then 20 min if seeds are reused Lesson time: 50 min Small group size: works best with one adult for every 5 students Materials: 1. one petri dish or paper towel per student 2. 1 bag of dried lima beans 3. One seed classification bag per group, this should include 5-6 seeds of about 15 different seed types. Use old seeds from seed packets or spices or seeds or nuts you may have in your kitchen.
    [Show full text]
  • The Big Bloom—How Flowering Plants Changed the World
    The Big Bloom—How Flowering Plants Changed the World Written by Michael Klesius Republished from the pages of National Geographic magazine -- July 2002 In the summer of 1973 sunflowers appeared in my father's vegetable garden. They seemed to sprout overnight in a few rows he had lent that year to new neighbors from California. Only six years old at the time, I was at first put off by these garish plants. Such strange and vibrant flowers seemed out of place among the respectable beans, peppers, spinach, and other vegetables we had always grown. Gradually, however, the brilliance of the sunflowers won me over. Their fiery halos relieved the green monotone that by late summer ruled the garden. I marveled at birds that clung upside down to the shaggy, gold disks, wings fluttering, looting the seeds. Sunflowers defined flowers for me that summer and changed my view of the world. Flowers have a way of doing that. They began changing the way the world looked almost as soon as they appeared on Earth about 130 million years ago, during the Cretaceous period. That's relatively recent in geologic time: If all Earth's history were compressed into an hour, flowering plants would exist for only the last 90 seconds. But once they took firm root about 100 million years ago, they swiftly diversified in an explosion of varieties that established most of the flowering plant families of the modern world. Today flowering plant species outnumber by twenty to one those of ferns and cone-bearing trees, or conifers, which had thrived for 200 million years before the first bloom appeared.
    [Show full text]
  • Seed Dispersal: Part 2 in Seed Dispersal Part 2, Find out Three Ways That Seeds Are Dispersed from the Initial Seed Producing Plant: Wind, Water, and Gravity
    Finally Fall: Seed Dispersal: Part 2 In Seed Dispersal Part 2, find out three ways that seeds are dispersed from the initial seed producing plant: wind, water, and gravity. Seed Dispersal Part 1 focused on the movement of seeds from the parent plant to different areas of the environment and that gravity alone, wildlife and humans are often involved. Plants disperse their seeds throughout an ecosystem and this limits competition of necessary resources like sunlight as they grow and mature. Seed Dispersal by Wind Seed dispersal by wind is a very common mechanism. Use the space below to make predictions about how wind is involved in seed dispersal. Do you know any plant species where wind disperses their seeds? ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ Wind is the main source of seed dispersal for many native plants. Have you ever seen a little yellow dandelion? Have you ever looked at that same flower and noticed that it has turned fluffy and white? The fluff you may have seen were the seeds of the dandelion! Generally, when flowers are at the end of their life cycle they will go to seed, which means the plant will use its energy to focus on reproduction. In the case of a dandelion, seeds are so light and fluffy, they are easily transported by the wind as it blows. Other factors can help the wind pick up the seeds. For example, if an animal walks into the dandelion that has gone to seed, the seeds may be released from the stalk of the plant. Seeds then can be transported by the wind even more effortlessly, having gotten a jump start on the process thanks to that animal.
    [Show full text]
  • Tucson Cactus and Succulent Society Guide to Common Cactus and Succulents of Tucson
    Tucson Cactus and Succulent Society Guide to Common Cactus and Succulents of Tucson http://www.tucsoncactus.org/c-s_database/index.html Item ID: 1 Item ID: 2 Family: Cactaceae Family: Cactaceae Genus: Ferocactus Genus: Echinocactus Species: wislizenii Species: grusonii Common Name: Fishhook Barrel Common Name: Golden Barrel Habitat: Various soil types from 1,000 Cactus to 6,000 feet elevation from grasslands Habitat: Located on rolling hills to rocky mountainous areas. and cliffs. Range: Arizona, southwestern New Range: Limited to small areas in Mexico, limited extremes of western Queretaro, Mexico. The popula- Texas, Sonora, northwest Chihuahua tion had become very low in num- and northern Sinaloa, Mexico bers over the years but is just Care: An extremely easy plant to grow now beginning to increase due to in and around the Tucson area. It re- protective laws and the fact that Photo Courtesy of Vonn Watkins quires little attention or special care as this plant is now in mass cultiva- ©1999 it is perfectly at home in almost any tion all over the world. garden setting. It is very tolerant of ex- Photo Courtesy of American Desert Care: The Golden Barrel has slow- Description treme heat as well as cold. Cold hardi- Plants ly become one of the most pur- This popular barrel cactus is noted ness tolerance is at around 10 degrees chased plants for home landscape for the beautiful golden yellow farenheit. Description in Tucson. It is an easy plant to spines that thickly surround the Propagation: Propagation of this cac- This plant is most recognized by the grow and takes no special care.
    [Show full text]
  • Handouts-Lect. 30 Gymnosperms and Angiosperms.Pdf
    Lecture 30 Gymnosperms and Angiosperms Gymnosperms Gymnosperms means “naked seed” and are are nonflowering plants. Their seeds that do not develop within an enclosed structure. Examples are conifers, cycads, Ginkgo, and Gnetales. Gymnosperm seeds develop either on the surface of scale or a leaf-like appendage of cones or at the end of short stalks. Evolution of gymnosperms Seed ferns were the first seed plants, protecting their reproductive parts in structures called capsules. Seed ferns gave rise to the gymnosperms during the Paleozoic Era, about 390 million years ago. Gymnosperms include the gingkoes and conifers and inhabit many, ecosystem such as the taiga and the alpine forests, because they are well adapted for cold weather. True seed plants became more numerous and diverse during the Carboniferous period around 319 million years ago; an explosion that appears to be due to a whole genome duplication event. Gymnosperms do not depend on water for fertilization (have air‐borne pollen). Life Cycle of Gymnosperms 1. Gymnosperms are vascular plants that produce seeds in cones. Examples include conifers such as pine and spruce trees. The gymnosperm life cycle has a dominant sporophyte generation. Both gametophytes and the next generation’s new sporophytes develop on the sporophyte parent plant. 2. Cones form on a mature sporophyte plant. Inside male cones, male spores develop into male gametophytes. Each male gametophyte consists of several cells enclosed within a grain of pollen. Inside female cones, female spores develop into female gametophytes. Each female gametophyte produces an egg inside an ovule. 3. Pollination occurs when pollen is transferred from a male to female cone.
    [Show full text]
  • JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
    UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups.
    [Show full text]
  • Basic Botany
    Basic Botany - Flower Structure The Birmingham Botanical Gardens & Glasshouses Brief Descriptions of Activities Flower Structure • a Study Centre-led activity • Using large-scale models and bee (glove puppet) to take pupils through the basic flower parts and their functions Investigating Floral Structure A wide range of flowers are always on display in the glasshouses. Their structure can be recorded in a variety of ways: • Directed observation through use of questionnaires • Drawing half a flower and labelling its structure • Creating a plan of the flower as if viewed from above • Creating a simple floral formula (this worksheet is using a simplified form of the recording system used by botanists) See worksheets 1-4 at back of booklet. Pollination Mechanisms • An extension of this work is to look at a variety of ways in which plants are designed in order to attract different pollinators See ‘A Guide To Pollinators’ at back of booklet. • Busy Bees. This is a game where pupils act out pollination See worksheet 5 at back of booklet Guide To Pollinators “Bee Flowers” Typically yellow, blue or purple. They produce pollen and lots of nectar, are often marked with lines and blotches and are sweetly scented at certain times of the day. “Butterfly Flowers” Vivid colours, often purple, red or white. Usually open during the day with a long thin corolla tube, lots of nectar and a strong scent. “Moth Flowers” Often white, p ink or pale yellow, open at night and have a heavy scent. “Wasp Flowers” Often pinkish or dirty red, with horizontal or drooping cups into which the short tongued wasp can push its head.
    [Show full text]
  • Flowering Plants; They Were Too Numerous and Too Varied, and There Were Too Few Fos- Sils to Sort out Which Were More Primitive
    NEWSFOCUS embryo that serves as its food supply. Darwin was perplexed by the diversity of On the Origin of flowering plants; they were too numerous and too varied, and there were too few fos- sils to sort out which were more primitive. Flowering Plants Throughout much of the 20th century, mag- nolia relatives with relatively large flowers were leading candidates for the most primi- how flowers got started—and from which tive living flowers, although a few ancestor. Today, researchers have analytical researchers looked to small herbs instead. tools, fossils, genomic data, and insights that In the late 1990s, molecular systematics Darwin could never have imagined, all of came to the rescue, with several reports pre- which make these mysteries less abom- senting a fairly consistent picture of the inable. Over the past 40 years, techniques lower branches of the angiosperm tree. An for assessing the relationships between obscure shrub found only in New Caledonia organisms have greatly improved, and gene emerged as a crucial window to the past. sequences, as well as morphology, now help Amborella trichopoda, with its 6-millimeter researchers sort out which angiosperms greenish-yellow flowers, lives deep in the arose early and which arose late. New fossil cloud forests there. In multiple gene-based finds and new ways to study them—with assessments, including an analysis in 2007 synchrotron radiation, for example—pro- of 81 genes from chloroplast genomes vide a clearer view of the detailed anatomy belonging to 64 species, Amborella sits of ancient plants. And researchers from var- at the base of the angiosperm family tree, ious fields are figuring out genomic changes the sister group of all the rest of the that might explain the amazing success of angiosperms.
    [Show full text]
  • Plant Identification Categories
    Plant Identification Categories Field guides and internet resources are available for each of the highlighted categories. Non-vascular plant — Does not use a system of vessels to transport water and nutrients between different parts of the plant. Moss A type of green plant with very small leaves and no flowers; can be found growing on rocks, bark, or wet ground. Vascular plant — Has lignified tissues (xylem, phloem) to transport water, nutrients and photosynthetic products throughout the plant. A. Fern Seedless, non-flowering plant, of tropical to temperate regions, characterized by true roots produced from a rhizome, triangular fronds that uncoil upward and have a branching vein system, and reproduction by spores contained in sporangia that appear as brown dots on the underside of the fronds. B. Herbaceous Flowering plant whose leaves and stems die down to the soil level at the end of the growing season (no persistent above-ground woody tissue); includes forbs and graminoids. 1. Forb — Any broad-leaved non-woody herbaceous plant which is not a grass, sedge or rush. wildflower — Uncultivated flowering plant. aquatic — Grows in water or swampy area. vine — Stem requires support; climbs by tendrils or twining, or creeps along the ground. © 2011, Angelyn Whitmeyer, all rights reserved. ❏❏❏ www.IdentifyThatPlant.com 2. Graminoid — Grass-like herbaceous plant with leaves that are mostly very narrow or linear in outline. grass — “True grass” with jointed stems, slender sheathing leaves, and flowers borne in spikelets. sedge — Typically grows on wet ground and has rhizomes, triangular stems, and minute flowers in spikelets. rush — Distinguished by cylindrical stalks or hollow, stemlike leaves growing in moist or shady locations.
    [Show full text]