Motion of a Gyroscope on a Closed Timelike Curve
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Simple Derivation of the Lorentz Transformation and of the Related Velocity and Acceleration Formulae. Jean-Michel Levy
A simple derivation of the Lorentz transformation and of the related velocity and acceleration formulae. Jean-Michel Levy To cite this version: Jean-Michel Levy. A simple derivation of the Lorentz transformation and of the related velocity and acceleration formulae.. American Journal of Physics, American Association of Physics Teachers, 2007, 75 (7), pp.615-618. 10.1119/1.2719700. hal-00132616 HAL Id: hal-00132616 https://hal.archives-ouvertes.fr/hal-00132616 Submitted on 22 Feb 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A simple derivation of the Lorentz transformation and of the related velocity and acceleration formulae J.-M. L´evya Laboratoire de Physique Nucl´eaire et de Hautes Energies, CNRS - IN2P3 - Universit´es Paris VI et Paris VII, Paris. The Lorentz transformation is derived from the simplest thought experiment by using the simplest vector formula from elementary geometry. The result is further used to obtain general velocity and acceleration transformation equations. I. INTRODUCTION The present paper is organised as follows: in order to prevent possible objections which are often not Many introductory courses on special relativity taken care of in the derivation of the two basic effects (SR) use thought experiments in order to demon- using the light clock, we start by reviewing it briefly strate time dilation and length contraction from in section II. -
Arxiv:1911.08602V1 [Gr-Qc] 19 Nov 2019
Causality violation without time-travel: closed lightlike paths in G¨odel'suniverse Brien C. Nolan Centre for Astrophysics and Relativity, School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.∗ We revisit the issue of causality violations in G¨odel'suniverse, restricting to geodesic motions. It is well-known that while there are closed timelike curves in this spacetime, there are no closed causal geodesics. We show further that no observer can communicate directly (i.e. using a single causal geodesic) with their own past. However, we show that this type of causality violation can be achieved by a system of relays: we prove that from any event P in G¨odel'suniverse, there is a future-directed lightlike path - a sequence of future-directed null geodesic segments, laid end to end - which has P as its past and future endpoints. By analysing the envelope of the family of future directed null geodesics emanating from a point of the spacetime, we show that this lightlike path must contain a minimum of eight geodesic segments, and show further that this bound is attained. We prove a related general result, that events of a time orientable spacetime are connected by a (closed) timelike curve if and only if they are connected by a (closed) lightlike path. This suggests a means of violating causality in G¨odel'suniverse without the need for unfeasibly large accelerations, using instead a sequence of light signals reflected by a suitably located system of mirrors. I. INTRODUCTION: GODEL'S¨ UNIVERSE In 1949, Kurt G¨odel[1]published a solution of Einstein's equations which provides what appears to be the first example of a spacetime containing closed timelike curves (CTCs). -
Introduction
INTRODUCTION Special Relativity Theory (SRT) provides a description for the kinematics and dynamics of particles in the four-dimensional world of spacetime. For mechanical systems, its predictions become evident when the particle velocities are high|comparable with the velocity of light. In this sense SRT is the physics of high velocity. As such it leads us into an unfamiliar world, quite beyond our everyday experience. What is it like? It is a fantasy world, where we encounter new meanings for such familiar concepts as time, space, energy, mass and momentum. A fantasy world, and yet also the real world: We may test it, play with it, think about it and experience it. These notes are about how to do those things. SRT was developed by Albert Einstein in 1905. Einstein felt impelled to reconcile an apparent inconsistency. According to the theory of electricity and magnetism, as formulated in the latter part of the nineteenth century by Maxwell and Lorentz, electromagnetic radiation (light) should travel with a velocity c, whose measured value should not depend on the velocity of either the source or the observer of the radiation. That is, c should be independent of the velocity of the reference frame with respect to which it is measured. This prediction seemed clearly inconsistent with the well-known rule for the addition of velocities, familiar from mechanics. The measured speed of a water wave, for example, will depend on the velocity of the reference frame with respect to which it is measured. Einstein, however, held an intuitive belief in the truth of the Maxwell-Lorentz theory, and worked out a resolution based on this belief. -
5 VII July 2017
5 VII July 2017 International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VII, July 2017- Available at www.ijraset.com An Introduction to Time Travel Rudradeep Goutam Mechanical Engg. Sawai Madhopur College of Engineering & Technology, Sawai Madhopur ,.Rajasthan Abstract: Time Travel is an interesting topic for a Human Being and also for physics in Ancient time, The Scientists Thought that the time travel is not possible but after the theory of relativity given by the Albert Einstein, changes the opinion towards the time travel. After this wonderful Research the Scientists started to work on making a Time Machine for Time Travel. Stephon Hawkins, Albert Einstein, Frank j. Tipler, Kurt godel are some well-known names who worked on the time machine. This Research paper introduce about the different ways of Time Travel and about problems to make them practically possible. Keywords: Time travel, Time machine, Holes, Relativity, Space, light, Universe I. INTRODUCTION After the discovery of three dimensions it was a challenge for physics to search fourth dimension. Quantum physics assumes The Time as a fourth special dimension with the three dimensions. Simply, Time is irreversible Succession of past to Future through the present. Science assumes that the time is unidirectional which is directed past to future but the question arise that: Is it possible to travel in Fourth dimension (Time) like the other three dimensions? The meaning of time Travel is to travel in past or future from present. The present is nothing but it is the link between past and future. -
David Bohn, Roger Penrose, and the Search for Non-Local Causality
David Bohm, Roger Penrose, and the Search for Non-local Causality Before they met, David Bohm and Roger Penrose each puzzled over the paradox of the arrow of time. After they met, the case for projective physical space became clearer. *** A machine makes pairs (I like to think of them as shoes); one of the pair goes into storage before anyone can look at it, and the other is sent down a long, long hallway. At the end of the hallway, a physicist examines the shoe.1 If the physicist finds a left hiking boot, he expects that a right hiking boot must have been placed in the storage bin previously, and upon later examination he finds that to be the case. So far, so good. The problem begins when it is discovered that the machine can make three types of shoes: hiking boots, tennis sneakers, and women’s pumps. Now the physicist at the end of the long hallway can randomly choose one of three templates, a metal sheet with a hole in it shaped like one of the three types of shoes. The physicist rolls dice to determine which of the templates to hold up; he rolls the dice after both shoes are out of the machine, one in storage and the other having started down the long hallway. Amazingly, two out of three times, the random choice is correct, and the shoe passes through the hole in the template. There can 1 This rendition of the Einstein-Podolsky-Rosen, 1935, delayed-choice thought experiment is paraphrased from Bernard d’Espagnat, 1981, with modifications via P. -
Closed Timelike Curves, Singularities and Causality: a Survey from Gödel to Chronological Protection
Closed Timelike Curves, Singularities and Causality: A Survey from Gödel to Chronological Protection Jean-Pierre Luminet Aix-Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille , France; Centre de Physique Théorique de Marseille (France) Observatoire de Paris, LUTH (France) [email protected] Abstract: I give a historical survey of the discussions about the existence of closed timelike curves in general relativistic models of the universe, opening the physical possibility of time travel in the past, as first recognized by K. Gödel in his rotating universe model of 1949. I emphasize that journeying into the past is intimately linked to spacetime models devoid of timelike singularities. Since such singularities arise as an inevitable consequence of the equations of general relativity given physically reasonable assumptions, time travel in the past becomes possible only when one or another of these assumptions is violated. It is the case with wormhole-type solutions. S. Hawking and other authors have tried to save the paradoxical consequences of time travel in the past by advocating physical mechanisms of chronological protection; however, such mechanisms remain presently unknown, even when quantum fluctuations near horizons are taken into account. I close the survey by a brief and pedestrian discussion of Causal Dynamical Triangulations, an approach to quantum gravity in which causality plays a seminal role. Keywords: time travel; closed timelike curves; singularities; wormholes; Gödel’s universe; chronological protection; causal dynamical triangulations 1. Introduction In 1949, the mathematician and logician Kurt Gödel, who had previously demonstrated the incompleteness theorems that broke ground in logic, mathematics, and philosophy, became interested in the theory of general relativity of Albert Einstein, of which he became a close colleague at the Institute for Advanced Study at Princeton. -
'Relativity: Special, General, Cosmological' by Rindler
Physical Sciences Educational Reviews Volume 8 Issue 1 p43 REVIEW: Relativity: special, general and cosmological by Wolfgang Rindler I have never heard anyone talk about relativity with a greater care for its meaning than the late Hermann Bondi. The same benign clarity that accompanied his talks permeated Relativity and Common Sense, his novel introductory approach to special relativity. Back in the Sixties, Alfred, Brian, Charles and David - I wonder what they would be called today - flashed stroboscopic light signals at each other and noted the frequencies at which they were received as they moved relative to each other. Bondi made of the simple composition of frequencies a beautiful natural law that you felt grateful to find in our universe’s particular canon. He thus simultaneously downplayed the common introduction of relativity as a rather unfortunate theory that makes the common sense addition of velocities unusable (albeit under some extreme rarely-experienced conditions), and renders intuition dangerous, and to be attempted only with a full suit of algebraic armour. A few years ago, I tried to teach a course following Bondi’s approach, incorporating some more advanced topics such as uniform acceleration. I enjoyed the challenge (probably more than the class did), but students without fluency in hyperbolic functions were able to tackle interesting questions about interstellar travel, which seemed an advantage. Wolfgang Rindler is no apologist for relativity either and his book is suffused with the concerns of a practicing physicist. Alongside Bondi’s book, this was the key recommendation on my suggested reading list and, from the contents of the new edition, would remain so on a future course. -
Minkowski Space-Time and Einstein's Now Conundrum
NeuroQuantology | May 2018 | Volume 16 | Issue 5 | Page 23-30 | doi: 10.14704/nq.2018.16.5.1345 Sorli A., Minkowski Space-time and Einstein’s Now Conundrum Minkowski Space-time and Einstein’s Now Conundrum Amrit Sorli 1*, Steve Kaufman 1, Davide Fiscaletti 2 ABSTRACT The Minkowski formula X4=ict indicates that time t does not express the 4th dimension of space-time, i.e., X4 is not t. Therefore, Minkowski space-time is not a 3D+T manifold, it is 4D. The 4D manifold has 4 spatial dimensions and is timeless, in the sense that it does not contain some physical time in wh ich material changes run. In physics we experience the timelessness of 4D space as “Einstein’s Now.” From this perspective, the time that we measure with clocks is just the sequential numerical order of changes, i.e. motions that run in the timeless space of Now. On the other hand, past and future are nothing more than psychological or conceptual realities that derive from the neuronal activity of the brain. Therefore, “time flow” and “arrow of time” have only a mathematical existence. Key Words: Now, Time, Space, Space-Time, GPS, Closed Timeline Curve, Arrow of Time DOI Number: 10.14704/nq.201 8.16.5.1345 NeuroQuantology 2018; 16(5):23-30 Introduction system S, if complex enough, can be separated into 23 Today, 130 years after the pioneering work of a subsystem S2 whose dynamics is described, and Ernst Mach regarding the interpretation of time as another cyclic subsystem S1 which behaves as a a measure of the changes of things, the related clock and that, as a consequence of the gauge ideas that time cannot be considered as a primary invariance, this separation may be made in many physical reality that flows on its own in the ways. -
RELATIVE REALITY a Thesis
RELATIVE REALITY _______________ A thesis presented to the faculty of the College of Arts & Sciences of Ohio University _______________ In partial fulfillment of the requirements for the degree Master of Science ________________ Gary W. Steinberg June 2002 © 2002 Gary W. Steinberg All Rights Reserved This thesis entitled RELATIVE REALITY BY GARY W. STEINBERG has been approved for the Department of Physics and Astronomy and the College of Arts & Sciences by David Onley Emeritus Professor of Physics and Astronomy Leslie Flemming Dean, College of Arts & Sciences STEINBERG, GARY W. M.S. June 2002. Physics Relative Reality (41pp.) Director of Thesis: David Onley The consequences of Einstein’s Special Theory of Relativity are explored in an imaginary world where the speed of light is only 10 m/s. Emphasis is placed on phenomena experienced by a solitary observer: the aberration of light, the Doppler effect, the alteration of the perceived power of incoming light, and the perception of time. Modified ray-tracing software and other visualization tools are employed to create a video that brings this imaginary world to life. The process of creating the video is detailed, including an annotated copy of the final script. Some of the less explored aspects of relativistic travel—discovered in the process of generating the video—are discussed, such as the perception of going backwards when actually accelerating from rest along the forward direction. Approved: David Onley Emeritus Professor of Physics & Astronomy 5 Table of Contents ABSTRACT........................................................................................................4 -
Cosmology's Rebirth and the Rise of the Dark Matter Problem
Closing in on the Cosmos: Cosmology’s Rebirth and the Rise of the Dark Matter Problem Jaco de Swart Abstract Influenced by the renaissance of general relativity that came to pass in the 1950s, the character of cosmology fundamentally changed in the 1960s as it be- came a well-established empirical science. Although observations went to dominate its practice, extra-theoretical beliefs and principles reminiscent of methodological debates in the 1950s kept playing an important tacit role in cosmological consider- ations. Specifically, belief in cosmologies that modeled a “closed universe” based on Machian insights remained influential. The rise of the dark matter problem in the early 1970s serves to illustrate this hybrid methodological character of cosmological science. Introduction In 1974, two landmark papers were published by independent research groups in the U.S. and Estonia that concluded on the existence of missing mass: a yet-unseen type of matter distributed throughout the universe whose presence could explain several problematic astronomical observations (Einasto et al. 1974a, Ostriker et al. 1974). The publication of these papers indicates the establishment of what is cur- rently known as the ‘dark matter’ problem – one of the most well-known anomalies in the prevailing cosmological model. According to this model, 85% of the uni- verse’s mass budget consists of dark matter. After four decades of multi-wavelength astronomical observations and high-energy particle physics experiments, the nature of this mass is yet to be determined.1 Jaco de Swart Institute of Physics & Vossius Center for the History of Humanities and Sciences University of Amsterdam, Science Park 904, Amsterdam, The Netherlands e-mail: [email protected] 1 For an overview of the physics, see e.g. -
II Physical Geometry and Fundamental Metaphysics
! 1 II Physical Geometry and Fundamental Metaphysics CIAN DORR Final version: Thursday, 16 September 2010 I. Tim Maudlin’s project sets a new standard for fruitful engagement between philosophy, mathematics and physics. I am glad to have a chance to be part of the conversation. I think we can usefully distinguish two different strands within the project: one more conceptual, the other more straightforwardly metaphysical. The conceptual strand is an attempt to clarify certain concepts, such as continuity, connectedness, and boundary, which are standardly analysed in terms of the topological concept of an open set. The metaphysical strand is a defence of a hypothesis about the geometric aspects of the fun- damental structure of reality—the facts in virtue of which the facts of physical geometry are what they are. What I have to say mostly concerns the metaphysical side of things. But I will begin by saying just a little bit about the conceptual strand. II. In topology textbooks, expressions like ‘continuous function’, ‘connected set of points’, and ‘boundary of a set of points’ are generally given stipulative definitions, on a par with the definitions of made-up words like ‘Hausdorff’ (the adjective) and ‘paracompact’. But as Maudlin emphasises, the former expressions can be used to express concepts of which we have enough of an independent grip to make it reasonable to wonder whether the topological definitions are even extensionally adequate. And he argues quite persuasively that we have no reason to believe that they are. The most important and general argu- ment concerns the live epistemic possibility that physical space is discrete, for example by ! 2 containing only finitely many points. -
A Contextual Analysis of the Early Work of Andrzej Trautman and Ivor
A contextual analysis of the early work of Andrzej Trautman and Ivor Robinson on equations of motion and gravitational radiation Donald Salisbury1,2 1Austin College, 900 North Grand Ave, Sherman, Texas 75090, USA 2Max Planck Institute for the History of Science, Boltzmannstrasse 22, 14195 Berlin, Germany October 10, 2019 Abstract In a series of papers published in the course of his dissertation work in the mid 1950’s, Andrzej Trautman drew upon the slow motion approximation developed by his advisor Infeld, the general covariance based strong conservation laws enunciated by Bergmann and Goldberg, the Riemann tensor attributes explored by Goldberg and related geodesic deviation exploited by Pirani, the permissible metric discontinuities identified by Lich- nerowicz, O’Brien and Synge, and finally Petrov’s classification of vacuum spacetimes. With several significant additions he produced a comprehensive overview of the state of research in equations of motion and gravitational waves that was presented in a widely cited series of lectures at King’s College, London, in 1958. Fundamental new contribu- tions were the formulation of boundary conditions representing outgoing gravitational radiation the deduction of its Petrov type, a covariant expression for null wave fronts, and a derivation of the correct mass loss formula due to radiation emission. Ivor Robin- son had already in 1956 developed a bi-vector based technique that had resulted in his rediscovery of exact plane gravitational wave solutions of Einstein’s equations. He was the first to characterize shear-free null geodesic congruences. He and Trautman met in London in 1958, and there resulted a long-term collaboration whose initial fruits were the Robinson-Trautman metric, examples of which were exact spherical gravitational waves.