VEXAG Steering Committee
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Comprehensive Entry, Descent, Landing, And
A Comprehensive Entry, Descent, Landing, and Locomotion (EDLL) Vehicle for Planetary Exploration Kevin Schroeder Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering Javid Bayandor, Chair Jamshid Samareh Sasan Armand Francine Battaglia Walter O’Brien Wayne Scales July 18th, 2017 Blacksburg, Virginia Keywords: Entry Descent Landing (EDL), Tensegrity, Venus Rover, Deployable Heat Shield Copyright 2017, Kevin Schroeder A Comprehensive Entry, Descent, Landing, and Locomotion (EDLL) Vehicle for Planetary Exploration Kevin Schroeder Abstract The 2012 Decadal Survey has stated that there is a critical role for a Venus In-situ Explore (VISE) missions to a variety of important sites, specifically the Tessera terrain. This work aims to answer the Decadal Survey’s call by developing a new comprehensive Entry, Descent, Landing, and Locomotion (EDLL) vehicle for in-situ exploration of Venus, especially in the Tessera regions. TANDEM, the Tension Adjustable Network for Deploying Entry Membrane, is a new planetary probe concept in which all of EDLL is achieved by a single multifunctional tensegrity structure. The concept uses same fundamental concept as the ADEPT (Adaptable Deployable Entry and Placement Technology) deployable heat shield but replaces the standard internal structure with the structure from the tensegrity- actuated rover to provide a combined aeroshell and rover design. The tensegrity system implemented by TANDEM reduces the mass of the overall system while enabling surface locomotion and mitigating risk associated with landing in the rough terrain of Venus’s Tessera regions, which is otherwise nearly inaccessible to surface missions. -
A Systematic Concept Exploration Methodology Applied to Venus in Situ Explorer
Session III: Probe Missions to the Giant Planets, Titan and Venus A Systematic Concept Exploration Methodology Applied to Venus In Situ Explorer Jarret M. Lafleur *, Gregory Lantoine *, Andrew L. Hensley *, Ghislain J. Retaureau *, Kara M. Kranzusch *, Joseph W. Hickman *, Marc N. Wilson *, and Daniel P. Schrage † Georgia Institute of Technology Atlanta, Georgia 30332 ABSTRACT One of the most critical tasks in the design of a complex system is the initial conversion of mission or program objectives into a baseline system architecture. Presented in this paper is a methodology to aid in this process that is frequently used for aerospace problems at the Georgia Institute of Technology. In this paper, the methodology is applied to initial concept formulation for the Venus In Situ Explorer (VISE) mission. Five primary steps are outlined which encompass program objective definition through evaluation of candidate designs. Tools covered include the Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and morphological matrices. Direction is given for the application of modeling and simulation as well as for subsequent iterations of the process. The paper covers both theoretical and practical aspects of the tools and process in the context of the VISE example, and it is hoped that this methodology may find future use in interplanetary probe design. 1. INTRODUCTION One of the most critical tasks in the design of a complex engineering system is the initial conversion of mission or program objectives and requirements into a baseline system architecture. In completing this task, the challenge exists to comprehensively but efficiently explore the global trade space of potential designs. -
Solar System Solar System
Delta Science Reader SolarSolar SystemSystem Delta Science Readers are nonfiction student books that provide science background and support the experiences of hands-on activities. Every Delta Science Reader has three main sections: Think About . , People in Science, and Did You Know? Be sure to preview the reader Overview Chart on page 4, the reader itself, and the teaching suggestions on the following pages. This information will help you determine how to plan your schedule for reader selections and activity sessions. Reading for information is a key literacy skill. Use the following ideas as appropriate for your teaching style and the needs of your students. The After Reading section includes an assessment and writing links. OVERVIEW Students will: discover facts about the Solar System In the Delta Science Reader Solar System, students take a tour of the Sun and the explore the planets and other objects in the planets. Other space objects such as dwarf Solar System planets, comets, asteroids, and meteoroids discuss the function of a table of contents, are explored. Students read about the headings, and a glossary rotation and revolution of the planets and interpret photographs and graphics to the causes of night and day, seasonal answer questions changes, and the phases of the Moon. The book describes the work of a planetary complete a KWL chart geologist. In addition, students discover organize information in a variety of ways how telescopes work. delta science modules Solar System 119 © Delta Education LLC. All rights reserved. -
Evolutionary Argument Against Naturalism?” International Journal for Philosophy of Religion 69.3 (2010): 193–204
1 On Plantinga on Belief in Naturalism1 Troy Cross Introduction Naturalism, according to Alvin Plantinga, is the thesis “that there is no such person as God or anything at all like God” (2011b, 435; see also, 2002a, 1; 2011a, vix), and one could be forgiven for thinking that what Plantinga calls his “Evolutionary Argument Against Naturalism”, or “EAAN”, which he has refined and defended for over two decades, is an argument against that thesis (1991, 1993, 2002a, 2002b, 2011a, 2011b). But that would be a mistake. The conclusion of the EAAN is not about the truth of naturalism but about the rationality of believing naturalism to be true: it is that one cannot rationally and reflectively believe that contemporary evolutionary theory is correct about our origins while also believing that neither God nor anything like God exists.2 The difference between truth and rational belief is important here. Consider Moore’s paradoxical sentence: “I don’t believe it’s raining but as a matter of fact it is” (Moore, 209). Nothing prevents that sentence, or others like it, from being true. If you 1 For instructive conversations on this topic I am indebted to John Bang, George Bealer, Mark Bedau, Eliyah Cohen, Bryan Cross, Augie Faller, Emma Handte, Elad Gilo, Nick Gigliotti, John Hare, Jordan Horowitz, Paul Hovda, Alexander Pruss, Margaret Scharle, Derek Schiller, Mackenzie Sullivan, and Carol Voeller. I also wish to thank audiences at Reed College and the University of Nebraska Omaha where I presented early versions of some of this material. Anthony Nguyen gave me many helpful comments on a draft. -
VERITAS – a Discovery-Class Venus Surface Geology and Geophysics Mission Anthony Freeman, Suzanne E
VERITAS – a Discovery-class Venus surface geology and geophysics mission Anthony Freeman, Suzanne E. Joern Helbert Erwan Mazarico Smrekar, Scott Hensley, Mark German Aerospace Center (DLR) NASA Goddard Space Flight Center Wallace, Christophe Sotin, Murray Institutefor Planetary Research Planetary Geodynamics Lab Darrach, Peter Xaypraseuth Rutherfordstrasse 2, 8800 Greenbelt Rd. Jet Propulsion Laboratory, 12489 Berlin, Germany Greenbelt, MD 20771 California Institute of Technology +49-30-67055-319, 301 614-6504, 4800 Oak Grove Dr. [email protected] [email protected] Pasadena, CA 91109 818-354-1887 [email protected] Abstract— Our understanding of solar system evolution is spacecraft adapted for the environment at Venus, and to follow limited by a great unanswered question: How Earthlike is the old adage – keep it simple. The mission has only two Venus? We know that these “twin” planets formed with instruments, and VISAR for example has only one mode of similar bulk composition and size. Yet the evolutionary path operation. The VEM instrument is a simple pushbroom imager Venus followed has diverged from Earth’s, in losing its surface with no moving parts. Gravity science is carried out using the water and becoming hotter than Mercury. What led to this? spacecraft’s fixed-antenna telecom system. No new The answer has profound implications for how terrestrial technologies are used. Onboard processing of the radar data planets become habitable and the potential for life in the using a COTS space-qualified processor reduces data volume universe. to levels commensurate with downlink rates for other NASA planetary orbiters, so no heroics are required to get the data Prior Venus missions discovered that its surface (like Earth’s) back. -
Lockheed Martin to Help NASA Uncover Mysteries of Venus with VERITAS and DAVINCI+ Spacecraft
Lockheed Martin to Help NASA Uncover Mysteries of Venus with VERITAS and DAVINCI+ Spacecraft June 2, 2021 Lockheed Martin has a major role in NASA's long-anticipated return to Venus DENVER, June 2, 2021 /PRNewswire/ -- To learn more about how terrestrial planets evolve over time, NASA selected the VERITAS and DAVINCI+ missions for its Discovery Program, both bound for Venus. Lockheed Martin will design, build and operate both spacecraft. The missions will launch in 2026 and 2030 respectively, and will combine to study Venus' dense atmosphere, topography and geologic processes in great depth. Both missions will aim to discover how Venus – which may have been the first potentially habitable planet in our solar system – became inhospitable to life. They represent NASA's return to Earth's sister planet after more than three decades. "We're very grateful for this opportunity to work with NASA and the missions' principal investigators to fully understand how rocky planets evolved and what it means for our planet, Earth," said Lisa Callahan, vice president and general manager of Lockheed Martin's Commercial Civil Space business. "Our team who designed these two spacecraft to study Venus in unprecedented detail – and yield answers to its greatest mysteries – is beyond excited!" The operations and science for DAVINCI+ – which stands for Deep Atmosphere Venus Investigation of Noble Gases, Chemistry and Imaging Plus – will be managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. VERITAS – which stands for Venus Emissivity, Radio Science, InSAR, Topography & Spectroscopy – will have its science and operations managed by NASA's Jet Propulsion Laboratory in Southern California. -
Carlé Pieters Et Al. Brown University Which? M – E - S/C E – M - S/C NRC Planetary Science Reports
Science Enabled by Lunar Exploration... Carlé Pieters et al. Brown University Which? M – E - S/C E – M - S/C NRC Planetary Science Reports 2007 SCEM 2003 Decadal 2011 Decadal NRC Planetary Science Reports 2007 SCEM 2003 Decadal Discussed at 1 pm 2011 Decadal Prioritized New Frontiers * Missions: 1. Kuiper Belt & Pluto*1 2. South Pole-Aitken Sample Return 3. Jupiter Polar Orbiter*2 & Probe 4. Venus In situ Explorer 5. Comet Surface Sample Return SCEM: Lunar science encompasses four overarching themes of solar system exploration. 2007 SCEM 2003 Decadal Discussed at 1 pm 2011 Decadal Prioritized New Frontiers * Missions: 1. Kuiper Belt & Pluto*1 2. South Pole-Aitken Sample Return 3. Jupiter Polar Orbiter*2 & Probe 4. Venus In situ Explorer 5. Comet Surface Sample Return NRC Planetary Science Reports 2007 SCEM 2003 Decadal Discussed at 1 pm 2011 Decadal Prioritized New Frontiers * Prioritized Lunar Science Concepts: Missions: 1. The bombardment of the inner 1. Kuiper Belt & Pluto*1 solar system is uniquely revealed 2. South Pole-Aitken Sample on the Moon. Return 2. The structure and composition of 3. Jupiter Polar Orbiter*2 & the lunar interior provide Probe fundamental information on the 4. Venus In situ Explorer evolution of a differentiated planet. 5. Comet Surface Sample 3. Key planetary processes are Return manifested in the diversity of lunar crustal rocks. 4. The lunar poles are special environments... 5. - 8. Volcanism, impact, regolith, atmosphere and dust processes.... NRC Planetary Science Reports 2007 SCEM 2003 Decadal Discussed at 1 pm 2011 Decadal Prioritized New Frontiers * Prioritized Lunar Science Concepts: New Frontiers Missions (no Missions: 1. -
Licensing Department of Land Management
Town of Southampton Licensing Licensing Review Board Phone: (631) 702-1826 Department of Land Management Fax (631) 287-5754 Bulgin & Associates Inc License Number: 000511-0 Licensee - David E Bulgin & Jeffrey Gagliotti Expires: 02/12/2022 Climbers Tree Care Specialist Inc License Number: L002198 Licensee - Alex R Verdugo Expires: 07/10/2021 CW Arborists Ltd License Number: L002378 Licensee - Michael S Gaines Expires: 09/09/2022 Domiano Pools Inc. D/B/A Pool Fection License Number: 002770-0 Licensee - Joseph P Domiano Jr. Expires: 03/11/2022 East End Centro-Vac Inc. P O Box 412 License Number: 000358-0 Licensee - Dennis V. Finnerty Expires: 03/11/2022 Ecoshield Pest Control of NYC License Number: L005737 Licensee - Ermir Hasija Expires: 10/08/2021 EmPower CES, LLC License Number: L002063 Licensee - David G Schieren Expires: 07/08/2022 Field Stone Dirt Works Corp. License Number: L005874 Licensee - Louis Russo Expires: 06/10/2022 Fire Sprinkler Associates Inc License Number: L001682 Licensee - Mark Mausser Expires: 05/13/2022 Four Seasons Solar Products LLC License Number: L000230 Licensee - Joseph Segreti Expires: 07/08/2022 Green Team USA LLC D/B/A Green Team LI License Number: L005839 Licensee - Jay B Best Expires: 03/11/2022 Harald G. Steudte License Number: L990112 Licensee - Expires: 08/14/2021 Heatco, Inc License Number: L001776 Licensee - Dennis Valenti Expires: 08/12/2022 Hopping Tree Care License Number: L004995 Licensee - John N Hopping Expires: 06/12/2021 J Tortorella Heating & Gas Specialists Inc License Number: L002120 Licensee - John Tortorella Expires: 06/10/2022 Joseph W. Labrozzi Sr. LLC License Number: L005636 Licensee - Joseph W. -
Twelve Ideas Years, After She Resided in Holland and Then Back to the United States
El personaje Febrero 2014 Adapted by Ingenio Adriana Ocampo was born in Barranquilla, Studied aerospace Engineering in the State University of Colombia, his dad is Colombian and her California, Los Angeles, and then she fulfilled a postgraduate in 1 mom Argentine, she grew in Buenos Aires 7 Planetary Geology, after seeing a few images of the planet Mars and then she lived in the United States for 30 that, according to her, were looking like the terrestrial deserts. TWELVE IDEAS years, after she resided in Holland and then back to the United States. Ocampo has received many prizes among them: the Woman You of the Year of the Science of the Feminine Commission in The MUST KNOW ABOUT When she was a girl did not like to play 8 Angels in 1992 and Science and Technology of the Federation with dolls, she preferred rising to her Chicano in 1997. house terrace with “Taurus”, her dog ADRIANA C. OCAMPO URIA María Camila Arbeláez Ilustración: 2 and observing the stars from there, she felt a Adriana is compared with Marie Curie (A rewarded Nobel prize Our guess in this occasion is the Colombian researcher that is the great curiosity to know why those dots in the of physics and chemistry), for her tenacity and for her exploits in closest to the Moon person, because she lives literally looking at the sky were shining differently from one another. 9 the space like: the Voyager, Viking, Mars Observer and Express. sky and the stars. She works for the division of Planetary Sciences She wished to have a telescope to But the most important is the Mission Juno, which was sent at NASA, where she is in charge of missions that include the study of observe the stars closely so that her in August, 2011 towards Jupiter in the rocket Atlas V551. -
Venus Exploration Opportunities Within NASA's Solar System Exploration Roadmap
Venus Exploration Opportunities within NASA's Solar System Exploration Roadmap by Tibor Balint1, Thomas Thompson1, James Cutts1 and James Robinson2 1Jet Propulsion Laboratory / Caltech 2NASA HQ Presented at the Venus Entry Probe Workshop European Space Agency (ESA) European Space and Technology Centre (ESTEC) The Netherlands January 19-20, 2006 By Tibor Balint, JPL, November 8, 2005 Balint, JPL, November Tibor By 1 Acknowledgments • Solar System Exploration Road Map Team • NASA HQ – Ellen Stofan – James Robinson –Ajay Misra • Planetary Program Support Team – Steve Saunders – Adriana Ocampoa – James Cutts – Tommy Thompson • VEXAG Science Team – Tibor Balint – Sushil Atreya (U of Michigan) – Craig Peterson – Steve Mackwell (LPI) – Andrea Belz – Martha Gilmore (Wesleyan University) – Elizabeth Kolawa – Michael Pauken – Alexey Pankine (Global Aerospace Corp) – Sanjay Limaye (University of Wisconsin-Madison) • High Temperature Balloon Team – Kevin Baines (JPL) – Jeffery L. Hall – Bruce Banerdt (JPL) – Andre Yavrouian – Ellen Stofan (Proxemy Research, Inc.) – Jack Jones – Viktor Kerzhanovich Other JPL candidates – Suzanne Smrekar (JPL) • Radioisotope Power Systems Study Team – Dave Crisp (JPL) – Jacklyn Green Astrobiology – Bill Nesmith – David Grinspoon (University of Colorado) – Rao Surampudi – Adam Loverro By Tibor Balint, JPL, November 8, 2005 Balint, JPL, November Tibor By 2 Overview • Brief Summary of Past Venus In-situ Missions • Recent Solar System Exploration Strategic Plans • Potential Future Venus Exploration Missions • New Technology -
Life on Venus, and How to Explore Venus with High-Temperature Electronics Carl-Mikael Zetterling [email protected]
Life on Venus, and How to Explore Venus with High-Temperature Electronics Carl-Mikael Zetterling [email protected] www.WorkingonVenus.se Outline Life on Venus (phosphine in the clouds) Previous missions to Venus Life on Venus (photos from the ground) High temperature electronics Future missions to Venus, including Working on Venus (KTH Project 2014 - 2018) www.WorkingonVenus.se 3 Phosphine gas in the cloud decks of Venus Trace amounts of phosphine (20 ppb, PH3) seen by the ALMA and JCMT telescopes, with millimetre wave spectral detection 4 Phosphine gas in the cloud decks of Venus 5 Phosphine gas in the cloud decks of Venus https://www.nature.com/articles/s41550-020-1174-4 https://arxiv.org/pdf/2009.06499.pdf https://www.nytimes.com/2020/09/14/science/venus-life- clouds.html?smtyp=cur&smid=fb-nytimesfindings https://www.scientificamerican.com/article/is-there-life-on- venus-these-missions-could-find-it/ 6 Did NASA detect phosphine 1978? Pioneer 13 Large Probe Neutral Mass Spectrometer (LNMS) https://www.livescience.com/life-on-venus-pioneer-13.html 7 Why Venus? From Wikimedia Commons, the free media repository Our closest planet, but least known Similar to earth in size and core, has an atmosphere Volcanoes Interesting for climate modeling Venus Long-life Surface Package (ultimate limit of global warming) C. Wilson, C.-M. Zetterling, W. T. Pike IAC-17-A3.5.5, Paper 41353 arXiv:1611.03365v1 www.WorkingonVenus.se 8 Venus Atmosphere 96% CO2 (Also sulphuric acids) Pressure of 92 bar (equivalent to 1000 m water) Temperature 460 °C From Wikimedia Commons, the free media repository Difficult to explore Life is not likely www.WorkingonVenus.se 9 Previous Missions Venera 1 – 16 (1961 – 1983) USSR Mariner 2 (1962) NASA, USA Pioneer (1978 – 1992) NASA, USA Magellan (1989) NASA, USA Venus Express (2005 - ) ESA, Europa From Wikimedia Commons, the free media repository Akatsuki (2010) JAXA, Japan www.WorkingonVenus.se 10 Steps to lunar and planetary exploration: 1. -
Culturally Responsive Teaching
Glencoe Science Photo Credits 1 Bob Hitchcock; 12 Joe Matunis/El Puente Academy for Peace and Justice; 25 NASA; 27 Courtesy Dawn Wright/Dept. of Geosciences/Oregon State University; 31 NASA; 49 Courtesy Philip Emeagwali/emeagwali.com; 55 AIP Emilio Segrè Visual Archives/Physics Today Collection; 69 Courtesy Joe Pineiro/Columbia University. Copyright © by the McGraw-Hill Companies, Inc. All rights reserved. Except as permission under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. Send all inquiries to: Glencoe/McGraw-Hill 8787 Orion Place Columbus, OH 43240 ISBN-13: 978-0-07-875741-9 ISBN-10: 0-07-875741-X Printed in the United States of America 1 2 3 4 5 045 09 08 07 06 05 Table of Contents To the Teacher . iv Activities 1 Lewis Mehl-Madrona—Pioneering Doctor . 1 2 Japanese Cultured Pearls—Endangered Future . 3 3 Buffalo Jerky and Freeze-Dried Fish . 5 4 Coral Reefs at Risk . 7 5 Whales—To Hunt or To Protect? . 9 6 El Puente—Bridge to Environmental Justice. 11 7 Unraveling a Prehistoric Food Web . 13 8 Acupuncture—Modern Uses for Traditional Medicine. 15 9 The Reawakening of Sleeping Sickness . 17 10 Biodiversity—Planting the Seeds for a Healthy Planet . 19 11 The Fight Against Killer Caterpillars . 21 12 Cancer—Uncovering the Culture Connection . 23 13 Ellen Ochoa—Space Delivery. 25 14 Dawn Wright—Deep-Sea Explorer . 27 15 The Maya—Keepers of Time .