Sustainable Innovation in Membrane Technologies for Produced Water Treatment: Challenges and Limitations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reverse Osmosis and Nanofiltration, Second Edition
Reverse Osmosis and Nanofiltration AWWA MANUAL M46 Second Edition Science and Technology AWWA unites the entire water community by developing and distributing authoritative scientific and technological knowledge. Through its members, AWWA develops industry standards for products and processes that advance public health and safety. AWWA also provides quality improvement programs for water and wastewater utilities. Copyright © 2007 American Water Works Association. All Rights Reserved. Contents List of Figures, v List of Tables, ix Preface, xi Acknowledgments, xiii Chapter 1 Introduction . 1 Overview, 1 RO and NF Membrane Applications, 7 Membrane Materials and Configurations, 12 References, 18 Chapter 2 Process Design . 21 Source Water Supply, 21 Pretreatment, 26 Membrane Process Theory, 45 Rating RO and NF Elements, 51 Posttreatment, 59 References, 60 Chapter 3 Facility Design and Construction . 63 Raw Water Intake Facilities, 63 Discharge, 77 Suspended Solids and Silt Removal Facilities, 80 RO and NF Systems, 92 Hydraulic Turbochargers, 95 Posttreatment Systems, 101 Ancillary Equipment and Facilities, 107 Instrumentation and Control Systems, 110 Waste Stream Management Facilities, 116 Other Concentrate Management Alternatives, 135 Disposal Alternatives for Waste Pretreatment Filter Backwash Water, 138 General Treatment Plant Design Fundamentals, 139 Plant Site Location and Layout, 139 General Plant Layout Considerations, 139 Membrane System Layout Considerations, 140 Facility Construction and Equipment Installation, 144 General Guidelines for Equipment Installation, 144 Treatment Costs, 151 References, 162 iii Copyright © 2007 American Water Works Association. All Rights Reserved. Chapter 4 Operations and Maintenance . 165 Introduction, 165 Process Monitoring, 168 Biological Monitoring, 182 Chemical Cleaning, 183 Mechanical Integrity, 186 Instrumentation Calibration, 188 Safety, 190 Appendix A SI Equivalent Units Conversion Tables . -
Measuring and Moderating the Water Resource Impact of Biofuel Production and Trade
Measuring and moderating the water resource impact of biofuel production and trade By Kevin Robert Fingerman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Energy and Resources in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Daniel M. Kammen, Co-chair Associate Professor Margaret S. Torn, Co-chair Professor Michael H. O’Hare Professor David J. Vogel Spring, 2012 Measuring and moderating the water resource impact of biofuel production and trade © 2012 by Kevin Robert Fingerman #$%&'()&! *+(%,'-./!(.0!120+'(&-./!&3+!4(&+'!'+%2,')+!-15()&!26!$-26,+7! 5'20,)&-2.!(.0!&'(0+! $8! 9+:-.!;2$+'&!<-./+'1(.! ! =2)&2'!26!>3-72%2538!-.!?.+'/8!(.0!;+%2,')+%! @.-:+'%-&8!26!A(7-62'.-(B!C+'D+7+8! >'26+%%2'%!=(.-+7!9(11+.!(.0!*('/('+&!E2'.B!A2FA3(-'%! ! ?.+'/8!%8%&+1%!(.0!4(&+'!'+%2,')+%!('+!-.+G&'-)($78!7-.D+0B!+%5+)-(778!-.!&3+!)(%+!26! $-2+.+'/8B!43-)3!)(.!'+H,-'+!,5!&2!&3'++!2'0+'%!26!1(/.-&,0+!12'+!4(&+'!&3(.!2&3+'! +.+'/8!)(''-+'%I!J(&+'!%)(')-&8!(7'+(08!(66+)&%!($2,&!"!-.!K!5+257+!/72$(778B!(.0! %&(.0%!&2!$+!+G()+'$(&+0!-.!1(.8!72)(7+%!$8!),''+.&!$-26,+7!+G5(.%-2.!57(.%I!E3-%! 0-%%+'&(&-2.!+./(/+%!4-&3!%+:+'(7!26!&3+!(.(78&-)(7!(.0!/2:+'.(.)+!)3(77+./+%!'(-%+0! $8!&3-%!)2..+)&-2.!$+&4++.!$-2+.+'/8!+G5(.%-2.!(.0!/72$(7!4(&+'!'+%2,')+%I! ! *8!+G(1-.(&-2.!$+/-.%!4-&3!(.!2:+':-+4!26!-152'&(.&!)2.)+5&%!-.!4(&+'!'+%2,')+! (.(78%-%B!627724+0!$8!(!'+:-+4!26!),''+.&!7-&+'(&,'+!2.!&3+!4(&+'!-15()&%!26!12%&! 1(L2'!+.+'/8!5(&34(8%I!M!&3+.!'+52'&!2.!(!)(%+!%&,08!26!+&3(.27!6,+7!-.!A(7-62'.-(I! -
A Critical Review of Water Purification Technology Appropriate for Developing Countries
Desalination and Water Treatment 54 (2015) 3487–3493 www.deswater.com June doi: 10.1080/19443994.2014.922309 A critical review of water purification technology appropriate for developing countries: Northern Ghana as a case study Michelle Thompson Institute of the Environment and Sustainability, University of California, 300 La Kretz Hall, Suite 300, Box 951496, Los Angeles, CA 90095, USA, email: [email protected] Received 15 January 2014; Accepted 14 March 2014 ABSTRACT A wide range of technologies are commercially available for water purification. However, not all of these technologies are suitable for use in rural, underdeveloped regions. Here, I present a systematic method for selecting the most appropriate technology for a particular community, using rural Ghana as a case study. In Ghana, over half of the population lives in rural areas, and two-thirds of these residents lack access to safe drinking water. Ghana has made significant strides using innovative water treatment techniques; however, there are still many hurdles. Simple and inexpensive, on-site water filtration technologies are a promising method for removing protozoans and other micro-organisms that pose significant health risks in underdeveloped, rural areas. In this review, several of these commercially available on-site water filtration technologies are assessed based on the following factors: effectiveness, cost, energy consumption, environmental impacts, and waste generated. This ® analysis suggests that for rural communities in Ghana, LifeStraw and ceramic clay pots are the most appropriate technologies. Implementation of these technologies poses potential benefits in terms of cost effectiveness and economic growth. Although this paper focuses on northern Ghana as a case study, the methodology presented here can be readily extended to specific scenarios in other developing countries. -
Engineered Nanomaterials for Water Treatment and Remediation: Costs, Benefits, and Applicability
UC Santa Barbara UC Santa Barbara Previously Published Works Title Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability Permalink https://escholarship.org/uc/item/50r1b9sg Authors Adeleye, AS Conway, JR Garner, K et al. Publication Date 2016-02-15 DOI 10.1016/j.cej.2015.10.105 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Chemical Engineering Journal 286 (2016) 640–662 Contents lists available at ScienceDirect Chemical Engineering Journal journal homepage: www.elsevier.com/locate/cej Review Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability ⇑ Adeyemi S. Adeleye, Jon R. Conway, Kendra Garner, Yuxiong Huang, Yiming Su 1, Arturo A. Keller Bren School of Environmental Science & Management, and University of California Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106-5131, USA highlights graphical abstract Nanotechnology is a promising alternative to traditional water treatment methods. Nanotechnology is more effective for removing emerging contaminants. Treatment cost of some nanotechnology is comparable to that of conventional methods. Risk assessment of nanotechnology is needed in order to advance the technology. article info abstract Article history: The application of nanotechnology in drinking water treatment and pollution cleanup is promising, as Received 21 April 2015 demonstrated by a number of field-based (pilot and full scale) and bench scale studies. A number of Received in revised form 17 September reviews exist for these nanotechnology-based applications; but to better illustrate its importance and 2015 guide its development, a direct comparison between traditional treatment technologies and emerging Accepted 21 October 2015 approaches using nanotechnology is needed. -
Mitigation of Membrane Fouling in Microfiltration
MITIGATION OF MEMBRANE FOULING IN MICROFILTRATION & ULTRAFILTRATION OF ACTIVATED SLUDGE EFFLUENT FOR WATER REUSE A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy (PhD) Sy Thuy Nguyen Bachelor of Engineering (Chemical), RMIT University, Melbourne School of Civil, Environmental & Chemical Engineering Department of Chemical Engineering RMIT University, Melbourne, Australia December 2012 i DECLARATION I hereby declare that: the work presented in this thesis is my own work except where due acknowledgement has been made; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program Signed by Sy T. Nguyen ii ACKNOWLEDGEMENTS Firstly, I would like to thank Prof. Felicity Roddick, my senior supervisor, for giving me the opportunity to do a PhD in water science and technology and her scientific input in every stage of this work. I am also grateful to Dr John Harris and Dr Linhua Fan, my co-supervisors, for their ponderable advice and positive criticisms. The Australian Research Council (ARC) and RMIT University are acknowledged for providing the funding and research facilities to make this project and thesis possible. I also wish to thank the staff of the School of Civil, Environmental and Chemical Engineering, the Department of Applied Physics and the Department of Applied Chemistry, RMIT University, for the valuable academic, administrative and technical assistance. Lastly, my parents are thanked for the encouragement and support I most needed during the time this research was carried out. -
Membrane Technology and Applications, 2Nd Edition
MEMBRANE TECHNOLOGY AND APPLICATIONS SECOND EDITION Richard W. Baker Membrane Technology and Research, Inc. Menlo Park, California MEMBRANE TECHNOLOGY AND APPLICATIONS MEMBRANE TECHNOLOGY AND APPLICATIONS SECOND EDITION Richard W. Baker Membrane Technology and Research, Inc. Menlo Park, California First Edition published by McGraw-Hill, 2000. ISBN: 0 07 135440 9 Copyright 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wileyeurope.com or www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Other Wiley Editorial Offices John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA Wiley-VCH Verlag GmbH, Boschstr. -
A Review on Uttilization of Agriculture Waste for Wastewater Treatment
© FEB 2019 | IRE Journals | Volume 2 Issue 8 | ISSN: 2456-8880 A Review on Uttilization of Agriculture Waste for Wastewater Treatment HARSHIT KHUNT 1, HARDIK DHOLAKIYA 2, SUNIL VALAND 3 1 Dept. of Chemical Engineering, Chhotubhai Gopalbhai Patel Institute of Technology, UTU-Bardoli, Surat, India Abstract -- The objective of this work is to study generation between metal ions and the functional sustainable process which benefit environment by using groups present on the cell surface. agricultural waste as adsorbent to remove organic pollutants from water. As the current worldwide trend towards more precise environmental standards, technical Pore structures and surface characteristics of aptness and cost-effectiveness became key factors in the adsorbents are the main properties in directing selection of adsorbents for water and wastewater adsorption equilibrium and rate properties which are treatment. Recently, various low-cost adsorbents procure from agricultural waste, industrial by-products or natural needed for plant design. New adsorbents are materials, have been rigorously investigated. In this we continuously being evolved, introducing new utilize the agriculture waste i.e. Alisma plantago aquatic, applications for adsorption technology. Adsorption rice husk[1], saw dust[2], tea and coffee waste[3], orange peel[4] , peanut shells[5], activated carbon[6] ,dry tree equilibrium is the fundamental factor in designing leaves and barks[7], bagasse[8], fibre, leaves and peels are adsorption operations. use as adsorbent which can offer an economical solution for wastewater treatment. Three adsorption isotherm Adsorption can be a potential alternative to models namely Freundlich, Langmuir and Dubinin- Radushkevich were apply to analyse the equilibrium data. traditional treatment processes of metal ions removal Equilibrium is best described by Langmuir isotherm [9]. -
Determination of Fouling Mechanisms for Ultrafiltration of Oily Wastewater
DETERMINATION OF FOULING MECHANISMS FOR ULTRAFILTRATION OF OILY WASTEWATER A thesis submitted to the Division of Graduate Studies and Research of the University of Cincinnati in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE (M.S.) in the Department of Chemical Engineering of the College of Engineering and Applied Science 2011 By Leila Safazadeh Haghighi BS Chemical Engineering, University Of Tehran, Tehran, Iran, 2008 Thesis Advisor and Committee Chair: Professor Rakesh Govind Abstract The use of Membrane technology is extensively increasing in water and wastewater treatment, food processing, chemical, biotechnological, and pharmaceutical industries because of their versatility, effectiveness, high removal capacity and ability to meet multiple treatment objectives. A common problem with using membranes is fouling, which results in increasing operating costs due to higher operating pressure losses, membrane downtime needed for cleaning, with associated production loss and manpower costs. In the literature, four different mechanisms for membrane fouling have been studied, which are complete pore blocking, internal pore blinding, partial pore bridging and cake filtration. Mathematical models have been developed for each of these fouling mechanisms. The objective of this thesis was to investigate the membrane fouling mechanisms for one porous and one dense membrane, during ultrafiltration of an emulsified industrial oily wastewater. An experimental system was designed, assembled and operated at the Ford Transmission Plant in Sharonville, Ohio, wherein ultrasonic baths were used for cleaning transmission parts before assembly. The oil wastewater, containing emulsified oils and cleaning chemicals was collected in a batch vessel and then pumped through a porous polyethersulfone, monolithic membrane, and through a dense cuproammonium cellulose membrane unit. -
History and Current Status of Membrane Desalination Processes
WATER AND WASTEWATER TREATMENT TECHNOLOGY – History and Current Status of Membrane Desalination Process – Ali M . El-Nashar HISTORY AND CURRENT STATUS OF MEMBRANE DESALINATION PROCESSES Ali M. El-Nashar Consultant, ICWES, Abu Dhabi, UAE Keywords: RO membranes, history of RO membranes, technical status of RO membranes, fouling of RO membranes, pretreatment for RO desalination, energy recovery in RO plants Contents 1. Introduction 2. RO Process Fundamentals 3. Feedwater Contaminants 4. General Characteristics of Membranes 5. RO Process Terminology 6. History of Membrane Technology 7. Effect of Operating Variables on Membrane Parameters 8. Feed Water Pretreatment & Permeate Post-Treatment 9. Membrane Module Configurations 10. Membrane Fouling & Membrane Cleaning 11. Energy Requirements of Membrane Technology 12. Economics of RO Plants 13. Operational Performance and Design Features of Large Seawater RO Plants 14. CO2 Emissions for Typical RO Plants 15. Recent Development in Membrane Technology 16. Boron, Arsenic and Organic Compound Removal 17. Conclusions Related Chapters Glossary Bibliography Biographical Sketches Summary UNESCO – EOLSS It is important to review the history of the past to provide a vision for the future. It is therefore the objective of this paper to review the history of the development of membrane processesSAMPLE for water desalination CHAPTERS and its current status. Research and development efforts in RO desalination over the past four decades has resulted in a 44% share in world desalination production capacity, and an 80% share in the total number of desalination plants installed worldwide (Greenlee t al., 2009). Today, RO membrane technology is the leading desalination technology. It is applied to a wide variety of salty water and wastewater. -
Membrane Filtration
Membrane Filtration A membrane is a thin layer of semi-permeable material that separates substances when a driving force is applied across the membrane. Membrane processes are increasingly used for removal of bacteria, microorganisms, particulates, and natural organic material, which can impart color, tastes, and odors to water and react with disinfectants to form disinfection byproducts. As advancements are made in membrane production and module design, capital and operating costs continue to decline. The membrane processes discussed here are microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). MICROFILTRATION Microfiltration is loosely defined as a membrane separation process using membranes with a pore size of approximately 0.03 to 10 micronas (1 micron = 0.0001 millimeter), a molecular weight cut-off (MWCO) of greater than 1000,000 daltons and a relatively low feed water operating pressure of approximately 100 to 400 kPa (15 to 60psi) Materials removed by MF include sand, silt, clays, Giardia lamblia and Crypotosporidium cysts, algae, and some bacterial species. MF is not an absolute barrier to viruses. However, when used in combination with disinfection, MF appears to control these microorganisms in water. There is a growing emphasis on limiting the concentrations and number of chemicals that are applied during water treatment. By physically removing the pathogens, membrane filtration can significantly reduce chemical addition, such as chlorination. Another application for the technology is for removal of natural synthetic organic matter to reduce fouling potential. In its normal operation, MF removes little or no organic matter; however, when pretreatment is applied, increased removal of organic material can occur. -
Membrane, Module and Process Design for Supercritical CO2 Dehydration
Membrane, module and process design for supercritical CO2 dehydration Citation for published version (APA): Shamu, A. (2019). Membrane, module and process design for supercritical CO2 dehydration. Technische Universiteit Eindhoven. Document status and date: Published: 26/06/2019 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. -
Enabling Integrated Water Treatment and Reuse XIAOLEI QU, JONATHON BRAME, QILIN LI,* and PEDRO J
Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse XIAOLEI QU, JONATHON BRAME, QILIN LI,* AND PEDRO J. J. ALVAREZ* Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States RECEIVED ON JANUARY 28, 2012 CONSPECTUS nsuring reliable access to clean and affordable E water is one of the greatest global challenges of this century. As the world's population increases, water pollution becomes more complex and difficult to remove, and global climate change threatens to exacerbate water scarcity in many areas, the magni- tude of this challenge is rapidly increasing. Waste- water reuse is becoming a common necessity, even as a source of potable water, but our separate waste- water collection and water supply systems are not designed to accommodate this pressing need. Furthermore, the aging centralized water and wastewater infrastructure in the developed world faces growing demands to produce higher quality water using less energy and with lower treatment costs. In addition, it is impractical to establish such massive systems in developing regions that currently lack water and wastewater infrastructure. These challenges underscore the need for technological innovation to transform the way we treat, distribute, use, and reuse water toward a distributed, differential water treatment and reuse paradigm (i.e., treat water and wastewater locally only to the required level dictated by the intended use). Nanotechnology offers opportunities to develop next-generation water supply systems. This Account reviews promising nanotechnology-enabled water treatment processes and provides a broad view on how they could transform our water supply and wastewater treatment systems.