31295001608727.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

31295001608727.Pdf MOLECULAR TOPOGRAPHY AND FUNCTION OF PERIDININ IN THE PERIDININ-CHLOROPHYLL a-PROTEIN COMPLEX by SIVARAMAKRISHNA PRASAD KOKA, B.S., M.A. A DISSERTATION IN CHEMISTRY Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved _ Accepted December, 1977 Ho, 7^ ACKNOWLEDGMENTS I am extremely grateful and deeply indebted to my professor. Dr. Pill-Soon Song, for his constant guidance, patience and encouragement throughout my studies for the Ph.D. degree. I am thankful to my fellow graduate stu­ dents for their help and cooperation. The efficient typing work of Mrs. Evelyn Gaffga is well acknowledged. I continue to be grateful to my former professors, Dr. Robert R. Kuntz (University of Missouri) and Dr. Richard D. Doepker (University of Miami), without whose encourage­ ment I would not be where I am now. Last but not the least, my indebtedness persists forever to my parents and family, without whose help I would not have been able to pursue higher studies. XI TABLE OF CONTENTS ACKNOWLEDGrffiNTS ii LIST OF TABLES vi LIST OF ILLUSTRATIONS vii I. INTRODUCTION AND STATEI/IENT OF PROBLEM. ... 1 Introduction 1 Statement of Problem 2 II. LITERATURE REVIEW 3 Carotenoid-Chlorophyll Complexes . 3 Energy Transfer from Carotenoid to Chlorophyll 9 Exciton Interactions 12 Role of Carotenoid As A Photoreceptor 13 Singlet Oxygen-Induced Photo- oxidation and Its Inhibition ... 14 Singlet-Triplet Transitions of Photosensitizer Dyes 21 III. MATERIALS AND METHODS 22 Materials 22 Methods 24 Theoretical Section 24 Critical Distance Calculation. 24 iii IV Intermolecular Distance Cal­ culation 25 Polarization by Photoselection. 26 Experimental Section 28 Corrected Emission and Excita­ tion Measurements 28 Fluorescence Quenching 34 High Resolution Emission and Excitation Measurements 34 Low Temperature Measurements. 37 Circular Dichroism 38 Absorption Spectra 39 Fluorescence Lifetimes 39 Temperature Dependence of PCP and Chlorophyll a Fluorescence. 40 Dynamic Depolarization 40 Photo-irradiation 44 Actinometry 45 IV. RESULTS 50 PCP (Glenodinium sp.) - Absorption and Polarization ... 50 PCP (Glenodinium sp.) - Fluor- escence Excitation 50 PCP (Glenodinium sp.) - Circular Dichroism 51 PCP (Glenodinium sp.) - Fluorescence Emission 60 PCP (G. polyedra) - Absorp­ tion and Polarization 71 PCP (G. polyedra) - Fluores­ cence Excitation 71 PCP (G. polyedra) - Circular Dichroism 78 PCP (A. rhyncocephaleum) - Absorption and Polarization. ... 78 PCP (A. rhyncocephaleum) - Fluorescence Excitation 79 PCP (A. rhyncocephaleum) - Circular Dichroism 84 PCP (A. carterae) - ..Absorp­ tion, Polarization and Circular Dichroism 84 PCP (A. carterae) - Fluor­ escence Excitation 89 PCP (A. carterae) - Fluor­ escence Emission and .Fluor­ escence Lifetimes 89 Dynamic Depolarization 98 Fluorescence Quenching 98 "Reconstitution" of PCP 105 Temperature Dependence of PCP Fluorescence 110 Photobleaching of Chlorophyll a^ . 113 Rose Bengal Sensitization and Singlet Oxygen Quenching 122 V. DISCUSSION 157 VI. CONCLUSIONS 185 LIST OF REFERENCES 189 LIST OF TABLES Table Page 1. Intensity of the Bausch & Lomb monochromator Xenon lamp at 557 nm 47 2. The fluorescence maxima and lifetimes of PCPs. 96 3. The calculated values of In ^j~V.^^ with re­ ciprocal of absolute temperature^'^for PCP (Glenodinium sp.) 118 4. Photobleaching of chlorophyll a in solution and in PCP complex 123 5. Photobleaching of PCP in D20 125 6. Quantum yields of photooxidation of chloro­ phyll a in the absence of singlet oxygen quencher 129 7. Quantum yields of photooxidation of chloro­ phyll a in the presence of B-carotene. 133 8. Quantum yields of photooxidation of chloro­ phyll a in the presence of benzoquinone (in ethanol-benzene) 137 9. Quantum yields of photooxidation of chloro­ phyll a in the presence of menadione 141 10. Quantum yields of photooxidation of chloro­ phyll a_ in the presence of a-tocopherol. 145 11. Quantiom yields of photooxidation of chloro­ phyll a^ in the presence of benzoquinone (in ethanol) 149 12. Quantum yields of photooxidation of chloro­ phyll a in the presence of DABCO 153 13. Photooxidation of chlorophyll a-singlet oxygen quenching rate constants. • 179 VI LIST OF ILLUSTRATIONS Figure Page 1. Structure of peridinin 4 2. Isolation and purification of PCP complexes 7 3. The state of oxygen molecule and their electronic configurations 16 4. Optical layout of the Perkin-Elmer MPF-3 spectrophotometer. .... 30 5. Block diagram of Perkin-Elmer spectro­ photometer with Hitachi corrected spectra accessory 32 6. Block diagram with optical layout for high resolution spectrometer 35 7. Block diagram of the Phase-Modulation cross-correlation spectrofluorometer. ... 41 8. Absorption spectra of native and de­ natured PCP from Glenodinium sp 52 9. Fluorescence excitation polarization and absorption spectra of PCP (Glenodinium sp.) 54 10. Corrected fluorescence excitation spec­ trum of PCP (Glenodinium sp.) at room temperature recorded on Perkin-Elmer spectrof luorometer 56 11. Fluorescence excitation spectra of de­ natured and native PCP (Glenodinium sp.) recorded on high-resolution spectrofluor­ ometer 58 Vll Vlll Figure Page 12. Absorption and fluorescence excitation polarization spectra of chlorophyll a in ethanol 61 13. Circular dichroism spectrum of PCP (Glenodinium sp.) 63 14. Circular dichroism spectra of de­ natured PCP (Glenodinium sp.) and chloro­ phyll a 65 15. Polarized fluorescence excitation and absorption spectra of denatured PCP (Glenodinium sp.) 67 16. Fluorescence emission spectrum of PCP (Glenodinium sp .) 69 17. Absorption and polarized fluorescence ex­ citation spectra of PCP (G. polyedra) ... 72 18. Absorption and polarized fluorescence ex­ citation spectra of PCP (A. rhyncocephaleum) 74 19. Corrected fluorescence excitation spectra of (a) PCP from G. polyedra and (b) A. rhyncocephaleum. 76 20. Fluorescence excitation spectra of PCPs from Glenodinium sp., G. polyedra and A. rhyncocephaleum 80 21. Circular dichroism spectra of PCP from (a) G. polyedra and (b) A. rhyncocephaleum 82 22. Absorption spectra of PCPs from A. carterae and G. polyedra and fluorescence excitation polaFization spectrum of PCP from A. carterae 85 23. Absorption spectra of peridinin in ethanol at room temperature and 77K 87 IX Figure Page 24. Circular dichroism spectra of PCP from (a) A. carterae and (b) A. rhyncocephaleum. 90 25. Fluorescence excitation spectra of PCPs from A. carterae, A. rhyncocephaleum and G. polyedra 92 26. Fluorescence emission spectra of PCPs from A. carterae, A. rhyncocephaleum and Glenodinium sp 94 27. Fluorescence spectra of chlorophyll a_ as a function of potassium, iodide 99 28. Stern-Volmer plot of fluorescence quench­ ing of chlorophyll a—fluorescence inten­ sities vs. KI concentration 101 29. Stern-Volmer plot of fluorescence quench­ ing of chlorophyll a—fluorescence lifetimes vs. KI concentration 103 30. Absorption spectra of PCP as a function of acetone concentration 106 31. Effects of acetone on the CD spectrum of PCP 108 32. CD spectrum of PCP after "reconstitution" from 30 per cent acetone Ill 33. Fluorescence emission of PCP as a function of temperature 114 34. Plot of In A{1/TV against reciprocal temperature for PCP 116 35. CD spectra of PCP (Glenodinium sp.) as a function of temperature 120 36. Stern-Volmer plot of photooxidation of chloro­ phyll a in the absence of singlet oxygen quencher 131 X Figure Page 37. Stern-Volmer plot of inhibition o-f chlorophyll a^ photooxidation by B~ carotene 135 38. Stern-Volmer plot of inhibition of chlorophyll a photooxidation by benzoquinone (in ethanol-benzene) 139 39. Stern-Volmer plot of inhibition of chlorophyll a photooxidation by menadione . 143 40. Stern-Volmer plot of inhibition of chlorophyll a^ photooxidation by a- tocopherol 147 41. Stern-Volmer plot of inhibitions of chlorophyll a photooxidation by benzoquine (in ethanol) 151 42. Stern-Volmer plot of inhibition of chlorophyll a photooxidation by DABCO .... 155 43. Absorption and fluorescence (hypothetical) spectra of peridinin in ethanol 161 44. Absorption spectrum of chlorophyll a nor­ malized with respect to the peridinin fluorescence spectrum 163 45. Probable molecular arrangement of PCP complex 167 46. Corrected fluorescence spectrum of PCP (Glenodinium sp.) protein 172 CHAPTER I INTRODUCTION AND STATEMENT OF PROBLEM Introduction The isolation of tiie photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein (PCP) from marine dinoflagellate algae (1-5) opened the doors to under­ standing how the light-harvesting carotenoid, peridinin, transfers its energy to chlorophyll a in the complex. Up to now such an understanding has not been possible due to the non-fluorescent nature of the carotenoids and their extremely short excited state lifetimes (6). Carotenoids absorb light in the wavelength region where chlorophyll does not absorb, thus efficiently utilizing the light in the entire visible range for photosynthesis by the energy transfer. However in the absence of protein no energy is transferred from caro­ tenoid to chlorophyll such as in solution (6), and the PCP complex, unlike other carotenoid-chlorophyll-protein com­ plexes, containing a highly water-soluble protein, provides an excellent model to study the energy transfer mechanism. The carotenoid, in addition to its role as light- harvesting pigment is thought to be the protector of chloro­ phyll a from singlet oxygen induced damage. The low-lying 1 triplet level of carotenoid quenches the singlet oxygen
Recommended publications
  • Wachter-Et-Al-LSM-32(2003)101-110.Pdf
    Lasers in Surgery and Medicine 32:101–110 (2003) Topical Rose Bengal: Pre-Clinical Evaluation of Pharmacokinetics and Safety 1 1 1 1 2 Eric Wachter, PhD, * Craig Dees, PhD, Jay Harkins, Timothy Scott, PhD, Mark Petersen, DVM, 3 4 Rusty E. Rush, MS, and Amy Cada, PhD 1Provectus Pharmaceuticals, Inc., Knoxville, Tennessee 37931 2College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37916 3Springborn Laboratories, Inc., Spencerville, Ohio 45887 4Therimmune Research Corporation, Gaithersburg, Maryland 20879 Background and Objectives: Rose bengal (RB) is a should have minimal potential for side effects, such as potent photosensitizer that has largely been overlooked as a prolonged photosensitivity. potential photodynamic therapy (PDT) agent. In this study, Since RB readily photobleaches [29], its photodynamic the feasibility of topical delivery of RB to the epidermis has effects may be self-limiting. This is particularly relevant for been evaluated. treatment of many dermatologic conditions, such as psoria- Study Design/Materials and Methods: Topical formu- sis and actinic keratosis, since precise light dosimetry is lations of RB were assessed on murine and rabbit skin for impractical over the large surface areas typically involved pharmacokinetic properties, cutaneous toxicity, and photo- in these diseases: a PDT regimen that exhibits self-limiting sensitization. effects would avoid the need for complex light dosimetry. Results: Hydrophilic formulations (1% RB) exhibited The combination of photodynamic potential, substantial
    [Show full text]
  • (12) United States Patent (10) Patent N0.: US 8,343,962 B2 Kisak Et Al
    US008343962B2 (12) United States Patent (10) Patent N0.: US 8,343,962 B2 Kisak et al. (45) Date of Patent: *Jan. 1, 2013 (54) TOPICAL FORMULATION (58) Field of Classi?cation Search ............. .. 514/226.5, 514/334, 420, 557, 567 (75) Inventors: Edward T. Kisak, San Diego, CA (US); See application ?le fOr Complete Search history. John M. NeWsam, La Jolla, CA (US); _ Dominic King-Smith, San Diego, CA (56) References C‘ted (US); Pankaj Karande, Troy, NY (US); Samir Mitragotri, Goleta, CA (US) US' PATENT DOCUMENTS 5,602,183 A 2/1997 Martin et al. (73) Assignee: NuvoResearchOntano (CA) Inc., Mississagua, 6,328,979 2B1 12/2001 Yamashita et a1. 7,001,592 B1 2/2006 Traynor et a1. ( * ) Notice: Subject to any disclaimer, the term of this 7,795,309 B2 9/2010 Kisak eta1~ patent is extended or adjusted under 35 2002/0064524 A1 5/2002 Cevc U.S.C. 154(b) by 212 days. FOREIGN PATENT DOCUMENTS This patent is subject to a terminal dis- W0 WO 2005/009510 2/2005 claimer- OTHER PUBLICATIONS (21) APPI' NO‘, 12/848,792 International Search Report issued on Aug. 8, 2008 in application No. PCT/lB2007/0l983 (corresponding to US 7,795,309). _ Notice ofAlloWance issued on Apr. 29, 2010 by the Examiner in US. (22) Med Aug- 2’ 2010 Appl. No. 12/281,561 (US 7,795,309). _ _ _ Of?ce Action issued on Dec. 30, 2009 by the Examiner in US. Appl. (65) Prior Publication Data No, 12/281,561 (Us 7,795,309), Us 2011/0028460 A1 Feb‘ 3’ 2011 Primary Examiner * Raymond Henley, 111 Related U 5 Application Data (74) Attorney, Agent, or Firm * Foley & Lardner LLP (63) Continuation-in-part of application No.
    [Show full text]
  • Ophthalmic Herpes Zoster
    OPHTHALMIC HERPES ZOSTER RONALD J. MARSH and MATTHEW COOPER London SUMMARY Fig. 1 shows the age and sex distribution, which is A current review of ophthalmic zoster is presented biased in favour of females and compares with 50.7% including its virology, immunology, epidemiology and males, 49.3% females in another series.5 The 1981 census pathogenesis. We give our findings in 1356 patients for Greater London recorded 48% males and 52% referred to the Zoster Clinic at Moorfields Ey e Hospital, females. London. The treatment of the disease and its ocular com­ ONSET plications is discussed. There is a prodromal influenza-like illness of varying Ophthalmic herpes zoster is a disease varying in severity duration, with headache, pyrexia, malaise, depression, and from devastating, threatening life and sight, to so mild that sometimes neck stiffness, which may last up to a week it may pass unnoticed. The ophthalmic division of the fifth before the rash appears. This is shortly followed by local­ cranial nerve is affected in 7-17.5% of herpes zoster ised pain over the distribution of the ophthalmic nerve, patients. 1-5 Ocular involvement complicates approxi­ lymph node swelling in the corresponding drainage areas mately 50% of these cases and very rarely cases of maxil­ and, occasionally, a red eye. The localised pain is well lary herpes zoster,l affecting many of the tissues of the known to precede the rash by several days in some cases. globe and orbit by highly varied types of lesions. This probably represents the replication and migration We felt it would be helpful to report our experience with phase of the disease and is possibly accompanied by a lim­ the disease because the large number of cases we have ited viraemia.
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • Corneal Wound Repair After Rose Bengal and Green Light Crosslinking: Clinical and Histologic Study
    Cornea Corneal Wound Repair After Rose Bengal and Green Light Crosslinking: Clinical and Histologic Study Patricia Gallego-Munoz,˜ 1 Luc´ıa Ibares-Fr´ıas,1 Elvira Lorenzo,1 Susana Marcos,2 Pablo Perez-Merino,´ 2 Nandor Bekesi,2 Irene E. Kochevar,3 and M. Carmen Mart´ınez-Garc´ıa1 1Departamento de Biolog´ıa Celular, Histolog´ıa y Farmacolog´ıa, GIR de Tecnicas´ Opticas´ para el Diagnostico,´ Universidad de Valladolid, Valladolid, Spain 2Instituto de Optica,´ Consejo Superior de Investigaciones Cient´ıficas, Madrid, Spain 3Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States Correspondence: M. Carmen PURPOSE. To evaluate corneal wound healing after treatment with a new collagen crosslinking Mart´ınez-Garc´ıa, Departamento de protocol using rose bengal dye and green light (RGX). Biolog´ıa Celular, Histolog´ıa y Farm- acolog´ıa, Facultad de Medicina, Uni- METHODS. One cornea of 20 New Zealand rabbits was de-epithelialized (DE) in an 8-mm versidad de Valladolid, C/Ramon´ y diameter circle and, in another group (n ¼ 25), the DE corneas were then stained with 0.1% Cajal 7, 47005 Valladolid, Spain; rose bengal for 2 minutes and exposed to green light (532 nm) for 7 minutes (RGX). The mariacarmen.martinez.garcia@ contralateral eyes without treatment acted as controls. The animals were clinically followed uva.es. including fluorescein staining and pachymetry. Healing events were analyzed after euthanasia 0 Submitted: December 23, 2016 at 2, 30, and 60 days. Cell death (TUNEL assay), cell proliferation (5-bromo-2 -deoxyuridine Accepted: June 1, 2017 incorporation), and cell differentiation to myofibroblasts (a-SMA labeling) were carried out.
    [Show full text]
  • PF 44(1) Table of Contents Publish Date: November 1, 2017
    PF 44(1) Table of Contents Publish date: November 1, 2017 PROPOSED IRA: Proposed Interim Revision Announcements USP MONOGRAPHS IN-PROCESS REVISION: In-Process Revision GENERAL NOTICES FOR USP-NF General Notices to USP-NF (USP42-NF37) 1. TITLE AND REVISION 2. OFFICIAL STATUS AND LEGAL RECOGNITION 3. CONFORMANCE TO STANDARDS 4. MONOGRAPHS AND GENERAL CHAPTERS 5. MONOGRAPH COMPONENTS 6. TESTING PRACTICES AND PROCEDURES 7. TEST RESULTS 8. TERMS AND DEFINITIONS 9. PRESCRIBING AND DISPENSING 10. PRESERVATION, PACKAGING, STORAGE, AND LABELING GENERAL CHAPTERS <7> LABELING (USP42-NF37) <561> ARTICLES OF BOTANICAL ORIGIN (USP42-NF37) <1057> BIOTECHNOLOGY-DERIVED ARTICLES—TOTAL PROTEIN ASSAY (USP42-NF37) <1160> PHARMACEUTICAL CALCULATIONS IN PHARMACY PRACTICE (USP42-NF37) <1176> PRESCRIPTION BALANCES AND VOLUMETRIC APPARATUS USED IN COMPOUNDING (USP42- NF37) REAGENTS, INDICATORS, AND SOLUTIONS Reagent Specifications Aflatoxin B1 [NEW] (USP42-NF37) Aflatoxin B2 [NEW] (USP42-NF37) Aflatoxin G1 [NEW] (USP42-NF37) Aflatoxin G2 [NEW] (USP42-NF37) Clozapine N-Oxide [NEW] (USP42-NF37) Deuterated Ethanol [NEW] (USP42-NF37) Deuterium Chloride Solution [NEW] (USP42-NF37) Deuterium Oxide (USP42-NF37) Isobutyl Chloroformate [NEW] (USP42-NF37) PF 4x(x) Table of Contents 1 | P a g e Polyethylene Glycol 400 [NEW] (USP42-NF37) Polyethylene Glycol 4000 [NEW] (USP42-NF37) Pyridine, Anhydrous [NEW] (USP42-NF37) Trifluoroacetic Acid Ethyl Ester [NEW] (USP42-NF37) Test Solutions Citric Acid TS [NEW] (USP42-NF37) Sodium Chloride TS [NEW] (USP42-NF37) Volumetric Solutions
    [Show full text]
  • Curable Composition and Skin Adhesive
    (19) TZZ ¥Z¥_T (11) EP 2 957 303 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 23.12.2015 Bulletin 2015/52 A61L 15/58 (2006.01) A61L 24/04 (2006.01) C08K 5/10 (2006.01) C09J 167/06 (2006.01) (2006.01) (21) Application number: 14173247.9 C08L 67/06 (22) Date of filing: 20.06.2014 (84) Designated Contracting States: (72) Inventor: Schüwer, Nicolas AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 1010 Lausanne (CH) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: Hoffmann Eitle Designated Extension States: Patent- und Rechtsanwälte PartmbB BA ME Arabellastraße 30 81925 München (DE) (71) Applicant: NITTO DENKO CORPORATION Osaka 567 (JP) (54) Curable composition and skin adhesive (57) The present invention pertains to compositions The composition of the invention may be cross- linked to containing a polycondensate and optionally an oil com- yield an adhesive composition. The composition of the ponent, wherein the polycondensate is derived from a invention and the adhesive composition of the invention dicarboxylic acid component, a diol component and an may be used on substrates such as tapes and patches ethylenically unsaturated dicarboxylic acid component. in the medical field. EP 2 957 303 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 957 303 A1 Description 1. Technical Field of the Invention 5 [0001] The present invention relates to a curable composition comprising: a polycondensate of a dicarboxylic acid, a diol, and a polymerizable ethylenic derivative; and optionally an oil additive.
    [Show full text]
  • Medications in Pregnant and Nursing Mothers
    Medications in Pregnant and Nursing Mothers NADINE M. GIRGIS, OD, FAAO ASSISTANT PROFESSOR YIN C. TEA, OD, FAAO CHIEF, PEDIATRICS AND BINOCULAR VISION ASSISTANT PROFESSOR Gestation age vs fetal age Gestation age-sperm penetrates the egg and zygote is formed Zygote (fertilized egg) travels from fallopian tube to uterus During this time, egg divides into cells - called a morula Continued dividing and morula - called a blastocyst - embeds in the uterus anywhere from 6-12 days after conception This begins the embryonic stage and fetal age begins Fetal development-1st trimester Gestation age week 3-fetal age week 1: a lot of basic growth Brain, spinal cord, heart, GI tract begin development 1st trimester Gestation age-week 4 and 5: embryo ¼ inch long Arm and leg buds, ears, eyes forming Placenta forming and producing hormones Heart is beating at a steady rhythm Movement of rudimentary blood through blood vessels 1st trimester Gestation age week 6: embryo is ½ in length Lungs, jaw, nose, plate formation, hands and feet Hand and feet buds have webbed structures Brain forming into complex parts 1st trimester Gestation age week 7: weighs less than an aspirin All essential organs have begun to form Hair, nail follicles, eyelids and tongue starting to form Trunk begins to straighten out 1st trimester Gestation age week 8: 1 in long, size of a bean All parts of adult are now present in the embryo Bones beginning to form Muscles begin to contract Facial features, including eyelids more developed Gestation age weeks 9-13: 3 in and weighs
    [Show full text]
  • Waste Disposal Guide
    Waste Disposal Guide How to Properly Dispose of Waste Materials Generated at Michigan State University Environmental Health & Safety (EHS) / Office of Radiation, Chemical & Biological Safety (ORCBS) C124 Research Complex‐Engineering East Lansing, MI 48824‐1326 Revised April 2009 CONTACT INFORMATION Campus Emergency: 911 ORCBS Phone Number: (517) 355-0153 ORCBS Fax Number: (517) 353-4871 ORCBS E-mail Address: [email protected] ORCBS Web Address: http://www.orcbs.msu.edu TABLE OF CONTENTS Sections Introduction ................................................................................................................... 4 Hazardous Waste Defined ............................................................................................ 5 Requirements for Chemical Waste ............................................................................... 6 Classification of Chemical Waste .................................................................................. 7 Containers ..................................................................................................................... 8 Container Label ............................................................................................................. 9 General Labeling & Packaging Procedures .................................................................. 9 Specific Labeling & Packaging Procedures ............................................................. 9-15 Scheduling a Chemical Waste Pick-up ......................................................................
    [Show full text]
  • Inhibition of Vesicular Glutamate Storage and Exocytotic Release by Rose Bengal
    Journal of Neurochemistry, 2001, 77,34±42 Inhibition of vesicular glutamate storage and exocytotic release by Rose Bengal Kiyokazu Ogita,*,1 Koji Hirata,* David G. Bole,* Sumiko Yoshida,*,2 Yutaka Tamura,*,3 Anne Marie Leckenby* and Tetsufumi Ueda*,²,³ *Mental Health Research Institute, Departments of ²Pharmacology and ³Psychiatry, Medical School, The University of Michigan, Ann Arbor, Michigan, USA Abstract the synaptosome result in a corresponding decrease in the It had been thought that quantal size in synaptic transmission amount of [3H]Glu released in a depolarization- (induced by 4- is invariable. Evidence has been emerging, however, that aminopyridine) and Ca21-dependent manner. In contrast, quantal size can be varied under certain conditions. We ¯uorescein, the halogen-free analog of Rose Bengal, which is 3 3 present evidence that alteration in vesicular [ H]L-glutamate devoid of inhibitory activity on vesicular [ H]Glu uptake, failed to (Glu) content within the synaptosome (a pinched-off nerve change the amount of exocytotically released [3H]Glu. These ending preparation) leads to a change in the amount of observations suggest that glutamate synaptic transmission exocytotically released [3H]Glu. We found that Rose Bengal, a could be altered by pharmacological intervention of glutamate polyhalogenated ¯uorescein derivative, is a quite potent uptake into synaptic vesicles in the nerve terminal, a new membrane-permeant inhibitor (K 19 nM) of glutamate mode of synaptic manipulation for glutamate transmission. i uptake into isolated synaptic vesicles. This vesicular Glu Keywords: glutamate, inhibitor, release, Rose Bengal, uptake inhibition was achieved largely without affecting H1- vesicular uptake. pump ATPase. We show that various degrees of reduction J.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • 2020 Aetna Standard Plan
    Plan for your best health Aetna Standard Plan Aetna.com Aetna is the brand name used for products and services provided by one or more of the Aetna group of subsidiary companies, including Aetna Life Insurance Company and its affiliates (Aetna). Aetna Pharmacy Management refers to an internal business unit of Aetna Health Management, LLC. Aetna Pharmacy Management administers, but does not offer, insure or otherwise underwrite the prescription drug benefits portion of your health plan and has no financial responsibility therefor. 2020 Pharmacy Drug Guide - Aetna Standard Plan Table of Contents INFORMATIONAL SECTION..................................................................................................................6 *ADHD/ANTI-NARCOLEPSY/ANTI-OBESITY/ANOREXIANTS* - DRUGS FOR THE NERVOUS SYSTEM.................................................................................................................................16 *ALLERGENIC EXTRACTS/BIOLOGICALS MISC* - BIOLOGICAL AGENTS...............................18 *ALTERNATIVE MEDICINES* - VITAMINS AND MINERALS....................................................... 19 *AMEBICIDES* - DRUGS FOR INFECTIONS.....................................................................................19 *AMINOGLYCOSIDES* - DRUGS FOR INFECTIONS.......................................................................19 *ANALGESICS - ANTI-INFLAMMATORY* - DRUGS FOR PAIN AND FEVER............................19 *ANALGESICS - NONNARCOTIC* - DRUGS FOR PAIN AND FEVER.........................................
    [Show full text]