David A. Knowles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Risk Bounds for Classification and Regression Rules That Interpolate
Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate Mikhail Belkin Daniel Hsu Partha P. Mitra The Ohio State University Columbia University Cold Spring Harbor Laboratory Abstract Many modern machine learning models are trained to achieve zero or near-zero training error in order to obtain near-optimal (but non-zero) test error. This phe- nomenon of strong generalization performance for “overfitted” / interpolated clas- sifiers appears to be ubiquitous in high-dimensional data, having been observed in deep networks, kernel machines, boosting and random forests. Their performance is consistently robust even when the data contain large amounts of label noise. Very little theory is available to explain these observations. The vast majority of theoretical analyses of generalization allows for interpolation only when there is little or no label noise. This paper takes a step toward a theoretical foundation for interpolated classifiers by analyzing local interpolating schemes, including geometric simplicial interpolation algorithm and singularly weighted k-nearest neighbor schemes. Consistency or near-consistency is proved for these schemes in classification and regression problems. Moreover, the nearest neighbor schemes exhibit optimal rates under some standard statistical assumptions. Finally, this paper suggests a way to explain the phenomenon of adversarial ex- amples, which are seemingly ubiquitous in modern machine learning, and also discusses some connections to kernel machines and random forests in the interpo- lated regime. 1 Introduction The central problem of supervised inference is to predict labels of unseen data points from a set of labeled training data. The literature on this subject is vast, ranging from classical parametric and non-parametric statistics [48, 49] to more recent machine learning methods, such as kernel machines [39], boosting [36], random forests [15], and deep neural networks [25]. -
Probabilistic Circuits: Representations, Inference, Learning and Theory
Inference Probabilistic Representations Learning Circuits Theory Antonio Vergari YooJung Choi University of California, Los Angeles University of California, Los Angeles Robert Peharz Guy Van den Broeck TU Eindhoven University of California, Los Angeles January 7th, 2021 - IJCAI-PRICAI 2020 Fully factorized NaiveBayes AndOrGraphs PDGs Trees PSDDs CNets LTMs SPNs NADEs Thin Junction Trees ACs MADEs MAFs VAEs DPPs FVSBNs TACs IAFs NAFs RAEs Mixtures BNs NICE FGs GANs RealNVP MNs The Alphabet Soup of probabilistic models 2/153 Fully factorized NaiveBayes AndOrGraphs PDGs Trees PSDDs CNets LTMs SPNs NADEs Thin Junction Trees ACs MADEs MAFs VAEs DPPs FVSBNs TACs IAFs NAFs RAEs Mixtures BNs NICE FGs GANs RealNVP MNs Intractable and tractable models 3/153 Fully factorized NaiveBayes AndOrGraphs PDGs Trees PSDDs CNets LTMs SPNs NADEs Thin Junction Trees ACs MADEs MAFs VAEs DPPs FVSBNs TACs IAFs NAFs RAEs Mixtures BNs NICE FGs GANs RealNVP MNs tractability is a spectrum 4/153 Fully factorized NaiveBayes AndOrGraphs PDGs Trees PSDDs CNets LTMs SPNs NADEs Thin Junction Trees ACs MADEs MAFs VAEs DPPs FVSBNs TACs IAFs NAFs RAEs Mixtures BNs NICE FGs GANs RealNVP MNs Expressive models without compromises 5/153 Fully factorized NaiveBayes AndOrGraphs PDGs Trees PSDDs CNets LTMs SPNs NADEs Thin Junction Trees ACs MADEs MAFs VAEs DPPs FVSBNs TACs IAFs NAFs RAEs Mixtures BNs NICE FGs GANs RealNVP MNs a unifying framework for tractable models 6/153 Why tractable inference? or expressiveness vs tractability 7/153 Why tractable inference? or expressiveness -
UNIVERSITY of CALIFORNIA RIVERSIDE Unsupervised And
UNIVERSITY OF CALIFORNIA RIVERSIDE Unsupervised and Zero-Shot Learning for Open-Domain Natural Language Processing A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science by Muhammad Abu Bakar Siddique June 2021 Dissertation Committee: Dr. Evangelos Christidis, Chairperson Dr. Amr Magdy Ahmed Dr. Samet Oymak Dr. Evangelos Papalexakis Copyright by Muhammad Abu Bakar Siddique 2021 The Dissertation of Muhammad Abu Bakar Siddique is approved: Committee Chairperson University of California, Riverside To my family for their unconditional love and support. i ABSTRACT OF THE DISSERTATION Unsupervised and Zero-Shot Learning for Open-Domain Natural Language Processing by Muhammad Abu Bakar Siddique Doctor of Philosophy, Graduate Program in Computer Science University of California, Riverside, June 2021 Dr. Evangelos Christidis, Chairperson Natural Language Processing (NLP) has yielded results that were unimaginable only a few years ago on a wide range of real-world tasks, thanks to deep neural networks and the availability of large-scale labeled training datasets. However, existing supervised methods assume an unscalable requirement that labeled training data is available for all classes: the acquisition of such data is prohibitively laborious and expensive. Therefore, zero-shot (or unsupervised) models that can seamlessly adapt to new unseen classes are indispensable for NLP methods to work in real-world applications effectively; such models mitigate (or eliminate) the need for collecting and annotating data for each domain. This dissertation ad- dresses three critical NLP problems in contexts where training data is scarce (or unavailable): intent detection, slot filling, and paraphrasing. Having reliable solutions for the mentioned problems in the open-domain setting pushes the frontiers of NLP a step towards practical conversational AI systems. -
Risk Bounds for Classification and Regression Rules That Interpolate
Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate Mikhail Belkin1, Daniel Hsu2, and Partha P. Mitra3 1The Ohio State University, Columbus, OH 2Columbia University, New York, NY 3Cold Spring Harbor Laboratory, Cold Spring Harbor, NY October 29, 2018 Abstract Many modern machine learning models are trained to achieve zero or near-zero training error in order to obtain near-optimal (but non-zero) test error. This phenomenon of strong generalization performance for “overfitted” / interpolated classifiers appears to be ubiquitous in high-dimensional data, having been observed in deep networks, kernel machines, boosting and random forests. Their performance is consistently robust even when the data contain large amounts of label noise. Very little theory is available to explain these observations. The vast majority of theoretical analyses of generalization allows for interpolation only when there is little or no label noise. This paper takes a step toward a theoretical foundation for interpolated classifiers by analyzing local interpolating schemes, including geometric simplicial interpolation algorithm and singularly weighted k-nearest neighbor schemes. Consistency or near-consistency is proved for these schemes in classification and regression problems. Moreover, the nearest neighbor schemes exhibit optimal rates under some standard statistical assumptions. Finally, this paper suggests a way to explain the phenomenon of adversarial examples, which are seemingly ubiquitous in modern machine learning, and also discusses some connections to kernel machines and random forests in the interpolated regime. 1 Introduction arXiv:1806.05161v3 [stat.ML] 26 Oct 2018 The central problem of supervised inference is to predict labels of unseen data points from a set of labeled training data. -
Part I Officers in Institutions Placed Under the Supervision of the General Board
2 OFFICERS NUMBER–MICHAELMAS TERM 2009 [SPECIAL NO.7 PART I Chancellor: H.R.H. The Prince PHILIP, Duke of Edinburgh, T Vice-Chancellor: 2003, Prof. ALISON FETTES RICHARD, N, 2010 Deputy Vice-Chancellors for 2009–2010: Dame SANDRA DAWSON, SID,ATHENE DONALD, R,GORDON JOHNSON, W,STUART LAING, CC,DAVID DUNCAN ROBINSON, M,JEREMY KEITH MORRIS SANDERS, SE, SARAH LAETITIA SQUIRE, HH, the Pro-Vice-Chancellors Pro-Vice-Chancellors: 2004, ANDREW DAVID CLIFF, CHR, 31 Dec. 2009 2004, IAN MALCOLM LESLIE, CHR, 31 Dec. 2009 2008, JOHN MARTIN RALLISON, T, 30 Sept. 2011 2004, KATHARINE BRIDGET PRETTY, HO, 31 Dec. 2009 2009, STEPHEN JOHN YOUNG, EM, 31 July 2012 High Steward: 2001, Dame BRIDGET OGILVIE, G Deputy High Steward: 2009, ANNE MARY LONSDALE, NH Commissary: 2002, The Rt Hon. Lord MACKAY OF CLASHFERN, T Proctors for 2009–2010: JEREMY LLOYD CADDICK, EM LINDSAY ANNE YATES, JN Deputy Proctors for MARGARET ANN GUITE, G 2009–2010: PAUL DUNCAN BEATTIE, CC Orator: 2008, RUPERT THOMPSON, SE Registrary: 2007, JONATHAN WILLIAM NICHOLLS, EM Librarian: 2009, ANNE JARVIS, W Acting Deputy Librarian: 2009, SUSANNE MEHRER Director of the Fitzwilliam Museum and Marlay Curator: 2008, TIMOTHY FAULKNER POTTS, CL Director of Development and Alumni Relations: 2002, PETER LAWSON AGAR, SE Esquire Bedells: 2003, NICOLA HARDY, JE 2009, ROGER DERRICK GREEVES, CL University Advocate: 2004, PHILIPPA JANE ROGERSON, CAI, 2010 Deputy University Advocates: 2007, ROSAMUND ELLEN THORNTON, EM, 2010 2006, CHRISTOPHER FORBES FORSYTH, R, 2010 OFFICERS IN INSTITUTIONS PLACED UNDER THE SUPERVISION OF THE GENERAL BOARD PROFESSORS Accounting 2003 GEOFFREY MEEKS, DAR Active Tectonics 2002 JAMES ANTHONY JACKSON, Q Aeronautical Engineering, Francis Mond 1996 WILLIAM NICHOLAS DAWES, CHU Aerothermal Technology 2000 HOWARD PETER HODSON, G Algebra 2003 JAN SAXL, CAI Algebraic Geometry (2000) 2000 NICHOLAS IAN SHEPHERD-BARRON, T Algebraic Geometry (2001) 2001 PELHAM MARK HEDLEY WILSON, T American History, Paul Mellon 1992 ANTHONY JOHN BADGER, CL American History and Institutions, Pitt 2009 NANCY A. -
Machine Learning Conference Report
Part of the conference series Breakthrough science and technologies Transforming our future Machine learning Conference report Machine learning report – Conference report 1 Introduction On 22 May 2015, the Royal Society hosted a unique, high level conference on the subject of machine learning. The conference brought together scientists, technologists and experts from across academia, industry and government to learn about the state-of-the-art in machine learning from world and UK experts. The presentations covered four main areas of machine learning: cutting-edge developments in software, the underpinning hardware, current applications and future social and economic impacts. This conference is the first in a new series organised This report is not a verbatim record, but summarises by the Royal Society, entitled Breakthrough Science the discussions that took place during the day and the and Technologies: Transforming our Future, which will key points raised. Comments and recommendations address the major scientific and technical challenges reflect the views and opinions of the speakers and of the next decade. Each conference will focus on one not necessarily that of the Royal Society. Full versions technology and cover key issues including the current of the presentations can be found on our website at: state of the UK industry sector, future direction of royalsociety.org/events/2015/05/breakthrough-science- research and the wider social and economic implications. technologies-machine-learning The conference series is being organised through the Royal Society’s Science and Industry programme, which demonstrates our commitment to reintegrate science and industry at the Society and to promote science and its value, build relationships and foster translation. -
AAAI News AAAI News
AAAI News AAAI News Winter News from the Association for the Advancement of Artificial Intelligence AAAI-18 Registration Student Activities looking for internships or jobs to meet with representatives from over 30 com - As part of its outreach to students, Is Open! panies and academia in an informal AAAI-18 will continue several special "meet-and-greet" atmosphere. If you AAAI-18 registration information is programs specifically for students, are representing a company, research now available at aaai.org/aaai18, and including the Doctoral Consortium, organization or university and would online registration can be completed at the Student Abstract Program, Lunch like to participate in the job fair, please regonline.com/aaai18. The deadline with a Fellow, and the Volunteer Pro - send an email with your contact infor - for late registration rates is January 5, gram, in addition to the following: 2018. Complete tutorial and workshop mation to [email protected] no later than January 5. The organizers of information, as well as other special Student Reception the AAAI/ACM SIGAI Job Fair are John program information is available at AAAI will welcome all students to Dickerson (University of Maryland, these sites. AAAI-18 by hosting an evening stu - USA) and Nicholas Mattei (IBM, USA). dent reception on Friday, February 2. Make Your Hotel Reservation Although the reception is especially The Winograd Now! beneficial to new students at the con - Schema Challenge AAAI has reserved a block of rooms at ference, all are welcome! Please join us and make all the newcomers welcome! Nuance Communications, Inc. is spon - the Hilton New Orleans Riverside at soring a competition to encourage reduced conference rates. -
Probabilistic Machine Learning: Foundations and Frontiers
Probabilistic Machine Learning: Foundations and Frontiers Zoubin Ghahramani1,2,3,4 1 University of Cambridge 2 Alan Turing Institute 3 Leverhulme Centre for the Future of Intelligence 4 Uber AI Labs [email protected] http://mlg.eng.cam.ac.uk/zoubin/ Sackler Forum, National Academy of Sciences Washington DC, 2017 Machine Learning Zoubin Ghahramani 2 / 53 Many Related Terms Statistical Modelling Artificial Intelligence Neural Networks Machine Learning Data Mining Data Analytics Deep Learning Pattern Recognition Data Science Zoubin Ghahramani 3 / 53 Many Related Fields Engineering Computer Science Statistics Machine Learning Computational Applied Mathematics Neuroscience Economics Cognitive Science Physics Zoubin Ghahramani 4 / 53 Many Many Applications Bioinformatics Computer Vision Robotics Scientific Data Analysis Natural Language Processing Machine Learning Information Retrieval Speech Recognition Recommender Systems Signal Processing Machine Translation Medical Informatics Targeted Advertising Finance Data Compression Zoubin Ghahramani 5 / 53 Machine Learning • Machine learning is an interdisciplinary field that develops both the mathematical foundations and practical applications of systems that learn from data. Main conferences and journals: NIPS, ICML, AISTATS, UAI, KDD, JMLR, IEEE TPAMI Zoubin Ghahramani 6 / 53 Canonical problems in machine learning Zoubin Ghahramani 7 / 53 Classification x x x o x xxx o x o o o x x o o x o • Task: predict discrete class label from input data • Applications: face recognition, image recognition, -
University of California Santa Cruz Sample
UNIVERSITY OF CALIFORNIA SANTA CRUZ SAMPLE-SPECIFIC CANCER PATHWAY ANALYSIS USING PARADIGM A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOMOLECULAR ENGINEERING AND BIOINFORMATICS by Stephen C. Benz June 2012 The Dissertation of Stephen C. Benz is approved: Professor David Haussler, Chair Professor Joshua Stuart Professor Nader Pourmand Dean Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright c by Stephen C. Benz 2012 Table of Contents List of Figures v List of Tables xi Abstract xii Dedication xiv Acknowledgments xv 1 Introduction 1 1.1 Identifying Genomic Alterations . 2 1.2 Pathway Analysis . 5 2 Methods to Integrate Cancer Genomics Data 10 2.1 UCSC Cancer Genomics Browser . 11 2.2 BioIntegrator . 16 3 Pathway Analysis Using PARADIGM 20 3.1 Method . 21 3.2 Comparisons . 26 3.2.1 Distinguishing True Networks From Decoys . 27 3.2.2 Tumor versus Normal - Pathways associated with Ovarian Cancer 29 3.2.3 Differentially Regulated Pathways in ER+ve vs ER-ve breast can- cers . 36 3.2.4 Therapy response prediction using pathways (Platinum Free In- terval in Ovarian Cancer) . 38 3.3 Unsupervised Stratification of Cancer Patients by Pathway Activities . 42 4 SuperPathway - A Global Pathway Model for Cancer 51 4.1 SuperPathway in Ovarian Cancer . 55 4.2 SuperPathway in Breast Cancer . 61 iii 4.2.1 Chin-Naderi Cohort . 61 4.2.2 TCGA Breast Cancer . 63 4.3 Cross-Cancer SuperPathway . 67 5 Pathway Analysis of Drug Effects 74 5.1 SuperPathway on Breast Cell Lines . -
Bayesian Activity Recognition Using Variational Inference
BAR: Bayesian Activity Recognition using variational inference Ranganath Krishnan Mahesh Subedar Omesh Tickoo [email protected] [email protected] [email protected] Intel Labs Hillsboro, OR (USA) Abstract Uncertainty estimation in deep neural networks is essential for designing reliable and robust AI systems. Applications such as video surveillance for identifying suspicious activities are designed with deep neural networks (DNNs), but DNNs do not provide uncertainty estimates. Capturing reliable uncertainty estimates in safety and security critical applications will help to establish trust in the AI system. Our contribution is to apply Bayesian deep learning framework to visual activity recognition application and quantify model uncertainty along with principled confidence. We utilize the stochastic variational inference technique while training the Bayesian DNNs to infer the approximate posterior distribution around model parameters and perform Monte Carlo sampling on the posterior of model parameters to obtain the predictive distribution. We show that the Bayesian inference applied to DNNs provide reliable confidence measures for visual activity recognition task as compared to conventional DNNs. We also show that our method improves the visual activity recognition precision-recall AUC by 6.2% compared to non-Bayesian baseline. We evaluate our models on Moments-In-Time (MiT) activity recognition dataset by selecting a subset of in- and out-of-distribution video samples. 1 Introduction Activity recognition is an active area of research with multiple approaches depending on the applica- tion domain and the types of sensors [1, 2, 3]. In recent years, the DNN models applied to the visual activity recognition task outperform the earlier methods based on Gaussian Mixture Models and Hid- den Markov Models [4, 5] using handcrafted features. -
Automatic Opioid User Detection from Twitter
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18) Automatic Opioid User Detection From Twitter: Transductive Ensemble Built On Different Meta-graph Based Similarities Over Heterogeneous Information Network Yujie Fan, Yiming Zhang, Yanfang Ye ∗, Xin Li Department of Computer Science and Electrical Engineering, West Virginia University, WV, USA fyf0004,[email protected], fyanfang.ye,[email protected] Abstract 13,000 people died from heroin overdose, both reflecting sig- nificant increase from 2002 [NIDA, 2017]. Opioid addiction Opioid (e.g., heroin and morphine) addiction has is a chronic mental illness that requires long-term treatment become one of the largest and deadliest epidemics and care [McLellan et al., 2000]. Although Medication As- in the United States. To combat such deadly epi- sisted Treatment (MAT) using methadone or buprenorphine demic, in this paper, we propose a novel frame- has been proven to provide best outcomes for opioid addiction work named HinOPU to automatically detect opi- recovery, stigma (i.e., bias) associated with MAT has limited oid users from Twitter, which will assist in sharp- its utilization [Saloner and Karthikeyan, 2015]. Therefore, ening our understanding toward the behavioral pro- there is an urgent need for novel tools and methodologies to cess of opioid addiction and treatment. In HinOPU, gain new insights into the behavioral processes of opioid ad- to model the users and the posted tweets as well diction and treatment. as their rich relationships, we introduce structured In recent years, the role of social media in biomedical heterogeneous information network (HIN) for rep- knowledge mining has become more and more important resentation. -
Deep Learning
ADVANCEMENTS AND TRENDS IN MEDICAL IMAGE ANALYSIS USING DEEP LEARNING A presentation by Shekoofeh Azizi University of British Columbia, Canada, Ph.D. 2014-2018 Electrical and Computer Engineering Isfahan University of Technology, Iran, M.Sc. 2011-2013 Computer Engineering / Hardware Design Isfahan University of Technology, Iran, B.Sc. 2007-2011 Computer Engineering / Hardware Engineering Philips Research North America, 2015-now National Institutes of Health (NIH), 2015-now MICCAI Student Board Officer, 2016-now Women in MICCAI, 2017-now 2 UBC Queen’s University SFU Univ. of Western Ontario VGH Robarts Research Technical Univ. of Munich ETH Zurich NVidia Sejong Univ., Korea Philips IBM Univ. of Colorado NIH Size is related to the number of collaborators Academic Collaborators Industrial/Clinical Collaborators 3 OUTLINE Deep Learning Medical Imaging Challenges and Vision Opportunities 4 DEEP LEARNING 5 ARTIFICIAL INTELLIGENCE VS. DATA SCIENCE AI is a technique which enables machines to mimic the “human behaviour” It’s 17°C Hey Google, and sunny in Weather in Victoria Victoria! Voice Services Voice to Command Brain/Model Voice Output User Google Home Google Home 6 ARTIFICIAL INTELLIGENCE VS. DATA SCIENCE Data Science is about processes and systems to extract knowledge or insights from data in Artificial Intelligence various forms. (AI) Machine Learning is the connection Machine Learning between data science and artificial (ML) intelligence since machine learning is the process of learning from data over time. Data Science Deep Learning (DL) 7 MACHINE LEARNING (ML) Machine learning is the process of learning from data over time. Reinforcement Learning Andrew Ng, Machine Learning Course, Coursera. 9 DEEP LEARNING (DL) Inspired by the functionality of our brains Number of sides: 4? Closed form shape? Perpendicular sides? Square ? Equal sides? 10 DEEP LEARNING (DL) Cat Feature Learning Dog 11 DEEP LEARNING (DL) 12 WHY DEEP LEARNING? Consistent improvement over the state-of-the-art across a large variety of domains.