Extreme Emission Line Galaxies and Their Implication on Selection Of

Total Page:16

File Type:pdf, Size:1020Kb

Extreme Emission Line Galaxies and Their Implication on Selection Of Draft version December 30, 2014 Preprint typeset using LATEX style emulateapj v. 12/16/11 CLASH: EXTREME EMISSION LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES Xingxing Huang1,2, Wei Zheng2, Junxian Wang1, Holland Ford2, Doron Lemze2, John Moustakas3, Xinwen Shu4,1, Arjen Van der Wel5, Adi Zitrin6,7, Brenda L. Frye8, Marc Postman9, Matthias Bartelmann10, Narciso Ben´ıtez11, Larry Bradley9, Tom Broadhurst12,13, Dan Coe9, Megan Donahue14, Leopoldo Infante15, Daniel Kelson16, Anton Koekemoer9, Ofer Lahav17, Elinor Medezinski2, Leonidas Moustakas16, Piero Rosati19, Stella Seitz20, Keiichi Umetsu21 Draft version December 30, 2014 ABSTRACT We utilize the CLASH (Cluster Lensing And Supernova survey with Hubble) observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y105) and F125W (J125), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959; 5007 at redshift of ∼ 0:93 − 1:14 and 1:57 − 1:79, respectively. The multi-band observations help to constrain the equivalent widths of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959; 5007 equivalent width of ' 3737 A.˚ Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high equivalent width can be only found in such faint galaxies. These EELGs can mimic the dropout feature similar to that of high redshift galaxies and contaminate the color-color selection of high redshift galaxies when the S/N ratio is limited or the band coverage is incomplete. We predict that the fraction of EELGs in the future high redshift galaxy selections cannot be neglected. Keywords: galaxies: high-redshift{galaxies: formation{galaxies: photometry 1. INTRODUCTION 1 CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of The presence of extremely strong emission lines such China, Hefei, Anhui 230026, China; e-mail:[email protected] as the [O III] λλ4959; 5007 and Hα λ6563 emission 2 Department of Physics and Astronomy, Johns Hopkins Univer- lines is one of the prominent spectral features in star- sity, 3400 N. Charles Street, Baltimore, MD 21218 forming galaxies. Recently, a considerable number of 3 Department of Physics & Astronomy, Siena College, 515 Loudon Road,Loudonville, NY, 12211, USA star-forming galaxies with extraordinarily strong [O III] 4 CEA Saclay, DSM/Irfu/Service d'Astrophysique, Orme des λλ4959; 5007 (Straughn et al. 2009; van der Wel et al. Merisiers, 91191 Gif-sur-Yvette Cedex, France 2011; Atek et al. 2011; Smit et al. 2014) or Hα λ6563 5 Max-Planck Institute for Astronomy, K¨onigstuhl17, D-69117, Heidelberg, Germany (Shim et al. 2011; Shim & Chary 2013) lines have been 6 Cahill Center for Astronomy and Astrophysics, California In- found. While some of these galaxies are identified spec- stitute of Technology, MS 249-17, Pasadena, CA 91125 troscopically (Erb et al. 2006; Atek et al. 2011; Frye et al. 7 Hubble Fellow 2012), the majority of them are found from broad-band 8 Steward Observatory/Department of Astronomy, University of Arizona, 933 N Cherry Ave, Tucson, AZ 85721-0065 photometry with a significant flux excess in one or more 9 Space Telescope Science Institute, 3700 San Martin Drive, Bal- bands. Utilizing HST/Wide Field Camera 3 (WFC3) ob- timore, MD 21208, U.S.A. servations of the Cosmic Assembly Near-IR Deep Extra- 10 Leiden Observatory, Leiden University, P. O. Box 9513,2300 galactic Legacy Survey (CANDELS, Grogin et al. 2011), RA Leiden, The Netherlands 11 Instituto de Astrof´ısicade Andaluc´ıa(CSIC),C/Camino Bajo van der Wel et al. 2011 (VDW11 hereafter) identified an de Hu´etor24, Granada 18008, Spain abundant population of extreme emission line galaxies 12 Department of Theoretical Physics, University of Basque (EELGs) at redshift z ∼ 1:7. In some cases, the rest- Country UPV/EHU, Bilbao, Spain 13 frame equivalent widths (EWs) of such strong emission arXiv:1412.7909v1 [astro-ph.GA] 26 Dec 2014 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain 14 Department of Physics and Astronomy, Michigan State Uni- lines reach 2000 A˚ or even higher. versity, East Lansing, MI 48824, USA Extremely strong emission lines can affect the spectral- 15 Departamento de Astrono´ıay Astrof´ısica, Pontificia Universi- energy-distribution (SED) fitting of broad-band pho- dad Cat´olicade Chile, V. Mackenna 4860, Santiago 22, Chile 16 Observatories of the Carnegie Institution of Washington, tometry (Schaerer & de Barros 2009; Atek et al. 2011; Pasadena, CA 91 101, USA Shim et al. 2011; Labb´eet al. 2010, 2012; Stark et al. 17 Department of Physics and Astronomy. University College 2013; Fumagalli et al. 2012). Their contributions may London, Gower Street, London WCIE 6 BT, UK mimic the spectral feature of the Lyman break in high- 18 Center for Astrophysics and Space Sciences, University of Cal- ifornia at San Diego. 9500 Gilman Dr., MC 0424, La Jolla, CA redshift galaxies. It is therefore possible that some high- 92093, USA redshift Lyman break galaxies (LBG) may actually be 19 Institute of Astronomy and Astrophysics, Academia Sinica, P. low-redshift EELGs when the wavelength coverages or O. Box 23-141, Taipei 10617, Taiwan depths are limited. Recently, the search for LBG has 20 Universit¨ats-Sternwarte, M¨unchen, Scheinerstr. 1, D-81679 M¨unchen, Germany reached z > 9, and HST plays the major role in this 21 Institut f¨urTheoretische Astrophysik, ZAH, Albert-Ueberle- redshift range with the WFC3/IR instrument (Bouwens Straße 2, 69120 Heidelberg, Germany et al. 2011; Zheng et al. 2012; Coe et al. 2013; Ellis 2 et al. 2013; Oesch et al. 2013). UDFj-39546284 was the photometry by comparing with public catalogs, 22 first detected in the Hubble Ultra Deep Field (HDF09) which were processed with modified version of the Mo- with an H160 band detection only (Bouwens et al. 2011). saicdrizzle pipeline (Koekemoer et al. 2003, 2011), and The decrement between the F160W and F125W bands is no systematic deviation was found between the two larger than two magnitudes, thus suggestive of a z ' 10 pipelines. In this paper, we focus on two ACS/WFC fil- candidate. Followup observations of the HUDF12 (GO ters (F814W, F850lp) and five WFC3/IR filters (F105W, 12498: PI Ellis) and CANDELS program (Grogin et al. F110W, F125W, F140W, F160W), which are hereafter 2011) confirm that this substantial break in the SED is called I814, Z850, Y105, YJ110, J125, JH140, and H160 actually between the F160W and F140W bands (Ellis et bands. al. 2013; Bouwens et al. 2013a), implying an even higher redshift. Brammer et al.(2013) analyzed deep WFC3 2.2. Sample Selection grism observations of UDFj-39546284 and found a 2.7σ A color-color selection has been successfully used for detection of an emission line at 1.599 µm. In the deep identifying EELGs in VDW11. We carried out two se- Keck observation, Capak et al.(2013) also found a 2.2 σ lections with two sets of filter bands. Firstly, we follow peak at the same wavelength. Both spectra suggest that the selection criteria of VDW11, namely UDFj-39546284 could be a strong [O III] λ5007 emitter at z ∼ 2:19 or a strong [O II] λ3727 emitter at z ∼ 3:29. J125 − I814 < −0:44 − σ ^ J125 − H160 < −0:44 − σ Current deep near infrared observations are unlikely to In the other selection, we use the Y105 band as the central determine the nature of this candidate. The presence of band, namely UDFj-39546284 suggests that the possible contamination due to EELGs at lower redshift should be reexamined. Y105 − I814 < −0:44 − σ ^ Y105 − H160 < −0:44 − σ In this paper, we report the search for EELGs at two redshift ranges in the CLASH cluster fields to estimate Where the σ refers to the 1σ error of the color. We the contamination to the selections of LBG. The CLASH also require that the three bands in each selection are program (Postman et al. 2012) is a 16-band survey of 25 detected at least 3σ to ensure good EW measurements. clusters between 0.2 and 1.6 µm. The nominal limiting After these preliminary selections (Figure1), we check magnitude in the F160W band is approximately 27.2 (5σ the images and photometry of the WFC3/IR bands for detection limit). With the power of cluster lensing, some each object. Sources contaminated by cosmic-ray events, of target can reach an intrinsic AB magnitude ∼29 mag, nearby bright sources and detector-edge effects are ex- similar to that of z ∼ 10 galaxies in the Hubble Ultra cluded. We build two samples with 40 and 12 candidates Deep Field. named as the \J" sample and \Y" sample. Note that Throughout this paper, EW is referred to the total the color excess of 0.44 magnitude in J125 and Y105 cor- ˚ of [O III] λλ4959; 5007 and Hβ λ4861 in the rest frame responds to rest-frame EW of about 600 A. The false- unless specified otherwise. Magnitudes are calculated in color images of these galaxies are shown in Figure2. the AB system. Errors are computed at 1σ. We adopt We include the apparent angular sizes which are mea- sured through full width at half maximum (FWHM) by a flat cosmology with Ωλ = 0:7, ΩM = 0:3 and H0 = 70 kms−1Mpc−1. SExtractor in Table1 and Table2. 2.3. Redshift Estimation 2. DATA To illustrate the boosting effect in different bands and different redshifts, we simulate model spectra with a sim- 2.1.
Recommended publications
  • Quarterly Report, July
    NATIONAL RADIO ASTRONOMY OBSERVATORY Quarterly Report July – September 2005 Cover Image: The First Prize image from the NRAO/AUI 2005 Image Contest. Table of Contents Executive Summary ..................................................................................... 1 Science Highlights........................................................................................ 4 NAASC .......................................................................................................... 6 Expanded Very Large Array....................................................................... 8 Green Bank Telescope................................................................................ 16 Very Large Array and Very Long Baseline Array ................................. 26 Central Development Laboratory ............................................................ 37 Computer and Information Services ....................................................... 51 Education and Public Outreach ............................................................... 54 Environment, Safety, and Security .......................................................... 59 Telescope Usage ......................................................................................... 62 GBT Observing Programs ......................................................................... 63 VLA Observing Programs......................................................................... 76 VLBA Observing Programs .....................................................................
    [Show full text]
  • The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology
    CSIRO PUBLISHING Publications of the Astronomical Society of Australia, 2012, 29, 395–433 Review http://dx.doi.org/10.1071/AS12005 The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology P. Kroupa Argelander Institute for Astronomy, University of Bonn, Auf dem Hu¨gel 71, 53121 Bonn, Germany Email: [email protected] Abstract: The current standard model of cosmology (SMoC) requires The Dual Dwarf Galaxy Theorem to be true according to which two types of dwarf galaxies must exist: primordial dark-matter (DM) dominated (type A) dwarf galaxies, and tidal-dwarf and ram-pressure-dwarf (type B) galaxies void of DM. Type A dwarfs surround the host approximately spherically, while type B dwarfs are typically correlated in phase- space. Type B dwarfs must exist in any cosmological theory in which galaxies interact. Only one type of dwarf galaxy is observed to exist on the baryonic Tully-Fisher plot and in the radius-mass plane. The Milky Way satellite system forms a vast phase-space-correlated structure that includes globular clusters and stellar and gaseous streams. Other galaxies also have phase-space correlated satellite systems. Therefore, The Dual Dwarf Galaxy Theorem is falsified by observation and dynamically relevant cold or warm DM cannot exist. It is shown that the SMoC is incompatible with a large set of other extragalactic observations. Other theoretical solutions to cosmological observations exist. In particular, alone the empirical mass-discrepancy— acceleration correlation constitutes convincing evidence
    [Show full text]
  • Falsification of the Current Standard Model of Cosmology
    CSIRO PUBLISHING Publications of the Astronomical Society of Australia, 2012, 29, 395–433 Review http://dx.doi.org/10.1071/AS12005 The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology P. Kroupa Argelander Institute for Astronomy, University of Bonn, Auf dem Hu¨gel 71, 53121 Bonn, Germany Email: [email protected] Abstract: The current standard model of cosmology (SMoC) requires The Dual Dwarf Galaxy Theorem to be true according to which two types of dwarf galaxies must exist: primordial dark-matter (DM) dominated (type A) dwarf galaxies, and tidal-dwarf and ram-pressure-dwarf (type B) galaxies void of DM. Type A dwarfs surround the host approximately spherically, while type B dwarfs are typically correlated in phase- space. Type B dwarfs must exist in any cosmological theory in which galaxies interact. Only one type of dwarf galaxy is observed to exist on the baryonic Tully-Fisher plot and in the radius-mass plane. The Milky Way satellite system forms a vast phase-space-correlated structure that includes globular clusters and stellar and gaseous streams. Other galaxies also have phase-space correlated satellite systems. Therefore, The Dual Dwarf Galaxy Theorem is falsified by observation and dynamically relevant cold or warm DM cannot exist. It is shown that the SMoC is incompatible with a large set of other extragalactic observations. Other theoretical solutions to cosmological observations exist. In particular, alone the empirical mass-discrepancy— acceleration correlation constitutes convincing evidence
    [Show full text]
  • The Abundance of Star-Forming Galaxies in the Redshift Range 8.5 to 12
    Draft version November 6, 2012 Preprint typeset using LATEX style emulateapj v. 11/10/09 THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5 TO 12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN Richard S Ellis1, Ross J McLure2, James S Dunlop2, Brant E Robertson3, Yoshiaki Ono4, Matt Schenker1, Anton Koekemoer5, Rebecca A A Bowler2, Masami Ouchi4, Alexander B Rogers2, Emma Curtis-Lake2, Evan Schneider3, Stephane Charlot7, Daniel P Stark3, Steven R Furlanetto6, Michele Cirasuolo2,8 Draft version November 6, 2012 ABSTRACT We present the results of the deepest search to date for star-forming galaxies beyond a redshift z '8.5 utilizing a new sequence of near-infrared Wide Field Camera 3 images of the Hubble Ultra Deep Field. This `UDF12' campaign completed in September 2012 doubles the earlier exposures with WFC3/IR in this field and quadruples the exposure in the key F105W filter used to locate such distant galaxies. Combined with additional imaging in the F140W filter, the fidelity of all high redshift candidates is greatly improved. Using spectral energy distribution fitting techniques on objects selected from a deep multi-band near-infrared stack we find 7 promising z >8.5 candidates. As none of the previously claimed UDF candidates with 8:5 < z <10 is confirmed by our deeper multi-band imaging, our campaign has transformed the measured abundance of galaxies in this redshift range. We do, however, recover the candidate UDFj-39546284 (previously proposed at z=10.3) but find it undetected in the newly added F140W image, implying either it lies at z=11.9 or is an intense line emitting galaxy at z ' 2:4.
    [Show full text]
  • Garth Illingworth Publications to June 2020
    Garth Illingworth Publications to June 2020 Garth D. Illingworth has a total of 624 publications of which 316 are refereed. Total citations 41420 with an h-index of 113 (as of June 2020). 624. The GREATS H β + [O III] luminosity function and galaxy properties at z ∼ 8: walking the way of JWST, De Barros, S., Oesch, P. A., Labbé, I., Stefanon, M., González, V., Smit, R., Bouwens, R. J., & Illingworth, G. D., (2019), Monthly Notices of the Royal Astronomical Society, 489, 2355. 623. The Hubble Legacy Field GOODS-S Photometric Catalog, Whitaker, K. E., Ashas, M., Illingworth, G., Magee, D., Leja, J., Oesch, P., van Dokkum, P., Mowla, L., Bouwens, R., Franx, M., Holden, B., Labbé, I., Rafelski, M., Teplitz, H., & Gonzalez, V., (2019), The Astrophysical Journal Supplement Series, 244, 16. 622. The Brightest z ≳ 8 Galaxies over the COSMOS UltraVISTA Field, Stefanon, M., Labbé, I., Bouwens, R. J., Oesch, P., Ashby, M. L. N., Caputi, K. I., Franx, M., Fynbo, J. P. U., Illingworth, G. D., Le Fèvre, O., Marchesini, D., McCracken, H. J., Milvang- Jensen, B., Muzzin, A., & van Dokkum, P., (2019), The Astrophysical Journal, 883, 99. 621. The Super Eight Galaxies: Properties of a Sample of Very Bright Galaxies at 7 < z < 8, Bridge, J. S., Holwerda, B. W., Stefanon, M., Bouwens, R. J., Oesch, P. A., Trenti, M., Bernard, S. R., Bradley, L. D., Illingworth, G. D., Kusmic, S., Magee, D., Morishita, T., Roberts-Borsani, G. W., Smit, R., & Steele, R. L., (2019), The Astrophysical Journal, 882, 42. 620. Newly Discovered Bright z∼ 9-10 Galaxies and Improved Constraints on Their Prevalence Using the Full CANDELS Area, Bouwens, R.
    [Show full text]
  • The Electromagnetic Radiation Field
    The electromagnetic radiation field A In this appendix, we will briefly review the most important The flux is measured in units of erg cm2 s1 Hz1.Ifthe properties of a radiation field. We thereby assume that the radiation field is isotropic, F vanishes. In this case, the same reader has encountered these quantities already in a different amount of radiation passes through the surface element in context. both directions. The mean specific intensity J is defined as the average of I over all angles, A.1 Parameters of the radiation field Z 1 J D d!I ; (A.3) The electromagnetic radiation field is described by the spe- 4 cific intensity I, which is defined as follows. Consider a D surface element of area dA. The radiation energy which so that, for an isotropic radiation field, I J.Thespecific passes through this area per time interval dt from within a energy density u is related to J according to solid angle element d! around a direction described by the n 4 unit vector , with frequency in the range between and u D J ; (A.4) C d,is c where u is the energy of the radiation field per D dE I dA cos dt d! d; (A.1) volume element and frequency interval, thus measured in erg cm3 Hz1. The total energy density of the radiation is where describes the angle between the direction n of the obtained by integrating u over frequency. In the same way, light and the normal vector of the surface element. Then, the intensity of the radiation is obtained by integrating the dA cos is the area projected in the direction of the infalling specific intensity I over .
    [Show full text]
  • Astrophysics in Simulacrum the Epistemological Role of Computer Simulation in Dark Matter Studies
    Astrophysics in Simulacrum The Epistemological Role of Computer Simulation in Dark Matter Studies Katia Stephanie Wilson ORCID iD: 0000-0002-3989-3032 Doctor of Philosophy December 2016 History and Philosophy of Science School of Historical and Philosophical Studies The University of Melbourne Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy. Abstract Computer simulation is a technique that is widely used across many scientific disciplines. In areas like astrophysics, the day-to-day practice of doing science is in fact dominated by simulation. In the face of simulation’s ubiquity and usefulness, this thesis asks the question: how can the virtual teach us about the real? The first part of the thesis introduces and historicises the main philosophical issues that surround simulation in science. The historical and philosophical literature on simulation in science is chiefly concerned with the relationships between simulation, theory, and experiment, though there is little agreement on specifics. The relationships between simulation and theory, and simulation and experiment, are complex, and result in what I describe as theory crafting. This iterative and interactive way of generating knowledge involves using simulation to draw together multiple sources of evidence. In order to more clearly tease out how simulation fits in with existing ways of knowledge making, the journal Simulation is used to provide a historicised look at the main themes of simulation epistemology from 1960 to the present. The shifts within these themes helps break down simulation’s various associations with models and experiment, and also provide a partial answer to how the simulation technique became established as a legitimate tool for producing knowledge.
    [Show full text]
  • Science Operation Design Reference Mission
    JWST-STScI-000045 Revision C Space Telescope Science Institute JAMES WEBB SPACE TELESCOPE MISSION SCIENCE AND OPERATIONS CENTER Science Operations Design Reference Mission Revision C Released: 27 September 2012 Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration under Contract NAS5-03127 Check with the JWST SOCCER Database at: https://soccer.stsci.edu To verify that this is the current version. Science Operations Design Reference Mission JWST-STScI-000045 JWST Mission Science & Operations Center Revision C CM Foreword This document is an STScI JWST Configuration Management-controlled document. Changes to this document require prior approval of the STScI JWST CCB. Proposed changes should be submitted to the JWST Office of Configuration Management. ii Check with the JWST SOCCER Database at: https://soccer.stsci.edu To verify that this is the current version. Science Operations Design Reference Mission JWST-STScI-000045 JWST Mission Science & Operations Center Revision C Signature Page Prepared by: Electronic Signature 3/9/2012 Karl D. Gordon JWST Efficiency Working Group Lead1 JWST/MIRI Instrument Scientist STScI/Instruments Division Reviewed by: Electronic Signature 3/9/2012 Tom Brown JWST WBS Manager STScI/JWST Mission Office Approved by: Electronic Signature 9/27/2012 David Hunter JWST Project Manager STScI/JWST Mission Office 1 JWST Efficiency Working Group Includes: Vicki Balzano (STScI), William Blair (STScI), Henry Ferguson (STSci), Wayne Kinzel (STScI), Jennifer Lotz (STScI), Jane Rigby (GSFC), George Sonneborn (GSFC) and Jason Tumlinson (STScI) iii Check with the JWST SOCCER Database at: https://soccer.stsci.edu To verify that this is the current version.
    [Show full text]
  • The Hubble Catalog of Variables (HCV)? A
    A&A 630, A92 (2019) Astronomy https://doi.org/10.1051/0004-6361/201936026 & c ESO 2019 Astrophysics The Hubble Catalog of Variables (HCV)? A. Z. Bonanos1, M. Yang1, K. V. Sokolovsky1,2,3 , P. Gavras4,1, D. Hatzidimitriou1,5, I. Bellas-Velidis1, G. Kakaletris6, D. J. Lennon7,8, A. Nota9, R. L. White9, B. C. Whitmore9, K. A. Anastasiou5, M. Arévalo4, C. Arviset8, D. Baines10, T. Budavari11, V. Charmandaris12,13,1 , C. Chatzichristodoulou5, E. Dimas5, J. Durán4, I. Georgantopoulos1, A. Karampelas14,1, N. Laskaris15,6, S. Lianou1, A. Livanis5, S. Lubow9, G. Manouras5, M. I. Moretti16,1, E. Paraskeva1,5, E. Pouliasis1,5, A. Rest9,11, J. Salgado10, P. Sonnentrucker9, Z. T. Spetsieri1,5, P. Taylor9, and K. Tsinganos5,1 1 IAASARS, National Observatory of Athens, Penteli 15236, Greece e-mail: [email protected] 2 Department of Physics and Astronomy, Michigan State University, East, Lansing, MI 48824, USA 3 Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119992 Moscow, Russia 4 RHEA Group for ESA-ESAC, Villanueva de la Cañada, 28692 Madrid, Spain 5 Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos 15784, Greece 6 Athena Research and Innovation Center, Marousi 15125, Greece 7 Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain 8 ESA, European Space Astronomy Centre, Villanueva de la Canada, 28692 Madrid, Spain 9 Space Telescope Science Institute, Baltimore, MD 21218, USA 10 Quasar Science Resources for ESA-ESAC, Villanueva de la Cañada, 28692 Madrid, Spain 11 The Johns Hopkins University, Baltimore, MD 21218, USA 12 Institute of Astrophysics, FORTH, Heraklion 71110, Greece 13 Department of Physics, Univ.
    [Show full text]
  • The Abundance of Star-Forming Galaxies in the Redshift Range 8.5
    Draft version October 29, 2018 A Preprint typeset using LTEX style emulateapj v. 03/07/07 THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5 TO 12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN Richard S Ellis1, Ross J McLure2, James S Dunlop2, Brant E Robertson3, Yoshiaki Ono4, Matthew A Schenker1, Anton Koekemoer5, Rebecca A A Bowler2, Masami Ouchi4, Alexander B Rogers2, Emma Curtis-Lake2, Evan Schneider3, Stephane Charlot7, Daniel P Stark3, Steven R Furlanetto6, Michele Cirasuolo2,8 Draft version October 29, 2018 ABSTRACT We present the results of the deepest search to date for star-forming galaxies beyond a redshift z ≃8.5 utilizing a new sequence of near-infrared Wide Field Camera 3 images of the Hubble Ultra Deep Field. This ‘UDF12’ campaign completed in September 2012 doubles the earlier exposures with WFC3/IR in this field and quadruples the exposure in the key F105W filter used to locate such distant galaxies. Combined with additional imaging in the F140W filter, the fidelity of high redshift candidates is greatly improved. Using spectral energy distribution fitting techniques on objects selected from a deep multi-band near-infrared stack we find 7 promising z >8.5 candidates. As none of the previously claimed UDF candidates with 8.5 <z<10 is confirmed by our deeper multi-band imaging, our campaign has transformed the measured abundance of galaxies in this redshift range. Although we recover the candidate UDFj-39546284 (previously proposed at z=10.3), it is undetected in the newly added F140W image, implying it lies at z=11.9 or is an intense emission line galaxy at z ≃ 2.4.
    [Show full text]
  • Clash: Extreme Emission-Line Galaxies and Their Implication on Selection of High-Redshift Galaxies
    The Astrophysical Journal, 801:12 (11pp), 2015 March 1 doi:10.1088/0004-637X/801/1/12 C 2015. The American Astronomical Society. All rights reserved. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES Xingxing Huang1,2, Wei Zheng2, Junxian Wang1, Holland Ford2, Doron Lemze2, John Moustakas3,XinwenShu1,4, Arjen Van der Wel5, Adi Zitrin6,20, Brenda L. Frye7, Marc Postman8, Matthias Bartelmann9, Narciso Ben´ıtez10, Larry Bradley8, Tom Broadhurst11,12,DanCoe8, Megan Donahue13, Leopoldo Infante14, Daniel Kelson15, Anton Koekemoer8, Ofer Lahav16, Elinor Medezinski2, Leonidas Moustakas15, Piero Rosati17, Stella Seitz18, and Keiichi Umetsu19 1 CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026, China; e-mail:[email protected] 2 Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA 3 Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211, USA 4 CEA Saclay, DSM/Irfu/Service d’Astrophysique, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex, France 5 Max-Planck Institute for Astronomy, Konigstuhl¨ 17, D-69117, Heidelberg, Germany 6 Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125, USA 7 Steward Observatory/Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA 8 Space Telescope Science Institute, 3700
    [Show full text]
  • French SKA White Book - the French Community Towards the Square Kilometre Array F
    French SKA White Book - The French Community towards the Square Kilometre Array F. Acero, J. -T. Acquaviva, R. Adam, N. Aghanim, Mark G. Allen, M. Alves, R. Ammanouil, R. Ansari, A. Araudo, E. Armengaud, et al. To cite this version: F. Acero, J. -T. Acquaviva, R. Adam, N. Aghanim, Mark G. Allen, et al.. French SKA White Book - The French Community towards the Square Kilometre Array. 2018. hal-01686223 HAL Id: hal-01686223 https://hal.archives-ouvertes.fr/hal-01686223 Submitted on 26 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. French SKA White Book The French community towards the Square Kilometre Array Editor in Chief: C. Ferrari arXiv:1712.06950v3 [astro-ph.IM] 28 Mar 2018 Editors: G. Lagache, J.-M. Martin, B. Semelin | Cosmology and Extra-galactic astronomy M. Alves, K. Ferri`ere,M.-A. Miville-Deschenes, L. Montier | Galactic Astronomy E. Josselin, N. Vilmer, P. Zarka | Planets, Sun, Stars and Civilizations S. Corbel, S. Vergani | Transient Universe S. Lambert, G. Theureau | Fundamental Physics S. Bosse, A. Ferrari, S. Gauffre | Technological Developments G. Marquette | Industrial Perspectives and Solutions Published by the SKA France Coordination in collaboration with AS SKA-LOFAR We acknowledge financial support of Universit´eParis-Saclay and AS SKA-LOFAR for the first \French SKA White Book" organisation meeting.
    [Show full text]