French SKA White Book - the French Community Towards the Square Kilometre Array F

Total Page:16

File Type:pdf, Size:1020Kb

French SKA White Book - the French Community Towards the Square Kilometre Array F French SKA White Book - The French Community towards the Square Kilometre Array F. Acero, J. -T. Acquaviva, R. Adam, N. Aghanim, Mark G. Allen, M. Alves, R. Ammanouil, R. Ansari, A. Araudo, E. Armengaud, et al. To cite this version: F. Acero, J. -T. Acquaviva, R. Adam, N. Aghanim, Mark G. Allen, et al.. French SKA White Book - The French Community towards the Square Kilometre Array. 2018. hal-01686223 HAL Id: hal-01686223 https://hal.archives-ouvertes.fr/hal-01686223 Submitted on 26 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. French SKA White Book The French community towards the Square Kilometre Array Editor in Chief: C. Ferrari arXiv:1712.06950v3 [astro-ph.IM] 28 Mar 2018 Editors: G. Lagache, J.-M. Martin, B. Semelin | Cosmology and Extra-galactic astronomy M. Alves, K. Ferri`ere,M.-A. Miville-Deschenes, L. Montier | Galactic Astronomy E. Josselin, N. Vilmer, P. Zarka | Planets, Sun, Stars and Civilizations S. Corbel, S. Vergani | Transient Universe S. Lambert, G. Theureau | Fundamental Physics S. Bosse, A. Ferrari, S. Gauffre | Technological Developments G. Marquette | Industrial Perspectives and Solutions Published by the SKA France Coordination in collaboration with AS SKA-LOFAR We acknowledge financial support of Universit´eParis-Saclay and AS SKA-LOFAR for the first \French SKA White Book" organisation meeting. We are grateful to the MPIfR colleagues, editors of the German \White Paper", who provided the adopted latex macro Cover images show: (a) an artist's impression of the Square Kilometre Array (SKA) and of its different antenna types, (b) an artist's impression of the Epoch of Re-ionisation, (c) numerical simulations of the magnetised cosmic web, (d) two paintings of the \Shared Sky" SKA Indigenous Art/Astronomy Exhibition Image courtesy: (a, d) SKAO; (b) A. Loeb (CfA) (c) F. Vazza (INAF) This White Book is available on-line at the SKA France web page: https://ska-france.oca.eu/images/SKA-France-Media/FWB 051017.pdf Contents R´esum´eex´ecutif I Executive summary III 1 Introduction 1 1.1 The Square Kilometre Array . .1 1.1.1 The telescopes . .1 1.1.2 The project organisation . .1 1.2 General overview of the SKA science and technology . .3 1.2.1 An instrument designed for a wide range of astronomical and general physics studies . .3 1.2.2 Design of SKA components . .9 1.2.3 Beyond the SKA Observatory: the regional data centres . 12 1.3 Overview of the SKA situation in France . 12 1.3.1 The organisation of the French community towards the SKA . 12 1.3.2 French participation to the SKA preparation . 13 2 Science 16 2.1 Early Universe, cosmology and large scale structures . 16 2.1.1 Constraining astrophysical models of the Cosmic Dawn and the Epoch of Reionisation with the 21 cm signal . 16 2.1.2 21 cm signal from the EoR . 18 2.1.3 Cross-correlating cosmic fields in the EoR . 20 2.1.4 Cosmic magnetism . 22 2.1.5 Cosmological Evolution of the Neutral and Cold Gas Mass Density . 24 2.1.6 Large scale structure through H i velocity fields . 27 2.1.7 Large Scale Structure and BAO with Intensity Mapping . 29 2.1.8 Distant Universe with Gravitational Lensing in the SKA Era . 30 2.2 Extra-galactic astronomy . 33 2.2.1 Clusters . 33 2.2.1.1 Non-thermal emission from galaxy clusters . 33 2.2.1.2 SKA SZ studies of galaxy clusters . 35 2.2.1.3 Environmental effects on galaxy evolution . 37 2.2.2 Formation and evolution of galaxies . 40 2.2.2.1 Unobscured star formation and cosmic star formation history . 40 2.2.2.2 Large samples of H i galaxies . 42 2.2.2.3 Molecular gas content at high redshift from the CO lines . 44 2.2.2.4 Extragalactic spectral lines but H i and CO . 46 2.2.2.5 The role of AGN . 48 2.2.3 Nearby resolved galaxies . 50 2.2.3.1 Galaxy dynamics and H i distribution . 50 2.2.3.2 The Interstellar Medium in Nearby Galaxies . 52 2.3 Galactic astronomy . 56 2.3.1 The nearby interstellar medium . 56 2.3.2 Turbulent cascade . 58 2.3.3 The formation of cold atomic structures . 60 2.3.4 Molecular complexity in cold cores and hot corinos . 62 2.3.5 Interstellar dust . 64 2.3.6 Faraday tomography . 66 2.3.7 Magnetic fields in star formation regions: Zeeman effect of RRLs . 69 2.3.8 Jets, outflows and young stellar objects . 71 2.3.9 Supernova remnants . 73 2.3.10 Pulsar census and probe of the interstellar medium . 76 2.3.11 Distance determination . 78 2.4 Planets, Sun, Stars and Civilizations . 81 2.4.1 Solar system planets . 81 2.4.1.1 Jupiter's magnetosphere and radio emissions . 81 2.4.1.2 Planetary atmospheres . 82 2.4.1.3 Planetary lightning . 83 2.4.1.4 Electrical activity in Earth's atmosphere . 85 2.4.1.5 Ionospheric physics & Meteor showers . 86 2.4.2 Exoplanets and star-planet interactions . 87 2.4.3 Solar radio emissions . 89 2.4.4 Stellar activity and environment . 93 2.4.4.1 Stellar flares and analogues to Solar radio bursts . 93 2.4.4.2 Cool dwarfs . 95 2.4.4.3 Circumstellar HI . 96 2.4.5 Planets, Stars and Commensal SETI observations . 97 2.5 Transient Universe . 98 2.5.1 Slow transients . 98 2.5.1.1 Accreting transients . 98 2.5.1.2 Ultra Luminous X-ray sources . 102 2.5.1.3 Gamma-ray bursts . 104 2.5.1.4 High Mass X-ray Binaries . 106 2.5.1.5 AGN variability . 108 2.5.1.6 Supernovæ . 111 2.5.2 Fast transients . 112 2.5.2.1 Fast Radio Bursts . 112 2.5.2.2 GW event follow-up . 114 2.5.2.3 Neutron stars magnetosphere and wind . 115 2.5.2.4 Cosmic rays . 117 2.6 Fundamental physics . 119 2.6.1 Pulsar timing arrays as gravitational wave detectors . 119 2.6.2 Binary pulsars as natural laboratories to test Gravitation theories . 121 2.6.3 Neutron star equation of state . 123 2.6.4 Reference frames . 125 3 Scientific synergies with other instruments 128 3.1 Euclid . 128 3.2 E-ELT . 130 3.3 4MOST Cosmology Redshift Survey . 131 3.4 JWST . 133 3.5 DESI . 135 3.6 LSST . 136 3.7 Athena and eROSITA . 138 3.8 CTA .................................................. 140 3.9 LIGO and Virgo . 142 3.10 CMB polarisation experiments . 143 3.11 ALMA . ..
Recommended publications
  • Multidisciplinary Use of the J Very Long Baseline Array
    PE84-16~690 Multidisciplinary Use of the j Very Long Baseline Array Proceedings of a Workshop REPRODUCED BY NATIONAL TECHNICAL NAS INFORMATION SERVICE us DEPAR1MENl OF COMMERCE NAE .. SPRINGFiElD, VA. 22161 10M 50272 ·101 REPORT DOCUMENTATION \1. REPORT NO. PAGE 4. TItle end Subtitle 50 Report Dete Multidisciplinary Use of the Very Long Baseline Array .. Februarv 1984 7. Author(l) L Performln. O...nlutlon Rept. No. 9. Performlna O...nlutlon Neme end Add.... 10. ProJKt/Tuk/Wort! Unit No. National Research Council 11. Contrect(C2 or Gr.nt(G) No. Commission on Physical Sciences, Mathematics, and DMA800-M0366/P Resources ~MDA903-83-M-5896/P i (G)AST-8303119 2101 Constitution Avenue, Washington, DC 20418 ~NA 83AAA02632/P 12. Sponsor1na O..enlutlon Neme end Add_ 11. Type of Report & Period Covered National Science Foundation Final Report. National Aeronautics and Space Administration 11/01/82-3/31/84 Defense Mapping Agency 14. NOAA National Geodetic Survev , Defense Adv. Res. Proj. 15. Supplementer)' Notes . Agency 16. Abltreet (Umlt 200 words) The National Research Council organized a workshop to gather together experts in very long baseline interferometry, astronomy, space navigation, general relativity and the earth sciences,. The purpose of the workshop was to provide a forum for consideration of the various possible multi­ disciplinary uses of the very long baseline array. Geophysical investigations received major attention. Geodesic uses of the very long baseline array were identified as were uses for fundamental astronomy investigations. Numerous specialized uses were identified. i, Document Anelysll e. Descriptors Very Long Baseline Array, astronomical research, space navigation, general relativity, geophysics, earth sciences, geodetic monitoring.
    [Show full text]
  • Square Kilometre Array Computational Challenges
    Square Kilometre Array Computational Challenges Paul Alexander Paul Alexander SKA Computational Challenges What is the Square Kilometre Array (SKA) • Next Generation radio telescope – compared to best current instruments it is ... E-MERLIN • ~100 times sensitivity • ~ 106 times faster imaging the sky • More than 5 square km of collecting area on sizes 3000km eVLA 27 27m dishes Longest baseline 30km GMRT 30 45m dishes Longest baseline 35 km Paul Alexander SKA Computational Challenges What is the Square Kilometre Array (SKA) • Next Generation radio telescope – compared to best current instruments it is ... • ~100 times sensitivity • ~ 106 times faster imaging the sky • More than 5 square km of collecting area on sizes 3000km • Will address some of the key problems of astrophysics and cosmology (and physics) • Builds on techniques developed in Cambridge • It is an interferometer • Uses innovative technologies... • Major ICT project • Need performance at low unit cost Paul Alexander SKA Computational Challenges Dishes Paul Alexander SKA Computational Challenges Phased Aperture array Paul Alexander SKA Computational Challenges also a Continental sized Radio Telescope • Need a radio-quiet site • Very low population density • Large amount of space • Possible sites (decision 2012) • Western Australia • Karoo Desert RSA Paul Alexander SKA Computational Challenges Sensitivity comparison 12,000 Sensitivity Comparison 10,000 1 - K 2 8,000 SKA2 6,000 SKA2 SKA1 MeerKAT LOFAR ASKAP 4,000 Sensitivity: Aeff/Tsys m Sensitivity:Aeff/Tsys eVLA SKA1 2,000
    [Show full text]
  • List of Acronyms
    List of Acronyms List of Acronyms AAS American Astronomical Society AC (IVS) Analysis Center ACF AutoCorrelation Function ACU Antenna Control Unit ADC Analog to Digital Converter AES Advanced Engineering Services Co., Ltd (Japan) AGILE Astro-rivelatore Gamma ad Immagini LEggero satellite (Italy) AGN Active Galactic Nuclei AIPS Astronomical Image Processing System AIUB Astronomical Institute, University of Bern (Switzerland) AO Astronomical Object APSG Asia-Pacific Space Geodynamics program APT Asia Pacific Telescope ARIES Astronomical Radio Interferometric Earth Surveying program ASD Allan Standard Deviation ASI Agenzia Spaziale Italiana (Italy) ATA Allen Telescope Array (USA) ATCA Australia Telescope Compact Array (Australia) ATM Asynchronous Transfer Mode ATNF Australia Telescope National Facility (Australia) AUT Auckland University of Technology (New Zealand) A-WVR Advanced Water Vapor Radiometer BBC Base Band Converter BdRAO Badary Radio Astronomical Observatory (Russia) BIPM Bureau Internacional de Poids et Mesures (France) BKG Bundesamt f¨ur Kartographie und Geod¨asie (Germany) BMC Basic Module of Correlator BOSSNET BOSton South NETwork BVID Bordeaux VLBI Image Database BWG Beam WaveGuide CARAVAN Compact Antenna of Radio Astronomy for VLBI Adapted Network (Japan) CAS Chinese Academy of Sciences (China) CASPER Center for Astronomy Signal Processing and Electronics Research (USA) CAY Centro Astron´omico de Yebes (Spain) CC (IVS) Coordinating Center CDDIS Crustal Dynamics Data Information System (USA) CDP Crustal Dynamics Project CE
    [Show full text]
  • Short History of Radio Astronomy Jansky – January 1932
    Short History of Radio Astronomy Jansky – January 1932 Modified Bruce Array: Harald Friis design December 1932 Jansky’s 1932 Data Grote Reber- 1937 9.5 m Parabolic Reflector! Strip Chart output From Strip Chart to Contour Plot… 1940 Ap. J. paper…barely Reber’s 160 MHz contour map published in the ApJ in 1944. This shows the northern sky in equatorial coordinates. The Reber’s 160 MHz contour map published in the ApJ in 1944. This shows the northern sky in equatorial coordinates. The Reber’s 160 MHz contour map published in the ApJ in 1944. This shows the northern sky in equatorial coordinates. The Reber’s 160 MHz contour map published in the ApJ in 1944. This shows the northern sky in equatorial coordinates. The Jan Oort & Hendrik van de Hulst Lieden Observatory 1944 Predicted HI Line Detection of Hydrogen Line …… Ewen & Purcell 21 cm HI Line (1420 MHz) Purcell HI Receiver: Doc Ewen (1951) Milky Way in Optical Origin of SETI Nature, 1959 Philip Morrison 1959 Project Ozma: April 6, 1960 Tau Ceti & Epsilon Eridani Cosmic Background: Penzias & Wilson 1965 • 20 ft Echo Horn (Sugar Scoop): • Harald Friis design Pulsars: Bell and Hewish 1967 Detection of Pulsars: ~100ft of chart/day Chart recording of the pulsar Examples of scintillating detection and an interference signal somewhat later in time. Fast chart recording of pulsar emission (LGM nomenclature is “Little Green Arecibo Message: 1974 Big Ear Radio Telescope OSU Wow! Signal, Aug. 15, 1977 Sagitarius, Chi Sagittari star group NRAO 36ft Kitt Peak Telescope The Drake Equation The Drake equation
    [Show full text]
  • 115 Abell Galaxy Cluster # 373
    WINTER Medium-scope challenges 271 # # 115 Abell Galaxy Cluster # 373 Target Type RA Dec. Constellation Magnitude Size Chart AGCS 373 Galaxy cluster 03 38.5 –35 27.0 Fornax – 180 ′ 5.22 Chart 5.22 Abell Galaxy Cluster (South) 373 272 Cosmic Challenge WINTER Nestled in the southeast corner of the dim early winter western suburbs. Deep photographs reveal that NGC constellation Fornax, adjacent to the distinctive triangle 1316 contains many dust clouds and is surrounded by a formed by 6th-magnitude Chi-1 ( ␹ 1), Chi-2 ( ␹ 2), and complex envelope of faint material, several loops of Chi-3 ( ␹ 3) Fornacis, is an attractive cluster of galaxies which appear to engulf a smaller galaxy, NGC 1317, 6 ′ known as Abell Galaxy Cluster – Southern Supplement to the north. Astronomers consider this to be a case of (AGCS) 373. In addition to his research that led to the galactic cannibalism, with the larger NGC 1316 discovery of more than 80 new planetary nebulae in the devouring its smaller companion. The merger is further 1950s, George Abell also examined the overall structure signaled by strong radio emissions being telegraphed of the universe. He did so by studying and cataloging from the scene. 2,712 galaxy clusters that had been captured on the In my 8-inch reflector, NGC 1316 appears as a then-new National Geographic Society–Palomar bright, slightly oval disk with a distinctly brighter Observatory Sky Survey taken with the 48-inch Samuel nucleus. NGC 1317, about 12th magnitude and 2 ′ Oschin Schmidt camera at Palomar Observatory. In across, is visible in a 6-inch scope, although averted 1958, he published the results of his study as a paper vision may be needed to pick it out.
    [Show full text]
  • Detection Statistics of the Radioastron AGN Survey
    Available online at www.sciencedirect.com ScienceDirect Advances in Space Research 65 (2020) 705–711 www.elsevier.com/locate/asr Detection statistics of the RadioAstron AGN survey Y.Y. Kovalev a,b,c,⇑, N.S. Kardashev a,†, K.V. Sokolovsky a,d,e, P.A. Voitsik a,T.Anf, J.M. Anderson g,h, A.S. Andrianov a, V.Yu. Avdeev a, N. Bartel i, H.E. Bignall j, M.S. Burgin a, P.G. Edwards k, S.P. Ellingsen l, S. Frey m, C. Garcı´a-Miro´ n, M.P. Gawron´ski o, F.D. Ghigo p, T. Ghosh p,q, G. Giovannini r,s, I.A. Girin a, M. Giroletti r, L.I. Gurvits t,u, D.L. Jauncey k,v, S. Horiuchi w, D.V. Ivanov x, M.A. Kharinov x, J.Y. Koay y, V.I. Kostenko a, A.V. Kovalenko aa, Yu.A. Kovalev a, E.V. Kravchenko r,a, M. Kunert-Bajraszewska o, A.M. Kutkin a,z, S.F. Likhachev a, M.M. Lisakov c,a, I.D. Litovchenko a, J.N. McCallum l, A. Melis ab, A.E. Melnikov x, C. Migoni ab, D.G. Nair t, I.N. Pashchenko a, C.J. Phillips k, A. Polatidis z, A.B. Pushkarev a,ad, J.F.H. Quick ae, I.A. Rakhimov x, C. Reynolds j, J.R. Rizzo af, A.G. Rudnitskiy a, T. Savolainen ag,ah,c, N.N. Shakhvorostova a, M.V. Shatskaya a, Z.-Q. Shen f,ac, M.A. Shchurov a, R.C. Vermeulen z, P. de Vicente ai, P.
    [Show full text]
  • Fact Sheet Fact Sheet
    FactFact sheet sheet What is the SKA? The Square Kilometre Array (SKA) is a next-generation radio telescope that will be vastly more sensitive than the best present-day instruments. It will give astronomers remarkable insights into the formation of the early Universe, including the emergence of the first stars, galaxies and other structures. This will shed light on the birth, and eventual death, of the cosmos. The SKA will require new technology and progress in Why build the SKA? fundamental engineering in fields such as information and communication technology, high performance computing In order to answer some fundamental questions about the and production manufacturing techniques. It will comprise origin and evolution of the Universe, a more sensitive radio a vast array of antennas, arranged in clusters to be spread telescope is needed that can detect the very weak signals over 3000 kilometres or more. The antennas will be linked coming from the edge of the cosmos. A telescope such as the electronically to form one enormous telescope. The SKA will be able to “see” distant objects in the very young combination of unprecedented collecting area, versatility Universe and provide answers to questions such as the and sensitivity will make the SKA the world’s premier imaging emergence of the first stars, galaxies and other structures. and survey telescope over a wide range of radio frequencies, Because the speed of light is finite and the size of the Universe producing the sharpest pictures of the sky of any telescope. is so large, telescopes are effectively time machines, enabling astronomers to look into the past and study the Universe as it The SKA will: was billions of years ago.
    [Show full text]
  • Quarterly Report, July
    NATIONAL RADIO ASTRONOMY OBSERVATORY Quarterly Report July – September 2005 Cover Image: The First Prize image from the NRAO/AUI 2005 Image Contest. Table of Contents Executive Summary ..................................................................................... 1 Science Highlights........................................................................................ 4 NAASC .......................................................................................................... 6 Expanded Very Large Array....................................................................... 8 Green Bank Telescope................................................................................ 16 Very Large Array and Very Long Baseline Array ................................. 26 Central Development Laboratory ............................................................ 37 Computer and Information Services ....................................................... 51 Education and Public Outreach ............................................................... 54 Environment, Safety, and Security .......................................................... 59 Telescope Usage ......................................................................................... 62 GBT Observing Programs ......................................................................... 63 VLA Observing Programs......................................................................... 76 VLBA Observing Programs .....................................................................
    [Show full text]
  • History of Radio Astronomy
    History of Radio Astronomy Reading for High School Students Getsemary Báez Introduction form of radiation involved (soon known as electro- Radio Astronomy, a field that has strongly magnetic waves). Nevertheless, it was Oliver Heavi- evolved since the end of World War II, has become side who in conjunction with Willard Gibbs in 1884 one of the most important tools of astronomical ob- modified the equations and put them into modern servations. Radio astronomy has been responsible for vector notation. a great part of our understanding of the universe, its A few years later, Heinrich Hertz (1857- formation, composition, interactions, and even pre- 1894) demonstrated the existence of electromagnetic dictions about its future path. This article intends to waves by constructing a device that had the ability to inform the public about the history of radio astron- transmit and receive electromagnetic waves of about omy, its evolution, connection with solar studies, and 5m wavelength. This was actually the first radio the contribution the STEREO/WAVES instrument on wave transmitter, which is what we call today an LC the STEREO spacecraft will have on the study of oscillator. Just like Maxwell’s theory predicted, the this field. waves were polarized. The radiation emissions were detected using a 1mm thin circle of copper wire. Pre-history of Radio Waves Now that there is evidence of electromag- It is almost impossible to depict the most im- netic waves, the physicist Max Planck (1858-1947) portant facts in the history of radio astronomy with- was responsible for a breakthrough in physics that out presenting a sneak peak where everything later developed into the quantum theory, which sug- started, the development and understanding of the gests that energy had to be emitted or absorbed in electromagnetic spectrum.
    [Show full text]
  • The 2.2 M Telescope Is Ready
    blue central colour to have a redder halo, while those systems to three orders of magnitude compared to the preliminary with a relatively red central colour (ellipticals and SOs) seem to results for the Fornax cluster. By then we will have acquired an have a bluer halo colour. unprecedented set of properties of Southern Hemisphere At the bollom of the flow chart in Fig. 1 we have indicated the galaxies. The size of the sampie and the uniform approach as Possible presentation of the acquired data bases. Eventually attempted in this project should allow us to study the universe in Our final data base of 16,000 galaxies will be expanded by two an unbiased way. The 2.2 mTelescope is Ready M. Tarenghi, ESO The 2.2 m Zeiss telescope is the last telescope to have The erection of the telescope began on February 15, 1983, arrived on La Silla, thanks to a 25-year loan to ESO from the and as a result of a collaboration of qualified personnel from Max-Planck-Gesellschaft (MPG) who will receive for their Zeiss and MAN and the services of many ESO technicians, we contribution 25 % of the observing time. ESO assumed respon­ succeeded in obtaining the "first light" on the night of June 22, sibility for the installation of the telescope, the arrangement of 1983. Ouring the following weeks the telescope was used for necessary modifications, and construction of the building and optical, mechanical and electronic tuning. The end of the bad dome according to specifications agreed with the MPG. ESO winter weather made it possible to start using the telescope will also assume responsibility for the maintenance and opera­ with the photographic camera, the B & C spectrograph plus tion of the telescope.
    [Show full text]
  • Monster Image of the Fornax Galaxy Cluster 25 October 2017
    Monster image of the Fornax Galaxy Cluster 25 October 2017 telescope technology to observe the finer details of NGC 1316's unusual structure through a combination of imaging and modelling. The mergers that formed NGC 1316 led to an influx of gas, which fuels an exotic astrophysical object at its centre: a supermassive black hole with a mass roughly 150 million times that of the Sun. As it accretes mass from its surroundings, this cosmic monster produces immensely powerful jets of high- energy particles , that in turn give rise to the Credit: ESO characteristic lobes of emission seen at radio wavelengths, making NGC 1316 the fourth- brightest radio source in the sky. Countless galaxies vie for attention in this monster NGC 1316 has also been host to four recorded type image of the Fornax Galaxy Cluster, some Ia supernovae, which are vitally important appearing only as pinpricks of light while others astrophysical events for astronomers. Since type Ia dominate the foreground. One of these is the supernovae have a very clearly defined brightness, lenticular galaxy NGC 1316. The turbulent past of they can be used to measure the distance to the this much-studied galaxy has left it with a delicate host galaxy; in this case, 60 million light-years. structure of loops, arcs and rings that astronomers These "standard candles" are much sought-after by have now imaged in greater detail than ever before astronomers, as they are an excellent tool to with the VLT Survey Telescope. This astonishingly reliably measure the distance to remote objects. In deep image also reveals a myriad of dim objects fact, they played a key role in the groundbreaking along with faint intracluster light.
    [Show full text]
  • High Resolution Radio Astronomy Using Very Long Baseline Interferometry
    IOP PUBLISHING REPORTS ON PROGRESS IN PHYSICS Rep. Prog. Phys. 71 (2008) 066901 (32pp) doi:10.1088/0034-4885/71/6/066901 High resolution radio astronomy using very long baseline interferometry Enno Middelberg1 and Uwe Bach2 1 Astronomisches Institut, Universitat¨ Bochum, 44801 Bochum, Germany 2 Max-Planck-Institut fur¨ Radioastronomie, Auf dem Hugel¨ 69, 53121 Bonn, Germany E-mail: [email protected] and [email protected] Received 3 December 2007, in final form 11 March 2008 Published 2 May 2008 Online at stacks.iop.org/RoPP/71/066901 Abstract Very long baseline interferometry, or VLBI, is the observing technique yielding the highest-resolution images today. Whilst a traditionally large fraction of VLBI observations is concentrating on active galactic nuclei, the number of observations concerned with other astronomical objects such as stars and masers, and with astrometric applications, is significant. In the last decade, much progress has been made in all of these fields. We give a brief introduction to the technique of radio interferometry, focusing on the particularities of VLBI observations, and review recent results which would not have been possible without VLBI observations. This article was invited by Professor J Silk. Contents 1. Introduction 1 2.9. The future of VLBI: eVLBI, VLBI in space and 2. The theory of interferometry and aperture the SKA 10 synthesis 2 2.10. VLBI arrays around the world and their 2.1. Fundamentals 2 capabilities 10 2.2. Sources of error in VLBI observations 7 3. Astrophysical applications 11 2.3. The problem of phase calibration: 3.1. Active galactic nuclei and their jets 12 self-calibration 7 2.4.
    [Show full text]