Bsc Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Bsc Chemistry Subject Chemistry Paper No and Title 9: Organic Chemistry-III (Reaction Mechanism-2) Module No and Title 13: Addition of Grignard reagent Module Tag CHE_P9_M13 CHEMISTRY Paper 9: Organic Chemistry-III (Reaction Mechanism-2) Module no.13: Addition of Grignard reagent TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Grignard reagent 3.1Reaction with Aldehydes and Ketones 4. Reaction with other Carbonyl compounds 4.1 Reaction with Esters 4.2 Reaction with Acid Chlorides 4.3 Reaction with CO2 4.4 Reaction with Nitriles 4.5 Reaction with Oxiranes 5. Industrial applications of Grignard reagent 5.1 Organotin compounds 5.2 Organosilicon compounds 5.3 Organophosphorous compounds 6. Summary CHEMISTRY Paper 9: Organic Chemistry-III (Reaction Mechanism-2) Module no.13: Addition of Grignard reagent 1. Learning Outcomes After studying this module, you shall be able to Know about Grignard reagent and its synthesis. Learn about its reaction with carbonyl compounds. Identify transition states involved when Grignard reagent reacts with carbonyl compounds as well as alkenes. Evaluate the effects of solvent on Grignard reagent and oraganolithium compounds. Analyze the industrial importance of Grignard reagent. Learn about the reaction of Grignard reagent with nitriles and oxiranes and various other functional group moieties. 2. Introduction Organomagnesium compounds frequently called Grignard reagents after their discoverer. They are an important class of extremely reactive chemical compounds used in the synthesis of hydrocarbons, alcohols, carboxylic acids, and other compounds. They are prepared by adding an alkyl halide to magnesium shavings being stirred in anhydrous diethyl ether or THF. The magnesium is inserted between the carbon and the halogen. CHEMISTRY Paper 9: Organic Chemistry-III (Reaction Mechanism-2) Module no.13: Addition of Grignard reagent The C-Mg bond in Grignard reagents is covalent and not ionic. The actual structure of Grignard reagents in solution has been a matter of much controversy over the years. In 1929, it was discovered that the addition of dioxane to an ethereal Grignard solution precipitates all the magnesium halide and leaves a solution of R2Mg in ether; (i.e., there can be no RMgX in the solution since there is no halide). The following equilibrium, now called the Schlenk equilibrium, was proposed as the composition of the Grignard solution: Here the last species on the RHS is a complex. 3. Preparation of Grignard Reagent The carbon atom of organic halide which is directly attached to the halogen is, of course, electrophilic. This electrophilic reactivity can be switched to nucleophilic reactivity by conversion to an organomagnesium halide, i.e., a Grignard reagent. The carbon-magnesium bond in a Grignard reagent is polar and covalent with carbon being the negative end of the dipole. Thus the nucleophilicity of carbon in a Grignard reagent. Note also that the magnesium-halogen bond is largely ionic, as shown in the structure above. The mechanism of formation of a Grignard reagent is shown below. It involves radical intermediates. There is one major difference that should be noted. Grignard formation does not involve a radical chain mechanism. It is a non-chain radical reaction. CHEMISTRY Paper 9: Organic Chemistry-III (Reaction Mechanism-2) Module no.13: Addition of Grignard reagent The first step is rate-determining and involves the transfer of one electron from Mg (which has two electrons in its valence shell) to the carbon-halogen bond. This forms Mg+1, which is a radical. This then couples with the alkyl radical formed. 3.1 Role of Solvent Organomagnesium and organolithium compounds are such strong bases that they will react immediately with any acid that is present in the reaction mixture-even with very weak acids such as water and alcohols. When this happens, the organometallic compound is converted into an alkane. If D2O is used instead of H2O a deuterated compound will be obtained. This means that Grignard reagents and organolithium compounds cannot be prepared from compounds that contain acidic groups (OH, NH2, NHR, SH, COOH groups). Because even trace amounts of moisture can destroy an organometallic compound, it is important that all reagents be dry when organometallic compounds are being synthesized and when they react with other reagents. CHEMISTRY Paper 9: Organic Chemistry-III (Reaction Mechanism-2) Module no.13: Addition of Grignard reagent Diethyl ether is an especially good solvent for the formation of Grignard reagents because ethers are non-acidic (aprotic). Grignard reagents are stable in ethers Another reason for ethers being good solvents for Grignard reagents is that the MgX bond is ionic and thus benefits greatly from being effectively solvated. The formation of ions in very nonpolar solvents, where they would not be effectively solvated is very difficult. Ethers are surprisingly good at solvating cations, because the C-O bond is relatively polar, thus allowing the oxygen end of the ether dipole to solvate and stabilize (electrostatically) the magnesium ion. 4. Reactions of Grignard Reagent with Carbonyl Compounds Addition of a Grignard reagent to a carbonyl compound is a versatile reaction that leads to the formation of a new bond. The reaction can produce compounds with a variety of structures because both the structure of the carbonyl compound and the structure of the Grignard reagent can be varied. A Grignard reagent reacts as if it were a carbanion. Attack of a Grignard reagent on a carbonyl carbon forms an alkoxide ion that is complexed with magnesium ion. Addition of water or dilute acid breaks up the complex. 4.1 Reaction with Formaldehyde Grignard reagent reacts with formaldehyde to form primary alcohols. CHEMISTRY Paper 9: Organic Chemistry-III (Reaction Mechanism-2) Module no.13: Addition of Grignard reagent 4.2 Reaction with Other Aldehydes Grignard reagent with aldehydes other than formaldehyde to form secondary alcohol. 4.3 Reaction with Ketones When a Grignard reagent reacts with a ketone, the addition product is a tertiary alcohol. 4.4 Why do Grignard reagent react with Carbonyl compounds? The bond between the carbon atom and the magnesium is polar. Carbon is more electronegative than magnesium, and so the bonding pair of electrons is pulled towards the carbon. That leaves the carbon atom with a slight negative charge. CHEMISTRY Paper 9: Organic Chemistry-III (Reaction Mechanism-2) Module no.13: Addition of Grignard reagent The carbon-oxygen double bond is also highly polar with a significant amount of positive charge on the carbon atom. The Grignard reagent can therefore serve as a nucleophile because of the attraction between the slight negative charge of the carbon atom in the Grignard reagent and the positive charge of the carbon in the carbonyl compound. A nucleophile is a species that attacks positive (or slightly positive) centers in other molecules or ions. 4.5 Mechanism and Transition State Involved in the Grignard Reagent Reactions with Carbonyl Compounds 4.5.1 Mechanism: Formation of alcohols via addition of Grignard reagents to aldehydes and ketones is carried out in two separate steps Step 1: Addition of the nucleophilic alkyl group to the carbonyl carbon, aided by Lewis acid interaction between MgX+ and the carbonyl oxygen. The product of this step is a halomagnesium alkoxide. Step 2. Protonation of the alkoxide oxygen. The product of this step is an alcohol. 4.5.2 Transition state model for the Grignard addition reaction to a carbonyl compound: CHEMISTRY Paper 9: Organic Chemistry-III (Reaction Mechanism-2) Module no.13: Addition of Grignard reagent The alkoxide character derives from the product (P) character of the TS. This alkoxide character is further stabilized by covalent and ionic bonding to the magnesium ion. The Mg-O bond is a very stable one. A final factor which makes this TS an especially favorable (low energy) one is the electrostatic attraction between the positively charge carbonyl carbon and the partially negatively charged carbon of the Grignard reagent. This derives from reactant (R) character in the TS (properly positioned reactants, of course). 4.5.3 Transition state model for the hypothetical addition of a Grignard reagent to an alkene for comparative analysis By simply substituting carbon for oxygen in the transition state model for addition to a carbonyl group (along with generalized valencies to that carbon), CHEMISTRY Paper 9: Organic Chemistry-III (Reaction Mechanism-2) Module no.13: Addition of Grignard reagent we can obtain a TS model for the analogous but hypothetical addition of a Grignard reagent to an alkene. We use the Method of Competing Transition States to compare the relative merits of these two reaction (relative rates). Carbanion character is much less favorable than oxyanion character. Mg-C bond character is less favorable than Mg-O bond character in the TS. Electrostatic attraction is present in the carbonyl addition TS but is simply missing in the alkene addition TS, because the alkene pi bond is not polar. Consequently, since all of these effects favour the TS for the addition of Grignard reagents to carbonyl compounds, it is much more favorable than the TS for addition to an alkene. 5. Additional Reactions of Grignard Reagent 5.1 Reaction with esters When an ester reacts with a Grignard reagent, the first reaction is a nucleophilic acyl substitution reaction because an ester, unlike an aldehyde or a ketone, has a group that can be replaced by the Grignard reagent. The product of the reaction is a ketone. The reaction does not stop at the ketone stage, however, because ketones are more reactive than esters toward nucleophilic attack. Reaction of the ketone with a second molecule of the Grignard reagent forms a tertiary alcohol. Because the tertiary alcohol is formed as a CHEMISTRY Paper 9: Organic Chemistry-III (Reaction Mechanism-2) Module no.13: Addition of Grignard reagent result of two successive reactions with a Grignard reagent, the alcohol has two identical groups bonded to the tertiary carbon.
Recommended publications
  • Chapter 21 the Chemistry of Carboxylic Acid Derivatives
    Instructor Supplemental Solutions to Problems © 2010 Roberts and Company Publishers Chapter 21 The Chemistry of Carboxylic Acid Derivatives Solutions to In-Text Problems 21.1 (b) (d) (e) (h) 21.2 (a) butanenitrile (common: butyronitrile) (c) isopentyl 3-methylbutanoate (common: isoamyl isovalerate) The isoamyl group is the same as an isopentyl or 3-methylbutyl group: (d) N,N-dimethylbenzamide 21.3 The E and Z conformations of N-acetylproline: 21.5 As shown by the data above the problem, a carboxylic acid has a higher boiling point than an ester because it can both donate and accept hydrogen bonds within its liquid state; hydrogen bonding does not occur in the ester. Consequently, pentanoic acid (valeric acid) has a higher boiling point than methyl butanoate. Here are the actual data: INSTRUCTOR SUPPLEMENTAL SOLUTIONS TO PROBLEMS • CHAPTER 21 2 21.7 (a) The carbonyl absorption of the ester occurs at higher frequency, and only the carboxylic acid has the characteristic strong, broad O—H stretching absorption in 2400–3600 cm–1 region. (d) In N-methylpropanamide, the N-methyl group is a doublet at about d 3. N-Ethylacetamide has no doublet resonances. In N-methylpropanamide, the a-protons are a quartet near d 2.5. In N-ethylacetamide, the a- protons are a singlet at d 2. The NMR spectrum of N-methylpropanamide has no singlets. 21.9 (a) The first ester is more basic because its conjugate acid is stabilized not only by resonance interaction with the ester oxygen, but also by resonance interaction with the double bond; that is, the conjugate acid of the first ester has one more important resonance structure than the conjugate acid of the second.
    [Show full text]
  • Cross-Coupling Reaction of Allylic Ethers with Aryl Grignard Reagents Catalyzed by a Nickel Pincer Complex
    molecules Article Cross-Coupling Reaction of Allylic Ethers with Aryl Grignard Reagents Catalyzed by a Nickel Pincer Complex Toru Hashimoto * , Kei Funatsu, Atsufumi Ohtani, Erika Asano and Yoshitaka Yamaguchi * Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; [email protected] (K.F.); [email protected] (A.O.); [email protected] (E.A.) * Correspondence: [email protected] (T.H.); [email protected] (Y.Y.); Tel.: +81-45-339-3940 (T.H.); +81-45-339-3932 (Y.Y.) Academic Editor: Kouki Matsubara Received: 30 May 2019; Accepted: 18 June 2019; Published: 21 June 2019 Abstract: A cross-coupling reaction of allylic aryl ethers with arylmagnesium reagents was investigated using β-aminoketonato- and β-diketiminato-based pincer-type nickel(II) complexes as catalysts. An β-aminoketonato nickel(II) complex bearing a diphenylphosphino group as a third donor effectively catalyzed the reaction to afford the target cross-coupled products, allylbenzene derivatives, in high yield. The regioselective reaction of a variety of substituted cinnamyl ethers proceeded to give the corresponding linear products. In contrast, α- and γ-alkyl substituted allylic ethers afforded a mixture of the linear and branched products. These results indicated that the coupling reaction proceeded via a π-allyl nickel intermediate. Keywords: pincer-type nickel(II) complex; cross-coupling; allylic ether 1. Introduction Transition metal-catalyzed cross-coupling reactions are efficient and widely utilized synthetic protocols for constructing carbon–carbon bonds [1]. The reactions of allylic electrophiles with aryl metal reagents provide promising methodologies for the formation of C(sp3)–C(sp2) bonds.
    [Show full text]
  • Of Grignard Reagent Formation. the Surface Nature of the Reaction
    286 Ace. Chem. Res. 1990,23, 286-293 Mechanism of Grignard Reagent Formation. The Surface Nature of the Reaction H. M. WALBORSKY Dittmer Laboratory of Chemistry, Florida State University, Tallahassee, Florida 32306 Received February 23, 1990 (Revised Manuscript Received May 7, 1990) The reaction of organic halides (Br, C1, I) with mag- Scheme I nesium metal to yield what is referred to today as a Kharasch-Reinmuth Mechanism for Grignard Reagent Grignard reagent has been known since the turn of the Formation century,' The name derives from its discoverer, Nobel (1)(Mg0)AMg*)2y + RX 4 [(M~'~(MQ')~~-,('MQX)+ R.] + laureate Victor Grignard. How this reagent is formed, (Mgo)x-2(MQ')2~MgX)(MgR) that is, how a magnesium atom is inserted into a car- bon-halogen bond, is the subject of this Account. ('4 (Ms0),-*(M9')2~MgX)(MgR) + + (Mg0)x-dMg*)2y+2 + 2RMgX RX + Mg - RMgX Kharasch and Reinmuth,, persuaded by the work of late under the same conditions gave Itl = 6.2 X s-l. Another system that meets the above criterion is the Gomberg and Bachmad as well as by product analyses of many Grignard formation reactions that existed in vinyl system. The lack of reactivity of vinyl halides toward SN1reactions is well-known and is exemplified the literature prior to 1954,speculated that the reaction involved radicals and that the radical reactions might by the low solvolysis rate of 2-propenyl triflate5 in 80% involve "surface adherent radicals, at least in part". The ethanol at 25 OC, kl being 9.8 X s-l.
    [Show full text]
  • The Ozonolysis of Phenyl Grignard Reagent
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1971 The ozonolysis of phenyl Grignard reagent Gale Manning Sherrodd The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Sherrodd, Gale Manning, "The ozonolysis of phenyl Grignard reagent" (1971). Graduate Student Theses, Dissertations, & Professional Papers. 8297. https://scholarworks.umt.edu/etd/8297 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE OZONOLYSIS OF PHENYL GRIGNARD REAGENT By Gale M. Sherrodd B.S., Rocky Mountain College, I969 Presented in partial fulfillment of the requirements for the degree of Master of Arts for Teachers UNIVERSITY OF MONTANA 1971 Approved by: Chairman, Board of Examiners De^ , Graduate *School / n ? / Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP39098 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT DiMMtstion PuWiahing UMI EP39098 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.
    [Show full text]
  • Grignard Reaction: Synthesis of Triphenylmethanol
    *NOTE: Grignard reactions are very moisture sensitive, so all the glassware in the reaction (excluding the work-up) should be dried in an oven with a temperature of > 100oC overnight. The following items require oven drying. They should be placed in a 150mL beaker, all labeled with a permanent marker. 1. 5mL conical vial (AKA: Distillation receiver). 2. Magnetic spin vane. 3. Claisen head. 4. Three Pasteur pipettes. 5. Two 1-dram vials (Caps EXCLUDED). 6. One 2-dram vial (Caps EXCLUDED). 7. Glass stirring rod 8. Adaptor (19/22.14/20) Grignard Reaction: Synthesis of Triphenylmethanol Pre-Lab: In the “equations” section, besides the main equations, also: 1) draw the equation for the production of the byproduct, Biphenyl. 2) what other byproduct might occur in the reaction? Why? In the “observation” section, draw data tables in the corresponding places, each with 2 columns -- one for “prediction” (by answering the following questions) and one for actual drops or observation. 1) How many drops of bromobenzene should you add? 2) How many drops of ether will you add to flask 2? 3) 100 µL is approximately how many drops? 4) What are the four signs of a chemical reaction? (Think back to Chem. 110) 5) How do the signs of a chemical reaction apply to this lab? The Grignard reaction is a useful synthetic procedure for forming new carbon- carbon bonds. This organometallic chemical reaction involves alkyl- or aryl-magnesium halides, known as Grignard 1 reagents. Grignard reagents are formed via the action of an alkyl or aryl halide on magnesium metal.
    [Show full text]
  • Grignard Reagents and Silanes
    GRIGNARD REAGENTS AND SILANES By B. Arkles REPRINTED FROM HANDBOOK OF GRIGNARD REAGENTS by G. Silverman and P. Rakita Pages 667-675 Marcel Dekker, 1996 Gelest, Inc. 612 William Leigh Drive Tullytown, Pa. 19007-6308 Phone: [215] 547-1015 Fax: [215] 547-2484 Grignard Reagents and Silanes 32 Grignard Reagents and Silanes BARRY ARKLES Gelest Inc., Tullytown, Pennsylvania I. INTRODUCTION This review considers two aspects of the interaction of Grignards with silanes. First, focusing on technologies that are still viable within the context of current organosilane and silicone technology, guidelines are provided for silicon-carbon bond formation using Grignard chemistry. Second, the use of silane-blocking agents and their stability in the presence of Grignard reagents employed in organic synthesis is discussed. II. FORMATION OF THE SILICON-CARBON BOND A. Background The genesis of current silane and silicone technology traces back to the Grignard reaction. The first practical synthesis of organosilanes was accomplished by F. Stanley Kipping in 1904 by the Grignard reaction for the formation of the silicon-carbon bond [1]. In an effort totaling 57 papers, he created the basis of modern organosilane chemistry. The development of silicones by Frank Hyde at Corning was based on the hydrolysis of Grignard-derived organosilanes [2]. Dow Corning, the largest manufacturer of silanes and silicones, was formed as a joint venture between Corning Glass, which had silicone product technology, and Dow, which had magnesium and Grignard technology, during World War II. In excess of 10,000 silicon compounds have been synthesized by Grignard reactions. Ironically, despite the versatility of Grignard chemistry for the formation of silicon-carbon bonds, its use in current silane and silicone technology has been supplanted by more efficient and selective processes for the formation of the silicon-carbon bond, notably by the direct process and hydrosilylation reactions.
    [Show full text]
  • Oxidation of Organocopper Compounds
    Oxidation of Organocopper Compounds Sarah J. Aves and Dr. David R. Spring Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW United Kingdom Tel.: +44 (0) 1223 336498 Fax: +44 (0) 1223 336362 E-mail: [email protected] [email protected] Oxidation of Organocopper Compounds Contents I. Introduction.................................................................................................................3 II. Formation of C-C Bonds............................................................................................. 4 A. Initial Studies.......................................................................................................... 4 B. Cross-coupling ........................................................................................................ 5 C. Biaryl Formation................................................................................................... 11 D. Intramolecular Bond Formation............................................................................ 14 E. Dimerisations of Heteroaromatics, Alkenyl and Alkyl Groups and Macrocycle Formation...................................................................................................................... 18 III. Formation of C-N Bonds ...................................................................................... 21 A. Initial Studies........................................................................................................ 21 B. Further Developments..........................................................................................
    [Show full text]
  • Grignard Synthesis of Triphenylmethanol Reactions That Form Carbon-Carbon Bonds Are Among the Most Useful to the Synthetic Organic Chemist
    1 Experiment 12: Grignard Synthesis of Triphenylmethanol Reactions that form carbon-carbon bonds are among the most useful to the synthetic organic chemist. In 1912, Victor Grignard received the Nobel prize in chemistry for his discovery of a new series of reactions that result in the formation of a carbon-carbon bond. A Grignard synthesis first involves the preparation of an organomagnesium reagent via the reaction of an alkyl bromide with magnesium metal: δ– δ+ R Br + Mg R MgBr The resulting “Grignard reagent” acts as both a good nucleophile and a strong base. Its nucleophilic character allows it to react with the electrophilic carbon in a carbonyl group, thus forming the carbon-carbon bond. Its basic property means that it will react with acidic compounds, such as carboxylic acids, phenols, thiols and even alcohols and water; therefore, reaction conditions must be free from acids and strictly anhydrous. Grignard reagents will also react with oxygen to form hydroperoxides, thus they are highly unstable when exposed to the atmosphere and are generally not isolated from solution. For a variety of reasons, anhydrous diethyl ether is the solvent of choice for carrying out a Grignard synthesis. Vapors from the highly volatile solvent help to prevent oxygen from reaching the reaction solution. In addition, evidence suggests that the ether molecules actually coordinate with and help stabilize the Grignard reagent: Et Et O R Mg Br O Et Et The magnesium metal used in the synthesis contains a layer of oxide on the surface that prevents it from reacting with the alkyl bromide. The pieces of metal must be gently scratched while in the ether solution to expose fresh surface area so that the reaction can commence.
    [Show full text]
  • The Effects of Stoichiometry and Starting Material on the Product Identity and Yield in Grignard Addition Reactions
    Supplementary information for Comprehensive Organic Chemistry Experiments for the Laboratory Classroom © The Royal Society of Chemistry 2017 The effects of stoichiometry and starting material on the product identity and yield in Grignard addition reactions Supplementary Material This experiment has been performed both in the 150 person standard introductory organic chemistry laboratory (taught primarily by undergraduate teaching assistants in five sections of 30-40 students) and in a special introductory organic chemistry laboratory for freshman, taught to 23 students in sections of 7 and 16. This course is the first organic laboratory for these students but has been taught in the spring semester along with the second semester of organic lecture. The lab periods for this course are five hours long, and this experiment is typically performed in the latter half of the semester. This experiment is used to illustrate to students the importance of planning their time in lab; they must be out of the lab in the 5 hours allotted. While many students finish the experiment in this time, others plan to finish the following week along with a shorter experiment. Those who were running behind were encouraged to finish through the drying of their organic layer with MgSO4 and set up the distillation the following week. When doing this they should make sure that their organic layer is in a closed container to prevent evaporation of their product. Moisture Sensitive Conditions There are many diverse protocols for maintaining the anhydrous conditions required to successfully prepare and utilize Grignard reagents. We typically open a fresh can of anhydrous ether and dispense it directly, without additional drying in a still or air sensitive techniques for solvent transfers.
    [Show full text]
  • Synthesis and Reactivity of Cyclopentadienyl Based Organometallic Compounds and Their Electrochemical and Biological Properties
    Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties Sasmita Mishra Department of Chemistry National Institute of Technology Rourkela Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties Dissertation submitted to the National Institute of Technology Rourkela In partial fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry by Sasmita Mishra (Roll Number: 511CY604) Under the supervision of Prof. Saurav Chatterjee February, 2017 Department of Chemistry National Institute of Technology Rourkela Department of Chemistry National Institute of Technology Rourkela Certificate of Examination Roll Number: 511CY604 Name: Sasmita Mishra Title of Dissertation: ''Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties We the below signed, after checking the dissertation mentioned above and the official record book(s) of the student, hereby state our approval of the dissertation submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry at National Institute of Technology Rourkela. We are satisfied with the volume, quality, correctness, and originality of the work. --------------------------- Prof. Saurav Chatterjee Principal Supervisor --------------------------- --------------------------- Prof. A. Sahoo. Prof. G. Hota Member (DSC) Member (DSC) ---------------------------
    [Show full text]
  • Synthesis of Novel Dienes and Cyclic Compounds Via Olefin Metathesis Reactions Catalyzed by the Second Generation Grubbs Catalyst
    University of Tennessee at Chattanooga UTC Scholar Student Research, Creative Works, and Honors Theses Publications 5-2015 Synthesis of novel dienes and cyclic compounds via olefin metathesis reactions catalyzed by the second generation Grubbs catalyst Patrick Joseph Carey University of Tennessee at Chattanooga, [email protected] Follow this and additional works at: https://scholar.utc.edu/honors-theses Part of the Chemistry Commons Recommended Citation Carey, Patrick Joseph, "Synthesis of novel dienes and cyclic compounds via olefin metathesis eactionsr catalyzed by the second generation Grubbs catalyst" (2015). Honors Theses. This Theses is brought to you for free and open access by the Student Research, Creative Works, and Publications at UTC Scholar. It has been accepted for inclusion in Honors Theses by an authorized administrator of UTC Scholar. For more information, please contact [email protected]. Synthesis of Novel Dienes and Cyclic Compounds via Olefin Metathesis Reactions Catalyzed by the Second Generation Grubbs Catalyst Patrick J. Carey Departmental Honors Thesis The University of Tennessee at Chattanooga Department of Chemistry Project Director: Dr. Kyle S. Knight Examination Date: March 30, 2015 Members of Examination Committee: Dr. Titus V. Albu Dr. Tom R. Rybolt Dr. D. Stephen Nichols, III Examining Committee Signatures: _________________________________________________________ Project Director _________________________________________________________ Department Examiner _________________________________________________________
    [Show full text]
  • 11 Grignard Reaction
    14 Formation and reaction of a Grignard reagent 14.1 Introduction The study and use of compounds featuring carbon-metal bonds (organometallic chemistry) is a major area of synthetic chemistry. Metal atoms are less electronegative than carbon and so the polarity of a C-M bond is reversed in comparison to C-H, C-X (X= halogen), C-N etc. found in a typical organic compound i.e. the carbon atom is nucleophilic rather than electrophilic. Reactions involving organometallic compounds are widely used in industrial organic and pharmaceutical synthesis. An organomagnesium halide such as phenylmagnesium bromide (PhMgBr) is commonly referred to as a Grignard reagent. Other examples of organometallic compounds familiar from CHEM 343/345 include organolithium reagents (RLi) and lithium diorganocuprates (R2CuLi, Gilman reagents). Organometallic compounds are widely used as both stoichiometric reagents and catalysts to enable organic transformations that are difficult or impossible to accomplish with classical organic reagents. A Grignard reagent is formed by reaction of magnesium metal with an organic halide in diethyl ether. The halide can be iodine (most reactive), bromine or chlorine (least reactive). Recall that you studied the reactivity of a series of C-X bonds in Chapter 5. The stoichiometric reaction of Grignard reagents with carbonyl compounds is a common method for the formation of carbon-carbon single bonds and an important route for the synthesis of alcohols. The type of carbonyl compound used determines the type of alcohol produced; aldehydes afford secondary alcohols, while ketones and esters yield tertiary alcohols. Primary alcohols can be prepared from the Grignard reaction of formaldehyde (CH2O).
    [Show full text]