Induction of C-Anaphase and Diplochromosome Through Dysregulation of Spindle Assembly Checkpoint by Sodium Arsenite in Human Fibroblasts1

Total Page:16

File Type:pdf, Size:1020Kb

Induction of C-Anaphase and Diplochromosome Through Dysregulation of Spindle Assembly Checkpoint by Sodium Arsenite in Human Fibroblasts1 [CANCER RESEARCH 63, 6680–6688, October 15, 2003] Induction of C-Anaphase and Diplochromosome through Dysregulation of Spindle Assembly Checkpoint by Sodium Arsenite in Human Fibroblasts1 Ling-Huei Yih and Te-Chang Lee2 Institutes of Zoology [L-H. Y.] and Biomedical Sciences [T-C. L.], Academia Sinica, and Institute of BioPharmaceutical Sciences, National Yang Ming University [T-C. L.], Taipei 115, Taiwan, Republic of China ABSTRACT 18). Accumulated evidence supports the view that cytogenetic alter- ations play a crucial role in cancer development (19–22). Cytogenetic alterations induced by arsenite are associated with its Cancer cells are genetically unstable. A variety of cytogenetic or carcinogenic activity. Cytogenetic analysis revealed first that arsenite chromosomal alterations including losses and/or gains of whole or induced c-anaphases in a time- and dose-dependent manner in human large portions of chromosomes are frequently observed in cancer cells fibroblasts (HFW). With additional incubation of arsenite-arrested mi- totic cells in drug-free medium for 0–48 h, approximately 35% exited (23). To maintain the integrity during genome transmission, the proc- from mitosis without cell division. This was confirmed by the appearance ess of mitosis is stringently monitored by means of mitotic check- of tetraploid metaphase, mainly diplochromosomes, in the subsequent cell points (24, 25). Mitotic checkpoint defects can result in chromosomal division. Treatment of HFW cells with both nocodazole, a known agent of instability and lead to carcinogenesis (26, 27). Faithful chromosome microtubular depolymerization, and Taxol, which induces tubulin poly- segregation is monitored by the spindle assembly checkpoint that merization and inhibits disassembly of microtubules, resulted in remark- functions to delay the onset of anaphase until the mitotic spindles are able mitotic arrest but induced only negligible c-anaphase, tetraploidy, correctly attached to chromosome kinetochores. There are three major and diplochromosomes. Staurosporine, a kinase inhibitor that could ef- proteins involved in the spindle checkpoint: Mad2,3 p55cdc20, and fectively reduce arsenite-induced c-anaphase, could also decrease the APC/C (24). Mad2 is activated through unattached kinetochore (25) development of diplochromosomes in the subsequent cell division cycle. and is tightly associated with the APC/C and p55cdc20 complex when These results imply that arsenite-induced c-anaphases mainly exited from the spindle assembly checkpoint is activated (28). The association of mitosis without cell division and became tetraploid in the subsequent cell Mad2 with APC/C and p55cdc20 is shown to inhibit the activation of cycle. Antitubulin immunofluorescent staining confirmed no formation of bipolar spindles in nocodazole-arrested mitotic HFW cells, whereas in APC/C, to prevent degradation of Pds1, the anaphase inhibitor, and, arsenite-arrested mitotic cells bipolar spindles were present but distorted hence, to inhibit the initiation of anaphase. Malfunction of spindle in appearance and apparently dysfunctional. Mitotic arrest deficient 2 assembly checkpoint results in the initiation of abnormal anaphase (Mad2) signal was, as expected, clearly visible at centromeres of nocoda- and leads to chromosome mis-segregation. zole-arrested mitotic cells. However, the Mad2 signal at centrosomes Arsenite has been reported to alter microtubule dynamics in 3T3 became insignificant in either arsenite-arrested or nocodazole/arsenite- and HeLa cells (29–31). Our previous studies have also shown that arrested mitotic cells. In addition, the association of Mad2 with the arsenite treatment can induce abnormal chromosome segregation and cdc20 APC/C complex and the accumulation of Pds1, an anaphase inhibitor, chromosome loss in human fibroblasts and HeLa cells (14, 30). were remarkably reduced in arsenite-arrested mitotic cells as compared Arsenite can also induce c-anaphase, which has been frequently with nocodazole-arrested mitotic cells. These results support the observa- observed in solid tumor cells (32) and lymphocytes of patients with tion that nocodazole can inhibit spindle formation and, hence, activate leukemia (33, 34). C-anaphase can lead to formation of aneuploidy spindle assembly checkpoint to arrest cells at metaphase. In contrast, the dysfunctional bipolar spindles in arsenite-arrested mitotic cells could not (35), which is a manifestation of abnormal chromatid separation. The effectively activate spindle assembly checkpoint and, hence, resulted in generation of c-anaphase is possibly caused by the deranged check- formation of c-anaphase and diplochromosomes in the subsequent cell point control of metaphase to anaphase transition. In this study, division. experiments were conducted to further assess the consequences of arsenite-induced c-anaphases and the potential alterations of check- point control in arsenite-arrested mitotic cells. INTRODUCTION Arsenic compounds are known to increase the risks for many forms MATERIALS AND METHODS of cancer. Field studies have shown that ingestion of arsenic-contam- inated well water in the Southeastern area of Taiwan is highly asso- Cell Culture. HFW cells, derived from newborn human foreskin and ciated with increased incidences of cancers of skin, lung, liver, pros- kindly provided by Dr. W. N. Wen (National Taiwan University, Taiwan, Republic of China), were routinely maintained in DMEM (Life Technologies, tate, and bladder (1–6). Laboratory studies have also shown that Inc., Grand Island, NY) supplemented with 10% fetal bovine serum (Hyclone arsenite is able to cause DNA strand breaks (7–10) and induces Laboratories, Logan, UT), 0.37% sodium bicarbonate (Life Technologies, various types of cytogenetic alterations, including chromosomal ab- Inc.), 100 units/ml penicillin (Life Technologies, Inc.), and 100 ␮g/ml strep- errations, sister chromatid exchanges (11, 12), aneuploidy (13, 14), tomycin (Life Technologies, Inc.) and cultured at 37°C in an incubator with and micronuclei (15–17) in a variety of cell systems. Arsenite-induced humidity-saturated air and 10% CO2 (36). cytogenetic alterations are closely associated with its induction of Cytogenetic Examination and Mitotic Index. Logarithmically growing morphological transformation in Syrian hamster embryo cells (11, HFW cells were treated with various concentrations of sodium arsenite (0, 1.25, 2.5, and 5 ␮M) for 24 h or selected time intervals. To harvest metaphase cells, 0.05 ␮g/ml colcemid was added during the final 3-h incubation, and the Received 3/10/03; revised 7/1/03; accepted 7/30/03. The costs of publication of this article were defrayed in part by the payment of page cells were subsequently trypsinized, treated with hypotonic solution, fixed, and charges. This article must therefore be hereby marked advertisement in accordance with prepared for chromosome analysis (14). For each treatment, 100 metaphases 18 U.S.C. Section 1734 solely to indicate this fact. were examined for determination of cytogenetic alterations. Chromosomes 1 Supported by the Academia Sinica and by grants from the National Science Council, Republic of China. 2 To whom requests for reprints should be addressed, at at Institute of Biomedical 3 The abbreviations used are: Mad2, mitotic arrest deficient 2; APC/C, anaphase- Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China. Phone: 886-2- promoting complex/cyclosome; DAPI, 4,6-diamino-2-phenyl-indole; HFW, human fibro- 7899014; Fax: 886-2-7825573; E-mail: [email protected]. blast; SP, staurosporine. 6680 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2003 American Association for Cancer Research. ARSENITE INDUCES C-ANAPHASE AND DIPLOCHROMOSOME Fig. 1. Chromosome spreadings of HFW cells. A, normal chromosomes from untreated HFW cells. B, c-anaphase chromosomes from HFW cells treated with 5 ␮M arsenite for 24 h. C, diplochromosomes from HFW cells treated with 5 ␮M arsenite for 24 h and recovered in drug-free medium for 24 h. Bar,10␮m. exhibiting separated centromeres and splayed chromatids were recognized as RESULTS c-anaphases (Fig. 1B), and those that exhibited duplicated and parallel align- ment as diplochromosomes (Fig. 1C; Ref. 34). The mitotic index, defined as Dose- and Time-dependent Induction of C-Anaphases by Ar- the percentage of mitotic cells in the total cell population, was determined by senite in HFW Cells. Consistent with our previous study (14), ar- the number of mitotic cells per 1000 cells. To examine the effects of various senite treatment resulted in a slightly elevated mitotic index but inhibitors on c-anaphase formation, these inhibitors were, in general, inocu- profoundly induced c-anaphase in HFW cells (Fig. 2, A and B). lated into the cultural medium 6 h before the end of treatment. Induction of c-anaphase by arsenite follows a time- and dose-depen- Analysis of Cell Cycle Progression. Cell cycle progression was monitored dent manner (Fig. 2, A and B). At the end of a 24-h treatment, 18% using the technique of DNA flow cytometry. In brief, the trypsinized cells were and 61% of mitotic cells showed the manifestation of c-anaphases in washed once with PBS, fixed with ice-cold 70% ethanol for 16 h, and stained HFW cells treated with 2.5 ␮M and 5 ␮M arsenite, respectively (Fig. with 4 ␮g/ml propidium iodide in PBS containing 1% Triton X-100 and 0.1 2A). Treatment of HFW cells with 5 ␮M arsenite showed a remarkable mg/ml RNase A. The DNA content of individual cells was analyzed using a amount
Recommended publications
  • DNA Damage Activates a Spatially Distinct Late Cytoplasmic Cell-Cycle Checkpoint Network Controlled by MK2-Mediated RNA Stabilization
    DNA Damage Activates a Spatially Distinct Late Cytoplasmic Cell-Cycle Checkpoint Network Controlled by MK2-Mediated RNA Stabilization The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Reinhardt, H. Christian, Pia Hasskamp, Ingolf Schmedding, Sandra Morandell, Marcel A.T.M. van Vugt, XiaoZhe Wang, Rune Linding, et al. “DNA Damage Activates a Spatially Distinct Late Cytoplasmic Cell-Cycle Checkpoint Network Controlled by MK2-Mediated RNA Stabilization.” Molecular Cell 40, no. 1 (October 2010): 34–49.© 2010 Elsevier Inc. As Published http://dx.doi.org/10.1016/j.molcel.2010.09.018 Publisher Elsevier B.V. Version Final published version Citable link http://hdl.handle.net/1721.1/85107 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Molecular Cell Article DNA Damage Activates a Spatially Distinct Late Cytoplasmic Cell-Cycle Checkpoint Network Controlled by MK2-Mediated RNA Stabilization H. Christian Reinhardt,1,6,7,8 Pia Hasskamp,1,10,11 Ingolf Schmedding,1,10,11 Sandra Morandell,1 Marcel A.T.M. van Vugt,5 XiaoZhe Wang,9 Rune Linding,4 Shao-En Ong,2 David Weaver,9 Steven A. Carr,2 and Michael B. Yaffe1,2,3,* 1David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02132, USA 2Broad Institute of MIT and Harvard, Cambridge, MA 02132, USA 3Center for Cell Decision Processes,
    [Show full text]
  • Dansylated Estramustine, a Fluorescent Probe for Studies Of
    Proc. Natl. Acad. Sci. USA Vol. 82, pp. 8483-8487, December 1985 Cell Biology Dansylated estramustine, a fluorescent probe for studies of estramustine uptake and identification of intracellular targets (antimitotic drug/microtubules/microtubule-associated proteins) MARK E. STEARNS*t, DONALD P. JENKINS*, AND KENNETH D. TEWt *Department of Anatomy, Georgetown University Schools of Medicine and Dentistry, Washington, DC 20007; and tDepartments of Medicine and Pharmacology, Lombardi Cancer Center, Georgetown University, Washington, DC 20007 Communicated by Keith R. Porter, July 8, 1985 ABSTRACT Fluorescence-microscopic studies with of DnsEM was measured by their effect on the colony- dansylated estramustine (DnsEM) has permitted investigation forming ability of DU 145 human prostatic carcinoma cells. of the mechanism of estramustine (EM) uptake in live human The results presented here show that DnsEM is as cytotoxic prostatic tumor cells (DU 145). DnsEM appeared to enter cells to cells as EM and can be used as a direct probe for analysis rapidly at the peripheral cell margins. A progressive increase of EM's mechanism of action in live cells. in fluorescence was observed until the perinuclear material and cytoplasm were labeled brightly and the nucleoplasm was METHODS labeled faintly. Light microscopy showed that DnsEM is assimilated first in preexisting vesicles and then in numerous Dansylation of EM. The synthesis of DnsEM involved the newly created vesicles that accumulate in the cytoplasm and dansylation reaction as first introduced by Gray (9) and around the nucleus. Colony-forming assays showed EM and modified by Jenkins (10). Fifty milligrams of 5- DnsEM to be equally cytotoxic to cultured DU 145 cells.
    [Show full text]
  • DNA Damage Response During Mitosis Induces Whole Chromosome Mis-Segregation Samuel F
    Supplementary information for: DNA damage response during mitosis induces whole chromosome mis-segregation Samuel F. Bakhoum1,2,5,6,*, Lilian Kabeche1,2,6, John P. Murnane3, Bassem I. Zaki4, Duane A. Compton1,2,* SUPPLEMENTARY FIGURE LEGENDS Supplementary Figure S1. A, Example of an anaphase spindle with lagging chromosomes and the number of lagging chromosomes per anaphase spindle as a function of IR dose. B, Example of a multipolar anaphase spindle and the percentage of anaphase spindles with acentric chromatin as a function of IR dose. C, Example of an anaphase spindle with acentric chromatin fragments and the number of multipolar mitoses as a function of IR dose. Circles represent mean ± s.e.m, n = 150 cells, 3 experiments. Representative mitotic spindles are stained for Hec1 to denote kinetochores (green), DNA (blue), and microtubules (red). Scale bar 5-μm. Supplementary Figure S2. IR does not dramatically alter spindle geometry of irradiated mitotic cells. Examples of monopolar (A) and multipolar (B) Spindles of U251 cells stained for kinetochores (green), DNA (blue), and microtubules (red). Scale bar, 5-μm. Graphs represent the percentage of monopolar (A) and multipolar (B) spindles as a function of IR dose. Circles represent mean ± s.e.m, n = 150 cells, 3 experiments. Supplementary Figure S3. IR does not significantly affect sister chromatid cohesion. A, Experimental schema of assessing sister chromatid cohesion after IR exposure. Noc, Nocodazole. Bar graphs show percentage of mitotic spreads containing chromosomes with intact sister- chromatid cohesion or uncohesed chromosomes as a function of IR dose. n>300 mitotic spreads, p>0.14, χ2-test for all cell lines B, Experimental schema of assessing sister chromatid cohesion after Doxorubicin exposure.
    [Show full text]
  • Cell Cycle Profile Using the Cellometer Vision Image Cytometer
    Measuring Drug Effect on Cell Cycle Profile Using the Cellometer Vision Image Cytometer Nexcelom Bioscience LLC. | 360 Merrimack Street, Building 9 | Lawrence, MA 01843 T: 978.327.5340 | F: 978.327.5341 | E: [email protected] | www.nexcelom.com 1001276 Rev. A Measuring Drug Effect on Cell Cycle Profile Using the Cellometer Vision Image Cytometer Introduction Cell cycle analysis is a commonly used assay in both clinical diagnosis and biomedical research. This analysis distinguishes cells in different phases of cell cycle and is often used to determine cellular response to drugs and biological stimulations [1, 2]. Because this assay is based on measuring the DNA content in a cell population, it can also be used to analyze DNA fragmentation during apoptosis, requiring multicolor fluorescent staining of biomarkers and DNA [3]. Recently, a small desktop imaging cytometry system (Cellometer Vision) has been developed by Nexcelom Bioscience LLC for automated cell concentration and viability measurement using bright-field (BR) and fluorescent (FL) imaging methods [4]. The system can perform rapid cell enumeration using disposable counting slides. The software utilizes a novel counting algorithm for accurate and consistent measurement of cell concentration and viability on a variety of cell types [5]. By developing fluorescent-based cell cycle assays, the Cellometer imaging cytometry can provide a quick, simple, and inexpensive alternative for biomedical research, which may be beneficial for smaller research laboratories and clinics. In this work, we demonstrate new applications of the Cellometer Vision for fluorescence- based cell population analysis as an alternative for flow cytometry. Cell cycle analysis was performed by inducing specific arrest in G0/G1, S, and G2/M phase of Jurkat cell population with aphidicolin, etoposide, and nocodazole, respectively [6-8].
    [Show full text]
  • Asymmetric Mitosis: Unequal Segregation of Proteins Destined for Degradation
    Asymmetric mitosis: Unequal segregation of proteins destined for degradation Luis C. Fuentealba*, Edward Eivers*, Douglas Geissert, Vincent Taelman, and E. M. De Robertis† Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662 Communicated by Joseph G. Gall, Carnegie Institution of Washington, Baltimore, MD, March 27, 2008 (received for review February 21, 2008) Mitotic cell division ensures that two daughter somatic cells inherit identical genetic material. Previous work has shown that signaling by the Smad1 transcription factor is terminated by polyubiquiti- nylation and proteasomal degradation after essential phosphory- lations by MAPK and glycogen synthase kinase 3 (GSK3). Here, we show that, unexpectedly, proteins specifically targeted for protea- somal degradation are inherited preferentially by one mitotic daughter during somatic cell division. Experiments with dividing human embryonic stem cells and other mammalian cultured cell lines demonstrated that in many supposedly equal mitoses the segregation of proteins destined for degradation (Smad1 phos- phorylated by MAPK and GSK3, phospho-␤-catenin, and total polyubiquitinylated proteins) was asymmetric. Transport of pSmad1 targeted for degradation to the centrosome required functional microtubules. In vivo, an antibody specific for Mad phosphorylated by MAPK showed that this antigen was associated preferentially with one of the two centrosomes in Drosophila embryos at cellular blastoderm stage. We propose that this re- markable cellular property may be explained by the asymmetric inheritance of peripheral centrosomal proteins when centrioles separate and migrate to opposite poles of the cell, so that one mitotic daughter remains pristine. We conclude that many mitotic divisions are unequal, unlike what was previously thought.
    [Show full text]
  • 108654V1.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/108654; this version posted February 14, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Evaluation of anticancer and anti-mitotic properties of quinazoline and quinazolino-benzothiadiazine derivatives Thoukhir B. Shaik,a,b M. Shaheer Malik,c Zaki S. Seddigid, Sunitha R Routhu,a Ahmed Kamala* a Department of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India b Department of Biotechnology, Acharya Nagarjuna university, Nagarjuna nagar, Guntur, A.P, India c Science and Technology Unit, Umm Al-Qura University, 21955 Makkah, Saudi Arabia d Department of Environmental Health, College of Public Health and Health informatics, Umm Al-Qura University. *Corresponding author - Phone: +91 40 27193157; Fax: +91-40-27193189. E-mail: [email protected]. Summary: The present study describes the exploration of small molecules based on heterocyclic scaffolds for tubulin target based development of anticancer agents. Abstract Cancer is one of the major health and social-economic problems despite considerable progress in its early diagnosis and treatment. Owing to the emergence and increase of multi drug resistance to various conventional drugs, and the continuing importance on health-care expenditure, many researchers have focused to develop novel and effective anticancer compounds. In the present study, a series of in-house synthesized quinazoline and quinazolino-benzothiadiazine derivatives were investigated for their anticancer efficacy against a panel of five cancer (DU145, MCF7, HepG2, SKOV3 and MDA-MB-231) and one normal (MRC5) cell lines.
    [Show full text]
  • Inhibition of P34cdc2kinase Activation, P34cdc2tyrosine Dephosphorylation, and Mitotic Progression in Chinese Hamster Ovary Cells Exposed to Etoposide1
    [CANCER RESEARCH 52. 1817-1822. April 1. 1992] Inhibition of p34cdc2Kinase Activation, p34cdc2Tyrosine Dephosphorylation, and Mitotic Progression in Chinese Hamster Ovary Cells Exposed to Etoposide1 Richard B. Lock2 The J. Graham Brown Cancer Center, Departments of Medicine and Biochemistry, University of Louisville, Louisville, Kentucky 40292 ABSTRACT which is regulated by a complex series of phosphorylation/ II.M"''- kinase, an enzyme essential for mitosis in mammalian cells, dephosphorylation reactions (17, 18) and by its association with cyclin B (19). The high degree of conservation between human may play a role in etoposide-induced G2 phase arrest of Chinese hamster and Schizosaccharomyces pombe p34tdc2 proteins [63% amino ovary cells. In this study, etoposide is shown to cause inhibition of a specific p3-4"''-'kinase activation pathway, that of tyrosine dephosphoryl- acid homology (20)] and its identification as a component of ation. Exposure of asynchronous!}' dividing cells to etoposide caused a both maturation promoting factor and the growth-associated simultaneous rapid decline of both mitotic index and p.V4"''-'kinase histone HI kinase (21-24) suggest a central role for p34cdc2in activity, suggesting that the kinase was not activated and that the arrest mitotic progression. However, more direct evidence for its role point was in late »...phase. Using synchronized cells, p34cdc2kinase in mitosis of mammalian cells was obtained by the inhibition exhibited maximal activity at the Gz/M transition. Activation of the of cell division following microinjection of affinity-purified kinase and the onset of mitosis were accompanied by increased electro- p34«ic2antibodiesinto serum-stimulated rat fibroblasts (25) and phoretic mobility and tyrosine dephosphorylation of the p34"'' ' protein.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0244766A1 Bettencourt Et Al
    US 20160244766A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0244766A1 Bettencourt et al. (43) Pub. Date: Aug. 25, 2016 (54) COMPOSITIONS AND METHODS FOR Related U.S. Application Data INHIBITING EXPRESSION OF THE ALAS1 (60) Provisional application No. 61/983,720, filed on Apr. GENE 24, 2014, provisional application No. 61/887,288, (71) Applicants: ALNYLAM PHARMACEUTICALS, filed on Oct. 4, 2013. INC., Cambridge, MA (US); ICAHN SCHOOL OF MEDCINEAT MOUNTSINAI, New York, NY (US) Publication Classification (72) Inventors: Brian Bettencourt, Groton, MA (US); (51) Int. Cl. Kevin Fitzgerald, Brookline, MA (US); CI2N IS/II3 (2006.01) William Querbes, Cambridge, MA CI2O I/68 (2006.01) (US); Robert J. Desnick, New York, NY A619/00 (2006.01) (US); Makiko Yasuda, New York, NY (52) U.S. Cl. (US) CPC .......... CI2N 15/I 137 (2013.01); A61 K9/0019 (2013.01); C12O 1/6876 (2013.01); C12N (73) Assignees: ALNYLAM PHARMACEUTICALS, 23 10/14 (2013.01); C12N 23.10/321 (2013.01); INC., Cambridge, MA (US); ICAHN CI2N 23.10/315 (2013.01); C12N 23.10/351 SCHOOL OF MEDCINEAT (2013.01) MOUNTSINAI, New York, NY (US) (21) Appl. No.: 15/027,176 (57) ABSTRACT (22) PCT Filed: Oct. 3, 2014 The invention relates to double-stranded ribonucleic acid (86). PCT No.: PCT/US2O14/05916O (dsRNA) compositions targeting the ALAS1 gene, and meth S371 (c)(1), ods of using Such dsRNA compositions to alter (e.g., inhibit) (2) Date: Apr. 4, 2016 expression of ALAS1. Patent Application Publication Aug. 25, 2016 Sheet 1 of 61 US 2016/024476.6 A1 Mitochondria
    [Show full text]
  • Different Contributions of Microtubule Dynamics and Transport to the Growth of Axons and Collateral Sprouts
    The Journal of Neuroscience, May 15, 1999, 19(10):3860–3873 Different Contributions of Microtubule Dynamics and Transport to the Growth of Axons and Collateral Sprouts Gianluca Gallo and Paul C. Letourneau University of Minnesota, Department of Cell Biology and Neuroanatomy, Minneapolis, Minnesota 55455 Axonal growth is believed to depend on microtubule transport with a high dose of nocodazole to deplete microtubules from and microtubule dynamic instability. We now report that the collaterals, followed by treatment with 4–20 nM vinblastine to growth of axon collateral branches can occur independent of inhibit microtubule repolymerization, resulted in the time- microtubule dynamic instability and can rely mostly on the dependent reappearance and subsequent distal accumulation transport of preassembled polymer. Raising embryonic sensory of floating microtubules in collaterals, providing further evi- neurons in concentrations of either taxol or nocodazole (NOC) dence for microtubule transport into collateral branches. Our that largely inhibit microtubule dynamics significantly inhibited data show that, surprisingly, the contribution of microtubule growth of main axonal shafts but had only minor effects on dynamics to collateral branch growth is minor compared with collateral branch growth. The collaterals of axons raised in taxol the important role of microtubule dynamics in growth cone or nocodazole often contained single microtubules with both migration, and they indicate that the transport of microtubules ends clearly visible within the collateral branch (“floating” mi- may provide sufficient cytoskeletal material for the initial growth crotubules), which we interpret as microtubules undergoing of collateral branches. transport. Furthermore, in these collaterals there was a dis- toproximal gradient in microtubule mass, indicating the distal Key words: microtubule; filopodium; axon; collateral; dy- accumulation of transported polymer.
    [Show full text]
  • Image-Based Analysis of Cell Cycle Using PI
    Application Note Image-Based Analysis of Cell Cycle Cell Cycle Using PI Cell-Based Assays Introduction: Cell Cycle prior to staining. All of the cells are then stained. Cells preparing for division will contain increasing The process of DNA replication and cell division is amounts of DNA and display proportionally known as the cell cycle. The cell cycle is typically increased fluorescence. Differences in fluorescence divided into five phases: G0, the resting phase, G1, intensity are used to determine the percentage of the normal growth phase, S, the DNA replication cells in each phase of the cell cycle. phase, G2, involving growth and preparation for mitosis, and M, mitosis. 1Collins, K., et al. (1997). Cell Cycle and Cancer. Proc. Natl. Acad. Sci. V.94, pp2776-2778. 2000 2n M Experimental Procedure 1800 G2 1600 G1 Jurkat cells were used to analyze cell cycle kinetics G0 following treatment with the cell-cycle-arresting 1400 S drugs etoposide and nocodazole. Jurkat cells were 1200 incubated with media only (control), etoposide (0.12, 0.6, and 3 µM), or nocodazole (0.004, 0.02, 0.1 1000 µg/mL) for 24 hours. Control and drug-treated cells 800 were fixed then stained with propidium iodide. 6 600 For each sample, 20 µl of cell sample (at ~4 x 10 4n cells / mL) was loaded into a Cellometer Imaging 400 Chamber, inserted into the Vision CBA Analysis 200 System, and imaged in both bright field and fluorescence. The fluorescence intensity for each cell 0 was measured. 0 2000 4000 6000 8000 10000 Results There are at least two types of cell cycle control mechanisms.
    [Show full text]
  • The Actin Cytoskeleton Governs Apical Mitosis and Daughter Cell Dispersion in Intestinal Epithelia
    bioRxiv preprint doi: https://doi.org/10.1101/183301; this version posted August 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The actin cytoskeleton governs apical mitosis and daughter cell dispersion in intestinal epithelia Kara L. McKinley1, Nico Stuurman1, Ophir D. Klein2,3*, and Ronald D. Vale1* 1 Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA. 2 Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA. 3 Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA. * Corresponding Authors: [email protected], [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/183301; this version posted August 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Cell proliferation is critical for maintaining the absorptive, protective and regenerative functions of the small intestine throughout adulthood. Interphase nuclei are positioned near the basal surface of the intestinal epithelium, but during mitosis, chromosomes are located apically. The molecular basis for apical-basal DNA positioning and its consequences for tissue homeostasis are poorly understood.
    [Show full text]
  • The Asymmetry in Timing of Dna Replication Initiation in the Male
    THE ASYMMETRY IN TIMING OF DNA REPLICATION INITIATION IN THE MALE DROSOPHILA GERMLINE by Carolina Chu A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Master of Science. Baltimore, Maryland April 2019 © 2019 Carolina Chu All Rights Reserved Abstract Many adult stem cells undergo asymmetric cell division (ACD) to produce both a self-renewing stem cell and a differentiating daughter cell. Stem cell ACD is crucial for maintaining tissue homeostasis and loss of asymmetric division is associated with both degenerative aging related diseases and cancers. A model system for studying stem cell ACD is the male Drosophila Germline Stem Cell (GSC). One key intrinsic factor underlying this asymmetric division in GSCs is the asymmetric segregation of canonical (old) and newly synthesized (new) histones: old histones are retained by the GSC and new histones are selectively segregated to the differentiating Gonialblast (GB) cell. While in theory asymmetric histone segregation could regulate the differential acquisition of new cell fates or processes, the precise mechanisms of how asymmetric histone inheritance regulates ACD is not understood. Here we show that during mitosis the old and new histone enriched sister chromatids show dramatically different properties as the new histone enriched sister chromatids fail to fully condense during mitosis and decondense more rapidly in telophase. The difference in mitotic condensation of sister chromatids is upstream of differences in timing of entry into the next cell cycle, where the GB proceeds into DNA replication before the GSC does. Under conditions that randomize histone inheritance, DNA replication initiation timing is randomized between the daughter cells.
    [Show full text]