Edgeswitch User Guide Table of Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transparent LAN Service Over Cable
Transparent LAN Service over Cable This document describes the Transparent LAN Service (TLS) over Cable feature, which enhances existing Wide Area Network (WAN) support to provide more flexible Managed Access for multiple Internet service provider (ISP) support over a hybrid fiber-coaxial (HFC) cable network. This feature allows service providers to create a Layer 2 tunnel by mapping an upstream service identifier (SID) to an IEEE 802.1Q Virtual Local Area Network (VLAN). Finding Feature Information Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://tools.cisco.com/ITDIT/CFN/. An account on http:// www.cisco.com/ is not required. Contents • Hardware Compatibility Matrix for Cisco cBR Series Routers, page 2 • Prerequisites for Transparent LAN Service over Cable, page 2 • Restrictions for Transparent LAN Service over Cable, page 3 • Information About Transparent LAN Service over Cable, page 3 • How to Configure the Transparent LAN Service over Cable, page 6 • Configuration Examples for Transparent LAN Service over Cable, page 8 • Verifying the Transparent LAN Service over Cable Configuration, page 10 • Additional References, page 11 • Feature Information for Transparent LAN Service over Cable, page 12 Cisco Converged Broadband Routers Software Configuration Guide For DOCSIS 1 Transparent LAN Service over Cable Hardware Compatibility Matrix for Cisco cBR Series Routers Hardware Compatibility Matrix for Cisco cBR Series Routers Note The hardware components introduced in a given Cisco IOS-XE Release are supported in all subsequent releases unless otherwise specified. -
Ieee 802.1 for Homenet
IEEE802.org/1 IEEE 802.1 FOR HOMENET March 14, 2013 IEEE 802.1 for Homenet 2 Authors IEEE 802.1 for Homenet 3 IEEE 802.1 Task Groups • Interworking (IWK, Stephen Haddock) • Internetworking among 802 LANs, MANs and other wide area networks • Time Sensitive Networks (TSN, Michael David Johas Teener) • Formerly called Audio Video Bridging (AVB) Task Group • Time-synchronized low latency streaming services through IEEE 802 networks • Data Center Bridging (DCB, Pat Thaler) • Enhancements to existing 802.1 bridge specifications to satisfy the requirements of protocols and applications in the data center, e.g. • Security (Mick Seaman) • Maintenance (Glenn Parsons) IEEE 802.1 for Homenet 4 Basic Principles • MAC addresses are “identifier” addresses, not “location” addresses • This is a major Layer 2 value, not a defect! • Bridge forwarding is based on • Destination MAC • VLAN ID (VID) • Frame filtering for only forwarding to proper outbound ports(s) • Frame is forwarded to every port (except for reception port) within the frame's VLAN if it is not known where to send it • Filter (unnecessary) ports if it is known where to send the frame (e.g. frame is only forwarded towards the destination) • Quality of Service (QoS) is implemented after the forwarding decision based on • Priority • Drop Eligibility • Time IEEE 802.1 for Homenet 5 Data Plane Today • 802.1Q today is 802.Q-2011 (Revision 2013 is ongoing) • Note that if the year is not given in the name of the standard, then it refers to the latest revision, e.g. today 802.1Q = 802.1Q-2011 and 802.1D -
Networking Packet Broadcast Storms
Lesson Learned Networking Packet Broadcast Storms Primary Interest Groups Balancing Authorities (BAs) Generator Operators (GOPs) Reliability Coordinators (RCs) Transmission Operators (TOPs) Transmission Owners (TOs) that own and operate an Energy Management System (EMS) Problem Statement When a second network cable was connected from a voice over internet protocol (VOIP) phone to a network switch lacking proper settings, a packet broadcast storm prevented network communications from functioning, and supervisory control and data acquisition (SCADA) was lost for several hours. Broadcast storm events have also arisen from substation local area network (LAN) issues. Details A conference room was set up for a training class that needed to accommodate multiple PCs. The bridge protocol data unit (BPDU) packet propagation prevention setting was disabled on a port in the conference room in order to place a network switch off of that port. Upon completion of the training, the network switch was removed; however, the BPDU packet propagation setting was inadvertently not restored. As part of a telephone upgrade project, the traditional phone in this conference room was recently replaced by a VOIP phone. Later, an additional network cable was connected to the output port of this VOIP phone into a secondary network jack within the conference room. When the second network cable was connected from a VOIP phone to a network switch lacking proper settings, a switching loop resulted. Spanning tree protocol is normally used to prevent switching loops from propagating broadcast packets continuously until the network capacity is overwhelmed. A broadcast packet storm from the switching loop prevented network communications from functioning and SCADA was lost for several hours. -
Introduction to Spanning Tree Protocol by George Thomas, Contemporary Controls
Volume6•Issue5 SEPTEMBER–OCTOBER 2005 © 2005 Contemporary Control Systems, Inc. Introduction to Spanning Tree Protocol By George Thomas, Contemporary Controls Introduction powered and its memory cleared (Bridge 2 will be added later). In an industrial automation application that relies heavily Station 1 sends a message to on the health of the Ethernet network that attaches all the station 11 followed by Station 2 controllers and computers together, a concern exists about sending a message to Station 11. what would happen if the network fails? Since cable failure is These messages will traverse the the most likely mishap, cable redundancy is suggested by bridge from one LAN to the configuring the network in either a ring or by carrying parallel other. This process is called branches. If one of the segments is lost, then communication “relaying” or “forwarding.” The will continue down a parallel path or around the unbroken database in the bridge will note portion of the ring. The problem with these approaches is the source addresses of Stations that Ethernet supports neither of these topologies without 1 and 2 as arriving on Port A. This special equipment. However, this issue is addressed in an process is called “learning.” When IEEE standard numbered 802.1D that covers bridges, and in Station 11 responds to either this standard the concept of the Spanning Tree Protocol Station 1 or 2, the database will (STP) is introduced. note that Station 11 is on Port B. IEEE 802.1D If Station 1 sends a message to Figure 1. The addition of Station 2, the bridge will do ANSI/IEEE Std 802.1D, 1998 edition addresses the Bridge 2 creates a loop. -
Layer 2 Virtual Private Networks CM-SP-L2VPN-I11-130808
Data-Over-Cable Service Interface Specifications Business Services over DOCSIS® Layer 2 Virtual Private Networks CM-SP-L2VPN-I11-130808 ISSUED Notice This DOCSIS specification is the result of a cooperative effort undertaken at the direction of Cable Television Laboratories, Inc. for the benefit of the cable industry and its customers. This document may contain references to other documents not owned or controlled by CableLabs®. Use and understanding of this document may require access to such other documents. Designing, manufacturing, distributing, using, selling, or servicing products, or providing services, based on this document may require intellectual property licenses from third parties for technology referenced in this document. Neither CableLabs nor any member company is responsible to any party for any liability of any nature whatsoever resulting from or arising out of use or reliance upon this document, or any document referenced herein. This document is furnished on an "AS IS" basis and neither CableLabs nor its members provides any representation or warranty, express or implied, regarding the accuracy, completeness, noninfringement, or fitness for a particular purpose of this document, or any document referenced herein. Cable Television Laboratories, Inc., 2006-2013 CM-SP-L2VPN-I11-130808 Data-Over-Cable Service Interface Specifications DISCLAIMER This document is published by Cable Television Laboratories, Inc. ("CableLabs®"). CableLabs reserves the right to revise this document for any reason including, but not limited to, changes in laws, regulations, or standards promulgated by various agencies; technological advances; or changes in equipment design, manufacturing techniques, or operating procedures described, or referred to, herein. CableLabs makes no representation or warranty, express or implied, with respect to the completeness, accuracy, or utility of the document or any information or opinion contained in the report. -
7-Port Gigabit Ethernet Switch with Audio Video Bridging and Two RGMII/MII/RMII Interfaces
KSZ9567R 7-Port Gigabit Ethernet Switch with Audio Video Bridging and Two RGMII/MII/RMII Interfaces Highlights • Five Integrated PHY Ports - 1000BASE-T/100BASE-TX/10BASE-Te IEEE 802.3 • Non-blocking wire-speed Ethernet switching fabric - Fast Link-up option significantly reduces link-up time • Full-featured forwarding and filtering control, includ- - Auto-negotiation and Auto-MDI/MDI-X support ing Access Control List (ACL) filtering - On-chip termination resistors and internal biasing for • Full VLAN and QoS support differential pairs to reduce power • Five ports with integrated 10/100/1000BASE-T PHY - LinkMD® cable diagnostic capabilities for determining transceivers cable opens, shorts, and length • Two ports with 10/100/1000 Ethernet MACs and con- • Advanced Switch Capabilities figurable RGMII/MII/RMII interfaces - IEEE 802.1Q VLAN support for 128 active VLAN • IEEE 1588v2 Precision Time Protocol (PTP) support groups and the full range of 4096 VLAN IDs - IEEE 802.1p/Q tag insertion/removal on per port basis • IEEE 802.1AS/Qav Audio Video Bridging (AVB) - VLAN ID on per port or VLAN basis • IEEE 802.1X access control support - IEEE 802.3x full-duplex flow control and half-duplex • EtherGreen™ power management features, back pressure collision control including low power standby - IEEE 802.1X access control 2 • Flexible management interface options: SPI, I C, (Port-based and MAC address based) MIIM, and in-band management via any port - IGMP v1/v2/v3 snooping for multicast packet filtering • Industrial temperature range support - IPv6 -
Analysis of Qos in Software Defined Wireless Network with Spanning Tree Protocol
I. J. Computer Network and Information Security, 2017, 6, 61-68 Published Online June 2017 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijcnis.2017.06.07 Analysis of QoS in Software Defined Wireless Network with Spanning Tree Protocol Rafid Mustafiz, Abu Sayem Mohammad Delowar Hossain, Nazrul Islam+, Mohammad Motiur Rahman Department of Computer Science and Engineering +Department of Information and Communication Technology Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh E-mail: [email protected], [email protected], [email protected], [email protected] Abstract—Software Defined Network (SDN) is more technique. The data controlling actions are controlled by dynamic, manageable, adaptive and programmable a software or hardware based centralized controller and network architecture. This architecture separates the data forwarding task has performed by a hardware core control plane from the forwarding plane that enables the device [3]. This enables the control plane to be directly network to become directly programmable. The programmable which makes it suitable in the field of programmable features of SDN technology has research. Data plane functionality contains features such dramatically improved network efficiency and simplify as quality of service (QoS) [4]. The overall performance the network configuration and resource management. of a network topology depends mostly on the parameters SDN supports Open-Flow technology as forwarding of QoS. The present goal of SDN is to design a network function and centralized control successfully. Wireless that is capable the maximum improvement of QoS environment has recently added to the SDN infrastructure parameters. SDN supports many new types of that has rapidly emerged with Open-Flow protocol. -
Computer Communication Networks (Tcit / Se / Ee)
Practical Workbook CS-351/CS-418 COMPUTER COMMUNICATION NETWORKS (TCIT / SE / EE) Name : Year : Batch : Roll No : Department: Department of Computer & Information Systems Engineering NED University of Engineering & Technology INTRODUCTION The days of mainframe computing using dumb terminals are long gone. The present time is the era of very powerful personal computers, interconnecting with each other and even better equipped servers, sometimes connecting across continental boundaries. Computer Communication Networks is a senior level undergraduate course in Computer and Information Systems Engineering, which covers various aspects of computer networks. It covers various classifications of computer networks and gives the students a good grasp on the various topics in computer networks. This laboratory manual aims to augment the classroom teaching of the course and to provide the students essential practical knowledge in the subject. The first and second labs deal with learning IPv4 Addressing, Sub-netting & Variable Length Subnet Masking (VLSM). The third lab deals with making crossover and straight-through UTP cables. This skill will come in very handy in various trades when the students go into practical life. It introduces some related standards and equipment used in this regard. The fourth lab jumps into Cisco routers. It is a hands-on exercise using some commonly used Cisco IOS commands. In this lab, the students will learn how to connect to and interact with Cisco routers. The fifth lab is about connecting different IP networks by defining static routes all around. Sixth lab introduces dynamic routing using a simple routing protocol, namely RIP (Routing Information Protocol) and its later version called RIP version 2. -
V1.1.1 (2014-09)
Final draft ETSI ES 203 385 V1.1.1 (2014-09) ETSI STANDARD CABLE; DOCSIS® Layer 2 Virtual Private Networking 2 Final draft ETSI ES 203 385 V1.1.1 (2014-09) Reference DES/CABLE-00008 Keywords access, broadband, cable, data, IP, IPcable, L2VPN, modem ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. -
Network Virtualization Using Shortest Path Bridging (802.1Aq) and IP/SPB
avaya.com Network Virtualization using Shortest Path Bridging and IP/SPB Abstract This White Paper discusses the benefits and applicability of the IEEE 802.1aq Shortest Path Bridging (SPB) protocol which is augmented with sophisticated Layer 3 routing capabilities. The use of SPB and the value to solve virtualization of today’s network connectivity in the enterprise campus as well as the data center are covered. This document is intended for any technically savvy network manager as well as network architect who are faced with: • Reducing time to service requirements • Less tolerance for network down time • Network Virtualization requirements for Layer 2 (VLAN-extensions) and Layer 3 (VRF-extensions) • Server Virtualization needs in data center deployments requiring a large set of Layer 2 connections (VLANs) • Traffic separation requirements in campus deployments for security purposes as well as robustness considerations (i.e. contractors for maintenance reasons needing access to their equipment or guest access needs) • Multi-tenant applications such as airports, governments or any other network with multiple discrete (legal) entities that require traffic separation WHITE PAPER 1 avaya.com Table of Contents 1. Introduction ........................................................................................................................ 3 2. Benefits of SPB ................................................................................................................... 4 2.1 Network Service Enablement ............................................................................................................ -
4Th Slide Set Computer Networks
Devices of the Data Link Layer Impact on the Collision Domain Addressing in the Data Link Layer 4th Slide Set Computer Networks Prof. Dr. Christian Baun Frankfurt University of Applied Sciences (1971–2014: Fachhochschule Frankfurt am Main) Faculty of Computer Science and Engineering [email protected] Prof. Dr. Christian Baun – 4th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS1920 1/28 Devices of the Data Link Layer Impact on the Collision Domain Addressing in the Data Link Layer Learning Objectives of this Slide Set Data Link Layer (part 1) Devices of the Data Link Layer Learning Bridges Loops on the Data Link Layer Spanning Tree Protocol Impact on the collision domain Addressing in the Data Link Layer Format of MAC addresses Uniqueness of MAC addresses Security aspects of MAC addresses Prof. Dr. Christian Baun – 4th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS1920 2/28 Devices of the Data Link Layer Impact on the Collision Domain Addressing in the Data Link Layer Data Link Layer Functions of the Data Link Layer Sender: Pack packets of the Network Layer into frames Receiver: Identify the frames in the bit stream from the Physical Layer Ensure correct transmission of the frames inside a physical network from one network device to another one via error detection with checksums Provide physical addresses (MAC addresses) Control access to the transmission medium Devices: Bridge, Layer-2-Switch (Multiport-Bridge), Modem Protocols: Ethernet, Token Ring, WLAN, Bluetooth, -
Layer 2 Configuration Guide, Cisco IOS XE Gibraltar 16.10.X (Catalyst 9500 Switches) Americas Headquarters Cisco Systems, Inc
Layer 2 Configuration Guide, Cisco IOS XE Gibraltar 16.10.x (Catalyst 9500 Switches) Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 © 2018 Cisco Systems, Inc. All rights reserved. CONTENTS CHAPTER 1 Configuring Spanning Tree Protocol 1 Restrictions for STP 1 Information About Spanning Tree Protocol 1 Spanning Tree Protocol 1 Spanning-Tree Topology and BPDUs 2 Bridge ID, Device Priority, and Extended System ID 3 Port Priority Versus Path Cost 4 Spanning-Tree Interface States 4 How a Device or Port Becomes the Root Device or Root Port 7 Spanning Tree and Redundant Connectivity 8 Spanning-Tree Address Management 8 Accelerated Aging to Retain Connectivity 8 Spanning-Tree Modes and Protocols 8 Supported Spanning-Tree Instances 9 Spanning-Tree Interoperability and Backward Compatibility 9 STP and IEEE 802.1Q Trunks 10 Spanning Tree and Device Stacks 10 Default Spanning-Tree Configuration 11 How to Configure Spanning-Tree Features 12 Changing the Spanning-Tree Mode (CLI) 12 Disabling Spanning Tree (CLI) 13 Configuring the Root Device (CLI) 14 Configuring a Secondary Root Device (CLI) 15 Configuring Port Priority (CLI) 16 Configuring Path Cost (CLI) 17 Configuring the Device Priority of a VLAN (CLI) 19 Layer 2 Configuration Guide, Cisco IOS XE Gibraltar 16.10.x (Catalyst 9500 Switches) iii Contents Configuring the Hello Time (CLI) 20 Configuring the Forwarding-Delay Time for a VLAN (CLI) 21 Configuring the Maximum-Aging Time