Uncertainty Analysis of Integrated Powerhead Demonstrator Mass Flowrate Testing and Modeling
Total Page:16
File Type:pdf, Size:1020Kb
Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 5-1-2005 Uncertainty analysis of integrated powerhead demonstrator mass flowrate testing and modeling King Jeffries Molder Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Molder, King Jeffries, "Uncertainty analysis of integrated powerhead demonstrator mass flowrate testing and modeling" (2005). Theses and Dissertations. 4812. https://scholarsjunction.msstate.edu/td/4812 This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. UNCERTAINTY ANALYSIS OF INTEGRATED POWERHEAD DEMONSTRATOR MASS FLOWRATE TESTING AND MODELING By King Jeffries Molder A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering in the Department of Mechanical Engineering Mississippi State, Mississippi August 2005 UNCERTAINTY ANALYSIS OF INTEGRATED POWERHEAD DEMONSTRATOR MASS FLOWRATE TESTING AND MODELING By King Jeffries Molder Approved: _________________________________ _________________________________ W. Glenn Steele Susan T. Hudson Professor and Head of the Department of Adjunct Assistant Professor of Mechanical Mechanical Engineering Engineering (Director of Thesis) (Committee Member) _________________________________ _________________________________ Louay M. Chamra Steven R. Daniewicz Associate Professor of Mechanical Professor and Graduate Coordinator Engineering of the Department of Mechanical (Committee Member) Engineering _________________________________ Kirk H. Schulz Professor and Dean of the Bagley College of Engineering Name: King Jeffries Molder Date of Degree: August 6, 2005 Institution: Mississippi State University Major Field: Mechanical Engineering Major Professor: Dr. W. Glenn Steele Title of Study: UNCERTAINTY ANALYSIS OF INTEGRATED POWERHEAD DEMONSTRATOR MASS FLOWRATE TESTING AND MODELING Pages in Study: 59 Candidate for Degree of Master of Science A methodology has been developed to quantify the simulation uncertainty of a computational model calibrated against test data. All test data used in the study undergoes an experimental uncertainty analysis. The modeling software ROCETS is used and its structure is explained. The way the model was calibrated is presented. Next, a general simulation uncertainty analysis methodology is shown that is valid for calibrated models. Finally the ROCETS calibrated model and its simulation uncertainty are calculated using the general methodology and compared to a second set of comparison test data. The simulation uncertainty analysis methodology developed and implemented can be used for any modeling with a calibrated model. The methodology works well for a process of incremental testing and recalibration of the model whenever new test data is available. ACKNOWLEDGMENTS I would like to dedicate this research to my parents, Rick and Deborah Molder, and my brother Chaz. I would also like to thank my major professor Dr. Glenn Steele for his help throughout my time at Mississippi State and my advisory committee members Dr. Louay Chamra and Dr. Susan Hudson. Finally, I would like to thank the folks at NASA Marshall and NASA Stennis, namely Tom Giel and Paul Rieder for their help with my questions and obtaining the modeling and testing information. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS ......................................................................................... ii LIST OF TABLES..................................................................................................... v LIST OF FIGURES ................................................................................................... vi CHAPTER I. INTRODUCTION ......................................................................................... 1 1.1 Background.......................................................................................... 1 1.2 Objective.............................................................................................. 2 II. LITERATURE REVIEW.............................................................................. 5 III. EXPERIMENTAL UNCERTAINTY ANALYSIS....................................... 8 3.1 Background.......................................................................................... 8 3.2 Experimental Uncertainty Overview ................................................... 10 3.3 Input Parameter Uncertainty................................................................ 13 3.4 Experimental Data ............................................................................... 18 3.4.1 LH2 System Test 19D........................................................ 19 3.4.2 LH2 System Test 19A........................................................ 21 3.4.3 LOX System Test 10C....................................................... 22 3.4.4 LOX System Test 9B........................................................ 24 IV. MODELING .................................................................................................. 26 4.1 ROCETS .............................................................................................. 26 4.2 Model Calibration ................................................................................ 29 4.3 Sensitivity Analysis ............................................................................. 29 4.3.1 Input File................................................................................ 29 4.3.2 Sensitivity Methodology........................................................ 31 4.4 Calibrated Model ................................................................................. 32 iii CHAPTER Page V. MODELING UNCERTAINTY METHODOLOGY..................................... 38 5.1 Simulation Uncertainty ........................................................................ 38 5.2 Model Validation ................................................................................. 41 VI. Comparison Tests........................................................................................... 43 6.1 Simulation Uncertainty ........................................................................ 43 6.2 Simulation Validation .......................................................................... 48 VII. Conclusions.................................................................................................... 53 REFERENCES .......................................................................................................... 55 APPENDIX A Pressure Transducer Excel Spreadsheet......................................................... 57 iv LIST OF TABLES TABLE Page 3.1 WPUMP Parameters.................................................................................... 10 3.2 Input Parameter Uncertainty Summary....................................................... 16 3.3 Venturi Mass Flowrate Uncertainty ............................................................ 18 4.1 Model Input Sensitivities............................................................................. 32 v LIST OF FIGURES FIGURE Page 3.1 Schematic of Venturi Flow Meter ............................................................... 9 3.2 Thermal Expansion Factor Plot................................................................... 15 3.3 LH2 Test 19D.............................................................................................. 20 3.4 LH2 Test 19D Transient.............................................................................. 20 3.5 LH2 System Test 19A ................................................................................. 21 3.6 LH2 System Test 19A Transient ................................................................. 22 3.7 LOX System Test 10C................................................................................. 23 3.8 LOX System Test 10C Transient ................................................................ 23 3.9 LOX System Test 9B................................................................................... 24 3.10 LOX System Test 9B Transient .................................................................. 25 4.1 IPD Model Building Process....................................................................... 27 4.2 IPD Model Schematic.................................................................................. 28 4.3 LH2 Test 19D Model/Measured Comparison ............................................. 33 4.4 LH2 Test 19D Transient Model/Measured Comparison............................. 33 4.5 LOX Test 10C Model/Measured Comparison ............................................ 34 4.6 LOX Test 10C Transient Model/Measured Comparison ............................ 34 4.7 LH2 Test 19D Comparison Error................................................................ 35 4.8 LH2 Test 19D Transient Comparison Error................................................ 36 vi FIGURE Page 4.9 LOX Test 10C Comparison Error ............................................................... 36 4.10 LOX Test 10C Transient Comparison Error ............................................... 37 6.1 LH2 Test 19A Model/Measured Comparison with Uncertainty Full Range.............................................................................................