Historical & Cultural Astronomy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter Two: the Astronomers and Extraterrestrials
Warning Concerning Copyright Restrictions The Copyright Law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted materials, Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction, One of these specified conditions is that the photocopy or reproduction is not to be used for any purpose other than private study, scholarship, or research , If electronic transmission of reserve material is used for purposes in excess of what constitutes "fair use," that user may be liable for copyright infringement. • THE EXTRATERRESTRIAL LIFE DEBATE 1750-1900 The idea of a plurality of worlds from Kant to Lowell J MICHAEL]. CROWE University of Notre Dame TII~ right 0/ ,It, U,,;v"Jily 0/ Camb,idg4' to P'''''' a"d s,1I all MO""" of oooks WM grattlrd by H,rr,y Vlf(;ff I $J4. TM U,wNn;fyltas pritr"d and pu"fisllrd rOffti",.ously sincr J5U. Cambridge University Press Cambridge London New York New Rochelle Melbourne Sydney Published by the Press Syndicate of the University of Cambridge In lovi ng The Pirr Building, Trumpingron Srreer, Cambridge CB2. I RP Claire H 32. Easr 57th Streer, New York, NY 1002.2., U SA J 0 Sramford Road, Oakleigh, Melbourne 3166, Australia and Mi ha © Cambridge Univ ersiry Press 1986 firsr published 1986 Prinred in rh e Unired Srares of America Library of Congress Cataloging in Publication Data Crowe, Michael J. The exrrarerresrriallife debare '750-1900. Bibliography: p. Includes index. I. Pluraliry of worlds - Hisrory. -
Darwin in the Press: What the Spanish Dailies Said About the 200Th Anniversary of Charles Darwin’S Birth
CONTRIBUTIONS to SCIENCE, 5 (2): 193–198 (2009) Institut d’Estudis Catalans, Barcelona Celebration of the Darwin Year 2009 DOI: 10.2436/20.7010.01.75 ISSN: 1575-6343 www.cat-science.cat Darwin in the press: What the Spanish dailies said about the 200th anniversary of Charles Darwin’s birth Esther Díez, Anna Mateu, Martí Domínguez Mètode, University of Valencia, Valencia, Spain Resum. El bicentenari del naixement de Charles Darwin, cele- Summary. The bicentenary of Charles Darwin’s birth, cele- brat durant el passat any 2009, va provocar un considerable brated in 2009, caused a surge in the interest shown by the augment de l’interés informatiu de la figura del naturalista an- press in the life and work of the renowned English naturalist. glès. En aquest article s’analitza la cobertura informativa This article analyzes the press coverage devoted to the Darwin d’aquest aniversari en onze diaris generalistes espanyols, i Year in eleven Spanish daily papers during the week of Dar- s’estableix grosso modo quines són les principals postures de win’s birthday and provides a brief synopsis of the positions la premsa espanyola davant de la teoria de l’evolució. D’aques- adopted by the Spanish press regarding the theory of evolu- ta anàlisi, queda ben palès com el creacionisme és encara molt tion. The analysis makes very clear the relatively strong support viu en els mitjans espanyols més conservadors. for creationism by the conservative press in Spain. Paraules clau: Charles Darwin ∙ ciència vs. creacionisme ∙ Keywords: Charles Darwin ∙ science vs. creationism ∙ tractament informatiu científic scientific news coverage “The more we know of the fixed laws of nature the more In this article, we examine to what extent and in what form incredible do miracles become.” this controversy persists in Spanish society, focusing on the print media’s response to the celebration, in 2009, of the 200th Charles Darwin (1887). -
Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere
Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere A Constellation of Rare Books from the History of Science Collection The exhibition was made possible by generous support from Mr. & Mrs. James B. Hebenstreit and Mrs. Lathrop M. Gates. CATALOG OF THE EXHIBITION Linda Hall Library Linda Hall Library of Science, Engineering and Technology Cynthia J. Rogers, Curator 5109 Cherry Street Kansas City MO 64110 1 Thinking Outside the Sphere is held in copyright by the Linda Hall Library, 2010, and any reproduction of text or images requires permission. The Linda Hall Library is an independently funded library devoted to science, engineering and technology which is used extensively by The exhibition opened at the Linda Hall Library April 22 and closed companies, academic institutions and individuals throughout the world. September 18, 2010. The Library was established by the wills of Herbert and Linda Hall and opened in 1946. It is located on a 14 acre arboretum in Kansas City, Missouri, the site of the former home of Herbert and Linda Hall. Sources of images on preliminary pages: Page 1, cover left: Peter Apian. Cosmographia, 1550. We invite you to visit the Library or our website at www.lindahlll.org. Page 1, right: Camille Flammarion. L'atmosphère météorologie populaire, 1888. Page 3, Table of contents: Leonhard Euler. Theoria motuum planetarum et cometarum, 1744. 2 Table of Contents Introduction Section1 The Ancient Universe Section2 The Enduring Earth-Centered System Section3 The Sun Takes -
The XMM-Newton SAS - Distributed Development and Maintenance of a Large Science Analysis System: a Critical Analysis
Astronomical Data Analysis Software and Systems XIII ASP Conference Series, Vol. 314, 2004 F. Ochsenbein, M. Allen, and D. Egret, eds. The XMM-Newton SAS - Distributed Development and Maintenance of a Large Science Analysis System: A Critical Analysis Carlos Gabriel1, John Hoar1, Aitor Ibarra1, Uwe Lammers2, Eduardo Ojero1, Richard Saxton1, Giuseppe Vacanti2 XMM-Newton Science Operations Centre, Science Operations and Data Systems Division of ESA, European Space Agency Mike Denby, Duncan Fyfe, Julian Osborne Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK Abstract. The XMM-Newton Scientific Analysis System (SAS) is the software used for the reduction and calibration of data taken with the XMM-Newton satellite instruments leading to almost 400 refereed scien- tific papers published in the last 2.5 years. Its maintenance, further devel- opment and distribution is under the responsibility of the XMM-Newton Science Operations Centre together with the Survey Science Centre, rep- resenting a collaborative effort of more than 30 scientific institutes. Developed in C++, Fortran 90/95 and Perl, the SAS makes large use of open software packages such as ds9 for image display (SAO-R&D Software Suite), Grace, LHEASOFT and cfitsio (HEASARC project), pgplot, fftw and the non-commercial version of Qt (TrollTech). The combination of supporting several versions of SAS for multiple platforms (including SunOS, DEC, many Linux flavours and MacOS) in a widely distributed development process which makes use of a suite of ex- ternal packages and libraries presents substantial issues for the integrity of the SAS maintenance and development. A further challenge comes from the necessity of maintaining the flexibility of a software package evolving together with progress made in instrument calibration and anal- ysis refinement, whilst at the same time being the source of all official products of the XMM-Newton mission. -
The History of Optical Astronomy, by Caroline Herschel and Lyman Spitzer
Online Modules from The University of Chicago Multiwavelength Astronomy: The History of Optical Astronomy, by Caroline Herschel and Lyman Spitzer http://ecuip.lib.uchicago.edu/multiwavelength-astronomy/optical/history/index.html Subject(s): Astronomy/Space Science Grade(s) Level: 9-12 Duration: One Class Period Objectives: As a result of reading The History of Optical Astronomy, students will be able to • Discriminate between reflecting and refracting telescope designs and describe the differences between them; • Explain how a telescope focuses light; • Articulate the limitations of ground-based telescopes and propose solutions to these limitations; • Identify important astronomical discoveries made and personages working in the optical regime; • Discuss examples of problem-solving and creativity in astronomy. Materials: Internet connection and browser for displaying the lesson. Pre-requisites: Students should be familiar with the Electromagnetic Spectrum. Before using the lesson, students should familiarize themselves with all vocabulary terms. Procedures: Students will read the lesson and answer assessment questions (listed under evaluation). Introduction: In reading this lesson, you will meet important individuals in the History of Optical Astronomy. They are: Caroline Lucretia Herschel was a German-born British astronomer and the sister of astronomer Sir William Herschel. She is the discoverer of several comets, in particular, the periodic comet 35P/Herschel-Rigollet, which bears her name. Lyman Strong Spitzer, Jr. was an American theoretical physicist, astronomer and mountaineer. He carried out research into star formation, plasma physics, and in 1946, conceived the idea of telescopes operating in outer space. Spitzer is the namesake of NASA's Spitzer Space Telescope. 1 Online Modules from The University of Chicago William Herschel was an astronomer and composer. -
Discovery of the First Asteroid, Ceres Historical Studies in Asteroid Research Discovery of the First Asteroid, Ceres
Cliff ord Cunningham Discovery of the First Asteroid, Ceres Historical Studies in Asteroid Research Discovery of the First Asteroid, Ceres Clifford Cunningham Discovery of the First Asteroid, Ceres Historical Studies in Asteroid Research Clifford Cunningham Ft. Lauderdale , FL , USA ISBN 978-3-319-21776-5 ISBN 978-3-319-21777-2 (eBook) DOI 10.1007/978-3-319-21777-2 Library of Congress Control Number: 2015950473 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Cover illustration: Ceres, picture taken February 19, 2015, by NASA’s Dawn spacecraft, from a distance of nearly 29,000 miles (46,000 km). -
Prime Focus (06-16).Pub
Highlights of the June Sky - - - - - - Saturn at opposition. - - - - - - DAWN: A very thin waning A Publication of the Kalamazoo Astronomical Society crescent Moon is about 2° below Mercury. Look low in east about 20 minutes before sunrise. - - - 4th - - - New Moon 11:00 pm EDT KAS - - - 9th - - - PM: Regulus, the brightest star in Leo, is about 7° to General Meeting: Friday, June 3 @ 7:00 pm the Moon’s upper left. Kalamazoo Area Math & Science Center - See Page 8 for Details - - - 10th - - - PM: The Moon is located about halfway between Observing Session: Saturday, June 11 @ 9:30 pm Regulus and Jupiter. The Moon, Mars, Jupiter & Saturn - Kalamazoo Nature Center - - - 11th - - - PM: The Moon forms a Board Meeting: Sunday, June 12 @ 5:00 pm triangle with Jupiter and Sunnyside Church - 2800 Gull Road - All Members Welcome Sigma () Leonis. - - - 12th - - - Observing Session: Saturday, June 25 @ 9:30 pm First Quarter Moon 4:10 am EDT Grand Globular Clusters - Kalamazoo Nature Center - - - 14th - - - PM: Spica, the brightest star in Virgo, is <5° below a waxing gibbous Moon. - - - 17th → 18th - - - Inside the Newsletter. PM: The Moon, Saturn, and Mars make a wide, flat May Meeting Minutes............................. p. 2 triangle, with the longest side stretching ~18° to Board Meeting Minutes......................... p. 3 connect the two planets. - - - 18th → 19th - - - Learn More About the A.L...................p. 3 PM: The Moon and Saturn are 3° to 4° apart. Observations of the Red Planet.......... p. 4 - - - 20th - - - NASA Space Place.................................. p. 5 Full Moon 7:02 am EDT June Night Sky......................................... p. 6 Summer solstice occurs at KAS Board & Announcements........... -
Sensing the Invisible: the Herschel Experiment
MESS E N G E R S ENSIN G THE I NVISIB L E Y R HE ERSCHEL XPERIMENT U T H E C R E M TO N M I S S I O L E S S O N O V E RV I E W GRADE LEVEL 5 - 8 L ESSON S UMMARY In this lesson, students find out that there is radiation other than visible light arriving from the Sun. The students reproduce a version of William DURATION 1-2 hours Herschel’s experiment of 800 that discovered the existence of infrared radiation. The process of conducting the experiment and placing it in the historical context illustrates how scientific discoveries are often made ESSENTIAL QUESTION via creative thinking, careful design of the experiment, and adaptation of Are there forms of light other than visible light the experiment to accommodate unexpected results. Students discuss emitted by the Sun? current uses of infrared radiation and learn that it is both very beneficial and a major concern for planetary explorations such as the MESSENGER mission to Mercury. Lesson 1 of Grades 5-8 Component of Staying Cool O BJECTIVES Students will be able to: ▼ Construct a device to measure the presence of infrared radiation in sunlight. ▼ Explain that visible light is only part of the electromagnetic spectrum of radiation emitted by the Sun. ▼ Follow the path taken by Herschel through scientific discovery. ▼ Explain why we would want to use infrared radiation to study Mercury and other planets. ▼ Explain how excess infrared radiation is a concern for the MESSENGER mission. -
SUCCESSES of the HUBBLE SPACE TELESCOPE, 18Th February 2005 Astronomical History the Hubble Telescope Has Been a Major Tool for the Last Fifteen Years
SUCCESSES OF THE HUBBLE SPACE TELESCOPE, 18th February 2005 Astronomical History The Hubble telescope has been a major tool for the last fifteen years. However, astronomy is as old as man – the earliest known good star map was by Hipparchus 2500 years ago, and a Roman statue (now in Naples) is of Atlas supporting a celestial globe. In 1610 Galileo made the first telescope, opening up the sky; he was able to see the moons of Jupiter, which clearly orbited Jupiter – not Earth, then considered the absolute centre of the universe… Larger telescopes were soon built, with long tubes to accommodate the low curvature lenses that gave the best results – they were not easily manoeuvred. There is a large 28” Refractor at the Observatory in Greenwich, designated ROG, made in 1893 but on an 1859 mount, which even in London’s atmosphere is useful for planetary observation. In 19thC astronomers began to study not just the location of celestial objects but what types they were. Reflecting Telescopes These use a mirror as the prime element to gather and focus light. Small ones were made in the late 18thC, then in the early 19thC Herschel designed one with an 18” mirror. Mirrors being supported from behind, are easier to mount than lenses can only be held at the edge; they can gather more light and give a brighter, sharper image. In 1948 the 200” (5 m) Hale telescope at Mount Palomar set a new standard, high up above much of the atmosphere for maximum clarity. This was built for traditional observation by eye; then longer exposures were made possible with photographic plates; now CCDs (Charge Coupled Detectors) give higher sensitivity. -
The Space Infrared Interferometric Telescope (SPIRIT): High- Resolution Imaging and Spectroscopy in the Far-Infrared
Leisawitz, D. et al., J. Adv. Space Res., in press (2007), doi:10.1016/j.asr.2007.05.081 The Space Infrared Interferometric Telescope (SPIRIT): High- resolution imaging and spectroscopy in the far-infrared David Leisawitza, Charles Bakera, Amy Bargerb, Dominic Benforda, Andrew Blainc, Rob Boylea, Richard Brodericka, Jason Budinoffa, John Carpenterc, Richard Caverlya, Phil Chena, Steve Cooleya, Christine Cottinghamd, Julie Crookea, Dave DiPietroa, Mike DiPirroa, Michael Femianoa, Art Ferrera, Jacqueline Fischere, Jonathan P. Gardnera, Lou Hallocka, Kenny Harrisa, Kate Hartmana, Martin Harwitf, Lynne Hillenbrandc, Tupper Hydea, Drew Jonesa, Jim Kellogga, Alan Koguta, Marc Kuchnera, Bill Lawsona, Javier Lechaa, Maria Lechaa, Amy Mainzerg, Jim Manniona, Anthony Martinoa, Paul Masona, John Mathera, Gibran McDonalda, Rick Millsa, Lee Mundyh, Stan Ollendorfa, Joe Pellicciottia, Dave Quinna, Kirk Rheea, Stephen Rineharta, Tim Sauerwinea, Robert Silverberga, Terry Smitha, Gordon Staceyf, H. Philip Stahli, Johannes Staguhn j, Steve Tompkinsa, June Tveekrema, Sheila Walla, and Mark Wilsona a NASA’s Goddard Space Flight Center, Greenbelt, MD b Department of Astronomy, University of Wisconsin, Madison, Wisconsin, USA c California Institute of Technology, Pasadena, CA, USA d Lockheed Martin Technical Operations, Bethesda, Maryland, USA e Naval Research Laboratory, Washington, DC, USA f Department of Astronomy, Cornell University, Ithaca, USA g Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA h Astronomy Department, University of Maryland, College Park, Maryland, USA i NASA’s Marshall Space Flight Center, Huntsville, Alabama, USA j SSAI, Lanham, Maryland, USA ABSTRACT We report results of a recently-completed pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 µm. -
Science Enabled by High Precision Inertial Formation Flying
Science enabled by high precision inertial formation flying G. K. Skinner1∗, B. R. Dennis2, J. F. Krizmanic2;3, E. P. Kontar4 1 MPE, 85748 Garching, Germany Phone: +49 89 30000 3828 E-mail: [email protected] 2 NASA-GSFC, Greenbelt, MD 20770, USA Phone: +1 301 286 7983/6817 E-mail: Brian.R.Dennis/[email protected] 3 Universities Space Research Association (USRA), Columbia, MD 21044, USA 4 Glasgow University, G12 8QQ, UK Phone: +44 141 330 2499 E-mail: [email protected] ∗Corresponding author Abstract: The capability of maintaining two satellites in precise relative position, stable in a celestial coordinate system, would enable major advances in a number of scientific disciplines and with a variety of types of instrumentation. The common requirement is for formation flying of two spacecraft with the direction of their vector separation in inertial coordinates precisely controlled and accurately determined as a function of time. We consider here the scientific goals that could be achieved with such technology and review some of the proposals that have been made for specific missions. Types of instrumentation that will benefit from the development of this type of formation flying include 1) imaging systems, in which an optical element on one spacecraft forms a distant image recorded by a detector array on the other spacecraft, including telescopes capable of very high angular resolution; 2) systems in which the front spacecraft of a pair carries an occulting disk, allowing very high dynamic range observations of the solar corona and exoplanets; 3) interferometers, another class of instrument that aims at very high angular resolution and which, though usually requiring more than two spacecraft, demands very much the same developments. -
The Herschels and Their Astronomy
The Herschels and their Astronomy Mary Kay Hemenway 24 March 2005 outline • William Herschel • Herschel telescopes • Caroline Herschel • Considerations of the Milky Way • William Herschel’s discoveries • John Herschel Wm. Herschel (1738-1822) • Born Friedrich Wilhelm Herschel in Hanover, Germany • A bandboy with the Hanoverian Guards, later served in the military; his father helped him to leave Germany for England in 1757 • Musician in Bath • He read Smith's Harmonies, and followed by reading Smith's Optics - it changed his life. Miniature portrait from 1764 Discovery of Uranus 1781 • William Herschel used a seven-foot Newtonian telescope • "in the quartile near zeta Tauri the lowest of the two is a curious either Nebulous Star or perhaps a Comet” • He called it “Georgium Sidus" after his new patron, George Ill. • Pension of 200 pounds a year and knighted, the "King's Astronomer” -- now astronomy full time. Sir William Herschel • Those who had received a classical education in astronomy agreed that their job was to study the sun, moon, planets, comets, individual stars. • Herschel acted like a naturalist, collecting specimens in great numbers, counting and classifying them, and later trying to organize some into life cycles. • Before his discovery of Uranus, Fellows of the Royal Society had contempt for his ignorance of basic procedures and conventions. Isaac Newton's reflecting telescope 1671 William Herschel's 20-foot, 1783 Account of some Observations tending to investigate the Construction of the Heavens Philosophical Transactions of the Royal Society of London (1784) vol. 74, pp. 437-451 In a former paper I mentioned, that a more powerful instrument was preparing for continuing my reviews of the heavens.