Cosmology Slides

Total Page:16

File Type:pdf, Size:1020Kb

Cosmology Slides Inhomogeneous cosmologies George Ellis, University of Cape Town 27th Texas Symposium on Relativistic Astrophyiscs Dallas, Texas Thursday 12th December 9h00-9h45 • The universe is inhomogeneous on all scales except the largest • This conclusion has often been resisted by theorists who have said it could not be so (e.g. walls and large scale motions) • Most of the universe is almost empty space, punctuated by very small very high density objects (e.g. solar system) • Very non-linear: / = 1030 in this room. Models in cosmology • Static: Einstein (1917), de Sitter (1917) • Spatially homogeneous and isotropic, evolving: - Friedmann (1922), Lemaitre (1927), Robertson-Walker, Tolman, Guth • Spatially homogeneous anisotropic (Bianchi/ Kantowski-Sachs) models: - Gödel, Schücking, Thorne, Misner, Collins and Hawking,Wainwright, … • Perturbed FLRW: Lifschitz, Hawking, Sachs and Wolfe, Peebles, Bardeen, Ellis and Bruni: structure formation (linear), CMB anisotropies, lensing Spherically symmetric inhomogeneous: • LTB: Lemaître, Tolman, Bondi, Silk, Krasinski, Celerier , Bolejko,…, • Szekeres (no symmetries): Sussman, Hellaby, Ishak, … • Swiss cheese: Einstein and Strauss, Schücking, Kantowski, Dyer,… • Lindquist and Wheeler: Perreira, Clifton, … • Black holes: Schwarzschild, Kerr The key observational point is that we can only observe on the past light cone (Hoyle, Schücking, Sachs) See the diagrams of our past light cone by Mark Whittle (Virginia) 5 Expand the spatial distances to see the causal structure: light cones at ±45o. Observable Geo Data Start of universe Particle Horizon (Rindler) Spacelike singularity (Penrose). 6 The cosmological principle The CP is the foundational assumption that the Universe obeys a cosmological law: It is necessarily spatially homogeneous and isotropic (Milne 1935, Bondi 1960) Thus a priori: geometry is Robertson-Walker Weaker form: the Copernican Principle: We do not live in a special place (Weinberg 1973). With observed isotropy, implies Robertson-Walker. Philosophical Principle at Foundation of Standard Cosmology On this basis: dark energy exists Dark Energy Discovery Decay of supernovae in distant galaxies provides a usable standard candle (maximum brightness is correlated to decay rate) With redshifts, gives the first reliable detection of non-linearity - the assumed FLRW universe is presently accelerating Consequently there is presently an effective positive cosmological constant with ~ 0.7: Nature unknown! Concordance FLRW model: Dark energy and dark matter with an almost flat universe BUT: We can’t see spatial homogeneity! What we can see is isotropy : Here and now Past light cone Isotropic Galaxies at redshift z G F R Ellis: ``Limits to verification in cosmology". 9th Texas Symposium on Relativistic Astrophysics, 1978. Munich. Spatially homogeneous extension: Here and now Extend spaclike: homogeneous FLRW model: Standard cosmology Spatially inhomogeneous extension: Here and now Extend timelike: inhomogeneous LTB model, in pressure-free case. Is the CP True? Two major theorems 1. Isotropy everywhere in an open set U implies spatial homogeneity in U FLRW in U (Walker 1944, Ehlers 1961) 2: Isotropy of freely moving CMB everywhere about a geodesic congruence in an open set U implies spatial homogeneity in U FLRW in U (Elhers, Geren and Sachs 1967) Stability of EGS: “Almost EGS” theorem (Stoeger, Maartens, Ellis 1995) But those conditions are not directly observable (G F R Ellis: Qu Journ Roy Ast Soc 16, 245-264: 1975). Is dark energy inevitable? Large scale inhomogeneity? Perhaps there is a large scale inhomogeneity of the observable universe such as that described by the Lemaitre-Tolman-Bondi pressure-free spherically symmetric models: - With no dark energy or CC. We are near the centre of a void M-N. Célérier: “The Accelerated Expansion of the Universe Challenged by an Effect of the Inhomogeneities. A Review” New Advances in Physics 1, 29 (2007) [astro ph/0702416]. LTB (Lemaitre-Tolman Bondi) models Metric: In comoving coordinates, ds2 = -dt2 + B2(r,t) + A2(r,t)(dΘ2+sin2 Θ dΦ2) where B2(r,t) = A’(r,t)2 (1-k(r))-1 and the evolution equation is 2 3 2 (Å/A) = F(r)/A + 8πGρΛ/3 - k(r)/A 2 -1 with F’(A’A ) = 8πGρM. Two arbitrary functions: k(r) (curvature) and F(r) (matter). Large scale inhomogeneity: observational properties Theorem: LTB model scan provide any m(z) and r0(z) relations with or without any dark energy, N Mustapha, C Hellaby and G F R Ellis: Large Scale Inhomogeneity vs Source Evolution: Can we Distinguish Them? Mon Not Roy Ast Soc 292: 817-830 (1999) Two arbitrary functions can match any data Number counts don’t prove spatial homogeneity because of source evolution Can’t fit radio source number count data by FRW model without source evolution. We run models backwards to find source evolution! Alnes, Amarzguioui, and Gron astro-ph/0512006 We can fit any area distance and number count observations with no dark energy in an inhomogeneous model Szekeres model: “We find that such a model can easily explain the observed luminosity distance-redshift relation of supernovae without the need for dark energy, when the inhomogeneity is in the form of an underdense bubble centered near the observer. We find that the position of the first CMB peak can be made to match the WMAP observations.” Ishak et al 0708.2943 Typical observationally viable model: We live roughly centrally (within 10% of the central position) in a large void: a compensated underdense region stretching to z ≈ 0.08 with δ ≈ -0.4 and size 160/h Mpc to 250/h Mpc, a jump in the Hubble constant of about 1.20, and no dark energy or quintessence field Other observations?? Can also fit CBR observations: Larger values of r “Local void vs dark energy: confrontation with WMAP and Type IA supernovae” (2007) S. Alexander, T. Biswas, A. Notari, D. Vaid [arXiv:0712.0370] . “Testing the Void against Cosmological data: fitting CMB, BAO, SN and H0” Biswas, Notari, Valkenburg [arXiv:1007.3065] Quadrupole? Perhaps also (and alignment) Baryon acoustic oscillations? Maybe – more tricky Nucleosynthesis: OK indeed better scales probed by different observations: different distances Do large voids occur? Perhaps- CMB cold spot: Might indicate large void. If so: your inflationary model had better allow this to happen! – Indeed inflation can allow almost anything to happen (Steinhardt) Stop press: Pan-STARRS preliminary figures that appear to tell a story of a fairly large, (up to 100 Mpc radius) void at around redshift 0.1-0.11, and front of it a filament at a slightly lower redshift. From I.Szapudi, A.Kovacs, B. Granett, and Z. Frei with the Pan-STARRS1 Collaboration: 22 I.Szapudi, A.Kovacs, B. Granett, and Z. Frei with the Pan-STARRS1 Collaboration Photo-metric redshift slices showing LSS=Large Scale Structure, i.e. galaxies. They are centered on the ``infamous'' CMB Coldspot, and the main void appears to be centered slightly in the lower left from that. The photometric redshift error is estimated to be 0.033 from GAMA, so the slices are clearly not independent. Our main problem is that we are still worried about systematic errors, in particular another method gives us about 20% stretched photo-z (although qualitatively similar images), and while we tried to figure out the reason, so far we could not get them to be consistent. Therefore all of this is *very* preliminary, should be taken with a grain of salt. 23 I.Szapudi, A.Kovacs, B. Granett, and Z. Frei with the Pan-STARRS1 Collaboration • . A photo-metric redshift slice (0.12<z<0.15). The left figure shows the CMB in colors with LSS in contours, while the right figure shows LSS in colors, and CMB in contours. Fairly large void (up to 100 Mpc radius) at z ~ 0.1-0.11 24 Improbability “It is improbable we are near the centre” But there is always improbability in cosmology Can shift it: FRW geometry Inflationary potential Inflationary initial conditions Position in inhomogeneous universe Which universe in multiverse Competing with probability 10-120 for Λ in a FRW universe. Also: there is no proof universe is probable. May be improbable!! Indeed, it is!! - Test idea by making inhomogeneous models Can We Avoid Dark Energy? James P. Zibin, Adam Moss, and Douglas Scott The idea that we live near the center of a large, nonlinear void has attracted attention recently as an alternative to dark energy or modified gravity. We show that an appropriate void profile can fit both the latest cosmic microwave background and supernova data. However, this requires either a fine-tuned primordial spectrum or a Hubble rate so low as to rule these models out. We also show that measurements of the radial baryon acoustic scale can provide very strong constraints. Our results present a serious challenge to void models of acceleration. Phys. Rev. Lett. 101, 251303 (2008) 26 • “First-Year Sloan Digital Sky Survey-II (SDSS-II) Supernova Results: Constraints on Non-Standard Cosmological Models” J. Sollerman, et al Astrophysical Journal 703 (2009) 1374-1385 [arXiv:0908.4276] – We use the new SNe Ia discovered by the SDSS-II Supernova Survey together with additional supernova datasets as well as observations of the cosmic microwave background and baryon acoustic oscillations to constrain cosmological models. This complements the analysis presented by Kessler et al. in that we discuss and rank a number of the most popular non-standard cosmology scenarios. – Our investigation also includes inhomogeneous Lemaitre- Tolman-Bondi (LTB) models. While our LTB models can be made to fit the supernova data as well as any other model, the extra parameters they require are not supported by our information criteria analysis. Testing the void against cosmological data: fitting CMB, BAO, SN and H0 Tirthabir Biswas, Alessio Notari and Wessel Valkenburg JCAP November 2010 We improve on previous analyses by allowing for nonzero overall curvature, accurately computing the distance to the last-scattering surface and the observed scale of the Baryon Acoustic peaks, and investigating important effects that could arise from having nontrivial Void density profiles.
Recommended publications
  • Fine-Tuning, Complexity, and Life in the Multiverse*
    Fine-Tuning, Complexity, and Life in the Multiverse* Mario Livio Dept. of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA E-mail: [email protected] and Martin J. Rees Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK E-mail: [email protected] Abstract The physical processes that determine the properties of our everyday world, and of the wider cosmos, are determined by some key numbers: the ‘constants’ of micro-physics and the parameters that describe the expanding universe in which we have emerged. We identify various steps in the emergence of stars, planets and life that are dependent on these fundamental numbers, and explore how these steps might have been changed — or completely prevented — if the numbers were different. We then outline some cosmological models where physical reality is vastly more extensive than the ‘universe’ that astronomers observe (perhaps even involving many ‘big bangs’) — which could perhaps encompass domains governed by different physics. Although the concept of a multiverse is still speculative, we argue that attempts to determine whether it exists constitute a genuinely scientific endeavor. If we indeed inhabit a multiverse, then we may have to accept that there can be no explanation other than anthropic reasoning for some features our world. _______________________ *Chapter for the book Consolidation of Fine Tuning 1 Introduction At their fundamental level, phenomena in our universe can be described by certain laws—the so-called “laws of nature” — and by the values of some three dozen parameters (e.g., [1]). Those parameters specify such physical quantities as the coupling constants of the weak and strong interactions in the Standard Model of particle physics, and the dark energy density, the baryon mass per photon, and the spatial curvature in cosmology.
    [Show full text]
  • The Big Bang
    The Big Bang • Review of Hubble expansion • Assumptions in cosmology • The Big Bang • Cosmic microwave background Hubble expansion v = H0d What would be the recession speed of a galaxy at a distance of 7 Mpc? A) 0.1 km/s B) 10 km/s C) 250 km/s D) 500 km/s E) 1000 km/s Speed = H0 distance H0 = 71 km/s/Mpc Receding galaxy 8 Speed = 500 km/s = 0.5 Mpc/Gyr 6 4 2 Distance (Mpc) 0 -2 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 Time (Gyr) When was this galaxy in the same place as the Milky Way? time = distance / velocity = 7 Mpc/(0.5 Mpc/Gyr) = 14 Gyr ago If the Hubble constant were doubled, what would be the recession speed of a galaxy at a distance of 7 Mpc? A) 0.1 km/s B) 10 km/s C) 250 km/s D) 500 km/s E) 1000 km/s Speed = H distance H = 271 km/s/Mpc 0 0 Receding galaxy 8 Speed = 1000 km/s = 1.0 Mpc/Gyr 6 4 2 0 Distance (Mpc) -2 -4 -12 -10 -8 -6 -4 -2 0 Time (Gyr) When was this galaxy in the same place as the Milky Way? time = distance / velocity = 7 Mpc/(1.0 Mpc/Gyr) = 7 Gyr ago If Hubble's constant were twice as large as we now think it is, our estimate of the age of the universe would A) be unchanged B) increase by a factor of 2 C) increase by a factor of 4 D) decrease by a factor of 2 E) decrease by a factor of 4 Quasars are receding from us at high velocities because A) matter in black hole jets moves at close to the speed of light B) matter moves rapidly when close to a black hole C) quasars are at large distances D) we smell bad The variety of different active galaxies can be explained as due to A) different orientations of the accretion disk B) different forms of matter being accreted C) different shapes of black holes D) different velocities of black holes Assumptions in Cosmology Copernican principle: – We do not occupy a special place.
    [Show full text]
  • Arxiv:1707.01004V1 [Astro-Ph.CO] 4 Jul 2017
    July 5, 2017 0:15 WSPC/INSTRUCTION FILE coc2ijmpe International Journal of Modern Physics E c World Scientific Publishing Company Primordial Nucleosynthesis Alain Coc Centre de Sciences Nucl´eaires et de Sciences de la Mati`ere (CSNSM), CNRS/IN2P3, Univ. Paris-Sud, Universit´eParis–Saclay, Bˆatiment 104, F–91405 Orsay Campus, France [email protected] Elisabeth Vangioni Institut d’Astrophysique de Paris, UMR-7095 du CNRS, Universit´ePierre et Marie Curie, 98 bis bd Arago, 75014 Paris (France), Sorbonne Universit´es, Institut Lagrange de Paris, 98 bis bd Arago, 75014 Paris (France) [email protected] Received July 5, 2017 Revised Day Month Year Primordial nucleosynthesis, or big bang nucleosynthesis (BBN), is one of the three evi- dences for the big bang model, together with the expansion of the universe and the Cos- mic Microwave Background. There is a good global agreement over a range of nine orders of magnitude between abundances of 4He, D, 3He and 7Li deduced from observations, and calculated in primordial nucleosynthesis. However, there remains a yet–unexplained discrepancy of a factor ≈3, between the calculated and observed lithium primordial abundances, that has not been reduced, neither by recent nuclear physics experiments, nor by new observations. The precision in deuterium observations in cosmological clouds has recently improved dramatically, so that nuclear cross sections involved in deuterium BBN need to be known with similar precision. We will shortly discuss nuclear aspects re- lated to BBN of Li and D, BBN with non-standard neutron sources, and finally, improved sensitivity studies using Monte Carlo that can be used in other sites of nucleosynthesis.
    [Show full text]
  • A Democratic Cosmos? Arxiv:1910.00481V1 [Physics.Hist-Ph] 1 Oct 2019
    A democratic Cosmos? Guilherme Franzmann1 and Yigit Yargic2 1Department of Physics, McGill University, Montréal, QC, H3A 2T8, Canada 2Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo ON, N2L 2Y5, Canada Abstract Despite the success of our best models in Theoretical Physics, especially concerning Cosmology and Particle Physics, we still face persistent challenges. Among them we have the cosmological singularity problem, understanding the late-time acceleration of the Universe, and comprehending the fundamental na- ture of time. We believe relevant new insights to tackle each of these issues may be found in the Philosophy of Cosmology. We elaborate on three philosophical principles that shall guide us on how to improve our current theories. They are the Copernican Principle for Scales, the Cosmological Heterarchical Principle and the Cosmological Principle of Irreversibility. Following these principles, and using some of our current physical theories as a proxy to implement them, we consider a new assessment of each of these challenges, and show how they may be either explained away, hinting towards new physics, or summarized in a new philosophical principle. Essay written for the 2019 Essay Prize in Philosophy of Cosmology1. arXiv:1910.00481v1 [physics.hist-ph] 1 Oct 2019 1http://www.rotman.uwo.ca/2019-essay-prize-in-philosophy-of-cosmology/ 1 Contents 1 The Cosmic Pnyka 3 2 The Copernican Principle for Scales 5 3 The Cosmological Heterarchical Principle 8 4 The landscape of scales 10 5 The Very Early Universe 12 5.1 T-duality . 12 6 Λ-theory: GR’s unknown heir in the deep IR 15 6.1 Inspirations from MOND .
    [Show full text]
  • Structure Formation in a CDM Universe
    Structure formation in a CDM Universe Thomas Quinn, University of Washington Greg Stinson, Charlotte Christensen, Alyson Brooks Ferah Munshi Fabio Governato, Andrew Pontzen, Chris Brook, James Wadsley Microwave Background Fluctuations Image courtesy NASA/WMAP Large Scale Clustering A well constrained cosmology ` Contents of the Universe Can it make one of these? Structure formation issues ● The substructure problem ● The angular momentum problem ● The cusp problem Light vs CDM structure Stars Gas Dark Matter The CDM Substructure Problem Moore et al 1998 Substructure down to 100 pc Stadel et al, 2009 Consequences for direct detection Afshordi etal 2010 Warm Dark Matter cold warm hot Constant Core Mass Strigari et al 2008 Light vs Mass Number density log(halo or galaxy mass) Simulations of Galaxy formation Guo e tal, 2010 Origin of Galaxy Spins ● Torques on the collapsing galaxy (Peebles, 1969; Ryden, 1988) λ ≡ L E1/2/GM5/2 ≈ 0.09 for galaxies Distribution of Halo Spins f(λ) Λ = LE1/2/GM5/2 Gardner, 2001 Angular momentum Problem Too few low-J baryons Van den Bosch 01 Bullock 01 Core/Cusps in Dwarfs Moore 1994 Warm DM doesn't help Moore et al 1999 Dwarf simulated to z=0 Stellar mass = 5e8 M sun` M = -16.8 i g - r = 0.53 V = 55 km/s rot R = 1 kpc d M /M = 2.5 HI * f = .3 f cosmic b b i band image Dwarf Light Profile Rotation Curve Resolution effects Low resolution: bad Low resolution star formation: worse Inner Profile Slopes vs Mass Governato, Zolotov etal 2012 Constant Core Masses Angular Momentum Outflows preferential remove low J baryons Simulation Results: Resolution and H2 Munshi, in prep.
    [Show full text]
  • Living in a Void: Testing the Copernican Principle with Distant Supernovae
    Living in a Void: Testing the Copernican Principle with Distant Supernovae Timothy Clifton,∗ Pedro G. Ferreira, and Kate Land Oxford Astrophysics, Physics, DWB, Keble Road, Oxford, OX1 3RH, UK A fundamental presupposition of modern cosmology is the Copernican Principle; that we are not in a central, or otherwise special region of the Universe. Studies of Type Ia supernovae, together with the Copernican Principle, have led to the inference that the Universe is accelerating in its expansion. The usual explanation for this is that there must exist a ‘Dark Energy’, to drive the acceleration. Alternatively, it could be the case that the Copernican Principle is invalid, and that the data has been interpreted within an inappropriate theoretical frame-work. If we were to live in a special place in the Universe, near the centre of a void where the local matter density is low, then the supernovae observations could be accounted for without the addition of dark energy. We show that the local redshift dependence of the luminosity distance can be used as a clear discriminant between these two paradigms. Future surveys of Type Ia supernovae that focus on a redshift range of ∼ 0.1 − 0.4 will be ideally suited to test this hypothesis, and hence to observationally determine the validity of the Copernican Principle on new scales, as well as probing the degree to which dark energy must be considered a necessary ingredient in the Universe. The concordance model of the Universe combines two An alternative to admitting the existence of dark en- fundamental assumptions. The first is that space-time ergy is to review the postulates that necessitate its intro- is dynamical, obeying Einstein’s Equations.
    [Show full text]
  • The High Redshift Universe: Galaxies and the Intergalactic Medium
    The High Redshift Universe: Galaxies and the Intergalactic Medium Koki Kakiichi M¨unchen2016 The High Redshift Universe: Galaxies and the Intergalactic Medium Koki Kakiichi Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Koki Kakiichi aus Komono, Mie, Japan M¨unchen, den 15 Juni 2016 Erstgutachter: Prof. Dr. Simon White Zweitgutachter: Prof. Dr. Jochen Weller Tag der m¨undlichen Pr¨ufung:Juli 2016 Contents Summary xiii 1 Extragalactic Astrophysics and Cosmology 1 1.1 Prologue . 1 1.2 Briefly Story about Reionization . 3 1.3 Foundation of Observational Cosmology . 3 1.4 Hierarchical Structure Formation . 5 1.5 Cosmological probes . 8 1.5.1 H0 measurement and the extragalactic distance scale . 8 1.5.2 Cosmic Microwave Background (CMB) . 10 1.5.3 Large-Scale Structure: galaxy surveys and Lyα forests . 11 1.6 Astrophysics of Galaxies and the IGM . 13 1.6.1 Physical processes in galaxies . 14 1.6.2 Physical processes in the IGM . 17 1.6.3 Radiation Hydrodynamics of Galaxies and the IGM . 20 1.7 Bridging theory and observations . 23 1.8 Observations of the High-Redshift Universe . 23 1.8.1 General demographics of galaxies . 23 1.8.2 Lyman-break galaxies, Lyα emitters, Lyα emitting galaxies . 26 1.8.3 Luminosity functions of LBGs and LAEs . 26 1.8.4 Lyα emission and absorption in LBGs: the physical state of high-z star forming galaxies . 27 1.8.5 Clustering properties of LBGs and LAEs: host dark matter haloes and galaxy environment . 30 1.8.6 Circum-/intergalactic gas environment of LBGs and LAEs .
    [Show full text]
  • Week 5: More on Structure Formation
    Week 5: More on Structure Formation Cosmology, Ay127, Spring 2008 April 23, 2008 1 Mass function (Press-Schechter theory) In CDM models, the power spectrum determines everything about structure in the Universe. In particular, it leads to what people refer to as “bottom-up” and/or “hierarchical clustering.” To begin, note that the power spectrum P (k), which decreases at large k (small wavelength) is psy- chologically inferior to the scaled power spectrum ∆2(k) = (1/2π2)k3P (k). This latter quantity is monotonically increasing with k, or with smaller wavelength, and thus represents what is going on physically a bit more intuitively. Equivalently, the variance σ2(M) of the mass distribution on scales of mean mass M is a monotonically decreasing function of M; the variance in the mass distribution is largest at the smallest scales and smallest at the largest scales. Either way, the density-perturbation amplitude is larger at smaller scales. It is therefore smaller structures that go nonlinear and undergo gravitational collapse earliest in the Universe. With time, larger and larger structures undergo gravitational collapse. Thus, the first objects to undergo gravitational collapse after recombination are probably globular-cluster–sized halos (although the halos won’t produce stars. As we will see in Week 8, the first dark-matter halos to undergo gravitational collapse and produce stars are probably 106 M halos at redshifts z 20. A typical L galaxy probably forms ∼ ⊙ ∼ ∗ at redshifts z 1, and at the current epoch, it is galaxy groups or poor clusters that are the largest ∼ mass scales currently undergoing gravitational collapse.
    [Show full text]
  • Nicolaus Copernicus: the Loss of Centrality
    I Nicolaus Copernicus: The Loss of Centrality The mathematician who studies the motions of the stars is surely like a blind man who, with only a staff to guide him, must make a great, endless, hazardous journey that winds through innumerable desolate places. [Rheticus, Narratio Prima (1540), 163] 1 Ptolemy and Copernicus The German playwright Bertold Brecht wrote his play Life of Galileo in exile in 1938–9. It was first performed in Zurich in 1943. In Brecht’s play two worldviews collide. There is the geocentric worldview, which holds that the Earth is at the center of a closed universe. Among its many proponents were Aristotle (384–322 BC), Ptolemy (AD 85–165), and Martin Luther (1483–1546). Opposed to geocentrism is the heliocentric worldview. Heliocentrism teaches that the sun occupies the center of an open universe. Among its many proponents were Copernicus (1473–1543), Kepler (1571–1630), Galileo (1564–1642), and Newton (1643–1727). In Act One the Italian mathematician and physicist Galileo Galilei shows his assistant Andrea a model of the Ptolemaic system. In the middle sits the Earth, sur- rounded by eight rings. The rings represent the crystal spheres, which carry the planets and the fixed stars. Galileo scowls at this model. “Yes, walls and spheres and immobility,” he complains. “For two thousand years people have believed that the sun and all the stars of heaven rotate around mankind.” And everybody believed that “they were sitting motionless inside this crystal sphere.” The Earth was motionless, everything else rotated around it. “But now we are breaking out of it,” Galileo assures his assistant.
    [Show full text]
  • Cosmic Microwave Background
    1 29. Cosmic Microwave Background 29. Cosmic Microwave Background Revised August 2019 by D. Scott (U. of British Columbia) and G.F. Smoot (HKUST; Paris U.; UC Berkeley; LBNL). 29.1 Introduction The energy content in electromagnetic radiation from beyond our Galaxy is dominated by the cosmic microwave background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with T = 2.7255 K. This spectral form is a main supporting pillar of the hot Big Bang model for the Universe. The lack of any observed deviations from a 7 blackbody spectrum constrains physical processes over cosmic history at redshifts z ∼< 10 (see earlier versions of this review). Currently the key CMB observable is the angular variation in temperature (or intensity) corre- lations, and to a growing extent polarization [2–4]. Since the first detection of these anisotropies by the Cosmic Background Explorer (COBE) satellite [5], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)[6], which were improved upon by analyses of data added every 2 years, culminating in the 9-year results [7]. In 2013 we had the first results [8] from the third generation CMB satellite, ESA’s Planck mission [9,10], which were enhanced by results from the 2015 Planck data release [11, 12], and then the final 2018 Planck data release [13, 14]. Additionally, CMB an- isotropies have been extended to smaller angular scales by ground-based experiments, particularly the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16].
    [Show full text]
  • The Copernican Revolution: Observational Tests
    The Copernican Revolution: Observational Tests The Trigonometric (Geometric) Parallax Aristotle’s missing Stellar Parallax: The Earth has moved! Parallactic ellipse has (angular) semi major axis p = a/d (radians) ... where a is the Earth’s orbital “radius” and d is the distance to the star. For d in parsecs (pc), and p in arc-seconds (“): (pc) = 1/p(“) aEarth = 1 au = 1.50 x 108 km and 1 pc = 206,265 au First Measurement of a Stellar Parallax by Bessel (1838) ... 61 Cygni, also know as “Piazzi’s Flying Star”, with p = 0.287”, d = 3.48 pc (The largest stellar parallax is that of α Centauri with p = 0.75”) There are 206,265 arc-seconds (“) in a radian: 180°= π radians; 1°= 60’= 3,600” One astronomical unit is 23,455 Earth radii. The Aberration of Starlight The Earth is moving! The Earth’s orbital speed is v = 30 km s-1 The speed of light is c = 3 x 105 km s-1 Therefore, the maximum aberration angle is v/c = 10-4 radian = 21” (Note that the semi major axes of all annual aberration ellipses are 21”) History Roemer (1675) measures the velocity of light Observations of eclipses of the satellites of Jupiter. (Io, P = 1.76d) (His value for the speed of light was about 75% of the true value.) Note: Light travels 1 astronomical unit in about 500 seconds. Picard (1680) observes “puzzling parallax” of Polaris (~20”) d (parsecs) = 1/p(“) .... but the motion was in the wrong direction for parallactic motion! ... and was seen with the same amplitude in all directions on the sky! Bradley (1728) explains the phemomenon (and provides observations of γ Draconis) Note that this was over a century before Bessel successfully measured the trigonometric parallax of 61 Cygni in 1838.
    [Show full text]
  • Dark Energy Survey Year 3 Results: Multi-Probe Modeling Strategy and Validation
    DES-2020-0554 FERMILAB-PUB-21-240-AE Dark Energy Survey Year 3 Results: Multi-Probe Modeling Strategy and Validation E. Krause,1, ∗ X. Fang,1 S. Pandey,2 L. F. Secco,2, 3 O. Alves,4, 5, 6 H. Huang,7 J. Blazek,8, 9 J. Prat,10, 3 J. Zuntz,11 T. F. Eifler,1 N. MacCrann,12 J. DeRose,13 M. Crocce,14, 15 A. Porredon,16, 17 B. Jain,2 M. A. Troxel,18 S. Dodelson,19, 20 D. Huterer,4 A. R. Liddle,11, 21, 22 C. D. Leonard,23 A. Amon,24 A. Chen,4 J. Elvin-Poole,16, 17 A. Fert´e,25 J. Muir,24 Y. Park,26 S. Samuroff,19 A. Brandao-Souza,27, 6 N. Weaverdyck,4 G. Zacharegkas,3 R. Rosenfeld,28, 6 A. Campos,19 P. Chintalapati,29 A. Choi,16 E. Di Valentino,30 C. Doux,2 K. Herner,29 P. Lemos,31, 32 J. Mena-Fern´andez,33 Y. Omori,10, 3, 24 M. Paterno,29 M. Rodriguez-Monroy,33 P. Rogozenski,7 R. P. Rollins,30 A. Troja,28, 6 I. Tutusaus,14, 15 R. H. Wechsler,34, 24, 35 T. M. C. Abbott,36 M. Aguena,6 S. Allam,29 F. Andrade-Oliveira,5, 6 J. Annis,29 D. Bacon,37 E. Baxter,38 K. Bechtol,39 G. M. Bernstein,2 D. Brooks,31 E. Buckley-Geer,10, 29 D. L. Burke,24, 35 A. Carnero Rosell,40, 6, 41 M. Carrasco Kind,42, 43 J. Carretero,44 F. J. Castander,14, 15 R.
    [Show full text]