Lecture 2: Our Place in Space Copernican Principle Multiwavelength Astronomy

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 2: Our Place in Space Copernican Principle Multiwavelength Astronomy Lecture 2: Our Place in Space •It is now clear that Earth is not central or special in its general properties (mass, distance from central star, etc.) •The Sun is an average star •The Milky Way is a typical spiral galaxy •This leads to the “principle of mediocrity” or “Copernican principle” Copernican Principle •The “principle of mediocrity” or “Copernican principle” states that physical laws are the same throughout the Universe •This principle can be tested using the scientific method! •So far, it seems to agree with observations perfectly •One of the key ideas is that we can use light from distant objects to understand conditions there, using the work of Isaac Newton Multiwavelength Astronomy •The color and energy of light are related to the Wavelength… •Different wavelengths of radiation tell us about objects with different temperatures… 1 Multiwavelength Astronomy Multiwavelength Astronomy •Using Newton’s techniques, combined with our knowledge of atomic structure, we can use light to study distant objects… X-ray optical composition of matter temperature of matter Scientific Method and Observation •Transformed the search for meaning into a quest for objective truth •We can deduce the properties of distant objects using observations •The scientific method originated in the renaissance, and is still used today: hypo thesi n s io tti iic d e r y p y p r r o o e o truth e truth h b h t s t e rr v a tt ii o n test 2 Copernican Principle •The validity of the “Copernican principle” is great news for science, because it means that we can learn about distant objects by analyzing the light that reaches us from them •This provides some of our best evidence for the existence of black holes… The Scale of Things •Human body: 1 meter •Mountain/Ocean: 1 km = 0.6 miles •Continent: 5,000km = 3,000 miles •Earth Diameter: 13,000 km = 8,000 miles •Solar Diameter: 1,400,000 km = 930,000 miles •Earth-Sun Distance: 140,000,000 km = 93,000,000 miles = 1 Astronomical Unit (AU) •Scientific Notation: 140,000,000 = 1.4 x 10^8 •Recall: 10^3 = 1,000 10^4 = 10,000 1.4 x 10^4 = 14,000 The Scale of Things 3 The Scale of Things Billions and Billions •There are billions of stars in a spiral galaxy •There are up to 1,000 galaxies in a Galaxy Cluster The Celestial Sphere 4 Towards the Big Dipper… Another Solar System… Towards the Big Dipper… Millions of other galaxies… Billions and Billions •There may be billions of clusters of galaxies! •There may even be billions of Super-Clusters… 5 The Sky at Night •Roughly 3,000 stars are visible to the naked eye on a clear, dark night (or about 100 in Fairfax!) •People organize stars into Constellations, which are chance alignments of stars into patterns •Constellations have historical and cultural significance •They are still useful for indicating general regions of the sky Constellations Constellations – Orion 6 Earth’s Seasons ecliptic (path of Sun) ecliptic (path of Sun) •The 23.5 degree tilt of Earth’s spin axis relative to its orbital axis around the Sun causes the seasons Celestial Sphere Celestial Coordinates •The path of the Sun through the sky is called the Ecliptic 7 Celestial Coordinates •Celestial Sphere animation •Ecliptic animation •View from the Northern Hemisphere •View from the Equator looking north •View from the Equator looking south •Retrograde motion of Mars •Solar System animation Seasonal Constellations •Due to the Earth’s motion around the Sun, different constellations are visible at night during the year Diurnal Motion •Earth’s daily rotation causes the stars to sweep out circular paths in the sky North Celestial Pole (star is Polaris) •This is called Diurnal Motion – objects rise in the east, set in the West •North Celestial Pole is extension of Earth’s spin axis into space 8 The Celestial Sphere Celestial Coordinates •Right Ascension (RA) works like Cosmic Longitude •Declination (DEC) works like Cosmic Latitude •Be careful with units! •DEC is measured using angular units: degrees (O), arc- minutes (’), arc-seconds (’’) •For example, for Betelgeuse in Orion, DEC = 17 degrees, 24 minutes •The range of DEC values is between –90 degrees (south celestial pole) to +90 degrees (north celestial pole) Degrees, Minutes, Seconds 9 Sidereal Day and Solar Day •RA is measured using time units: hours, minutes, seconds •This is because RA is related to the rotation of the Earth •The Earth rotates in 24 hours…but NOT solar hours! •We use Sidereal Time in astronomy…relative to the stars, the Earth 1 sidereal day later rotates once every 24 Sidereal Hours •1 Solar Day = 24 hours •1 Sidereal Day = 24 hours - 4 min •1 Sidereal Day=24 Sidereal Hours Phases of the Moon Orbit of the Moon •The Moon revolves around the Earth with a period of approximately one month •It always keeps the same face pointed towards Earth •This is a tidally locked orbit Earth Sun Orbit of Moon Moon 10 Orbit of the Moon •The Moon’s orbit is not in the same plane as Earth’s orbit around the Sun (it is tilted by 5.2o) •therefore “alignments” of the Earth, Moon, and Sun are not usually exact •The lunar orbit is not perfectly circular Earth Sun Orbit of Moon Moon •Eclipses occur during Eclipse Season, when the Earth and Sun are on the “Line of Nodes”, which happens twice a year •We do NOT see eclipses during every eclipse season because the Moon is usually not in the right place! Motion of the Moon •The time between stellar alignments (the sidereal period of the lunar orbit) is 27.3 (solar) days, or one “Sidereal Month” •The time between Earth-Moon-Sun “alignments” is 29.5 (solar) days, or one “Synodic Month” 1 synodic month later 1 sidereal month later Distant Star Sun Orbit of Moon starting point Moon Earth 11 Eclipses Eclipses Eclipses •Can occur only if the alignment is precise (Earth, Moon, and Sun line up exactly) •The Moon’s orbit is tilted by 5.2o relative to the ecliptic •Eclipses are infrequent because the Moon, Earth, and Sun must lie along the “Line of Nodes”, which is the intersection of the two orbital planes Line of Nodes Solar Sun Eclipse 12 Eclipses •Eclipses can be Lunar (Moon becomes darker) or Solar (Sun becomes darker) •Eclipses occur during Eclipse Season, when the Earth and Sun are on the “Line of Nodes”, which happens twice a year •We do NOT see eclipses during every eclipse season because the Moon is usually not in the right place! Line of Nodes No Eclipse Sun Solar Eclipse Solar Eclipse •The region of totality is called the “umbra” about 270 km across •The region in which the Sun appears partially blocked is called the “penumbra”, bout 7,000 km across •Solar Eclipse lasts about 7.5 minutes at one location 13 Annular Eclipse •The Moon’s orbit is slightly eccentric (non-circular) •If the Moon is far away in its orbit during an eclipse, it doesn’t completely block the Sun, resulting in an Annular Eclipse Lunar Eclipse •Lunar eclipses last about 100 minutes Solar Eclipse Tracks •Solar eclipses begin at sunrise in the West •The Moon’s shadow moves from West to East at 1,700 km per hour per hour due to the orbital motion of the Moon 14 Precession •The Earth spins like a top, and therefore it precesses due to the gravitational pull of the Moon and Sun •The period of precession is about 26,000 years •Precession changes the direction of the North Celestial Pole •This alters the coordinates of all celestial objects, and changes the time of year for the seasons •It also causes the Line of Nodes to rotate, making eclipse season about 20 days earlier each year 15.
Recommended publications
  • Cosmology Slides
    Inhomogeneous cosmologies George Ellis, University of Cape Town 27th Texas Symposium on Relativistic Astrophyiscs Dallas, Texas Thursday 12th December 9h00-9h45 • The universe is inhomogeneous on all scales except the largest • This conclusion has often been resisted by theorists who have said it could not be so (e.g. walls and large scale motions) • Most of the universe is almost empty space, punctuated by very small very high density objects (e.g. solar system) • Very non-linear: / = 1030 in this room. Models in cosmology • Static: Einstein (1917), de Sitter (1917) • Spatially homogeneous and isotropic, evolving: - Friedmann (1922), Lemaitre (1927), Robertson-Walker, Tolman, Guth • Spatially homogeneous anisotropic (Bianchi/ Kantowski-Sachs) models: - Gödel, Schücking, Thorne, Misner, Collins and Hawking,Wainwright, … • Perturbed FLRW: Lifschitz, Hawking, Sachs and Wolfe, Peebles, Bardeen, Ellis and Bruni: structure formation (linear), CMB anisotropies, lensing Spherically symmetric inhomogeneous: • LTB: Lemaître, Tolman, Bondi, Silk, Krasinski, Celerier , Bolejko,…, • Szekeres (no symmetries): Sussman, Hellaby, Ishak, … • Swiss cheese: Einstein and Strauss, Schücking, Kantowski, Dyer,… • Lindquist and Wheeler: Perreira, Clifton, … • Black holes: Schwarzschild, Kerr The key observational point is that we can only observe on the past light cone (Hoyle, Schücking, Sachs) See the diagrams of our past light cone by Mark Whittle (Virginia) 5 Expand the spatial distances to see the causal structure: light cones at ±45o. Observable Geo Data Start of universe Particle Horizon (Rindler) Spacelike singularity (Penrose). 6 The cosmological principle The CP is the foundational assumption that the Universe obeys a cosmological law: It is necessarily spatially homogeneous and isotropic (Milne 1935, Bondi 1960) Thus a priori: geometry is Robertson-Walker Weaker form: the Copernican Principle: We do not live in a special place (Weinberg 1973).
    [Show full text]
  • The Big Bang
    The Big Bang • Review of Hubble expansion • Assumptions in cosmology • The Big Bang • Cosmic microwave background Hubble expansion v = H0d What would be the recession speed of a galaxy at a distance of 7 Mpc? A) 0.1 km/s B) 10 km/s C) 250 km/s D) 500 km/s E) 1000 km/s Speed = H0 distance H0 = 71 km/s/Mpc Receding galaxy 8 Speed = 500 km/s = 0.5 Mpc/Gyr 6 4 2 Distance (Mpc) 0 -2 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 Time (Gyr) When was this galaxy in the same place as the Milky Way? time = distance / velocity = 7 Mpc/(0.5 Mpc/Gyr) = 14 Gyr ago If the Hubble constant were doubled, what would be the recession speed of a galaxy at a distance of 7 Mpc? A) 0.1 km/s B) 10 km/s C) 250 km/s D) 500 km/s E) 1000 km/s Speed = H distance H = 271 km/s/Mpc 0 0 Receding galaxy 8 Speed = 1000 km/s = 1.0 Mpc/Gyr 6 4 2 0 Distance (Mpc) -2 -4 -12 -10 -8 -6 -4 -2 0 Time (Gyr) When was this galaxy in the same place as the Milky Way? time = distance / velocity = 7 Mpc/(1.0 Mpc/Gyr) = 7 Gyr ago If Hubble's constant were twice as large as we now think it is, our estimate of the age of the universe would A) be unchanged B) increase by a factor of 2 C) increase by a factor of 4 D) decrease by a factor of 2 E) decrease by a factor of 4 Quasars are receding from us at high velocities because A) matter in black hole jets moves at close to the speed of light B) matter moves rapidly when close to a black hole C) quasars are at large distances D) we smell bad The variety of different active galaxies can be explained as due to A) different orientations of the accretion disk B) different forms of matter being accreted C) different shapes of black holes D) different velocities of black holes Assumptions in Cosmology Copernican principle: – We do not occupy a special place.
    [Show full text]
  • A Democratic Cosmos? Arxiv:1910.00481V1 [Physics.Hist-Ph] 1 Oct 2019
    A democratic Cosmos? Guilherme Franzmann1 and Yigit Yargic2 1Department of Physics, McGill University, Montréal, QC, H3A 2T8, Canada 2Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo ON, N2L 2Y5, Canada Abstract Despite the success of our best models in Theoretical Physics, especially concerning Cosmology and Particle Physics, we still face persistent challenges. Among them we have the cosmological singularity problem, understanding the late-time acceleration of the Universe, and comprehending the fundamental na- ture of time. We believe relevant new insights to tackle each of these issues may be found in the Philosophy of Cosmology. We elaborate on three philosophical principles that shall guide us on how to improve our current theories. They are the Copernican Principle for Scales, the Cosmological Heterarchical Principle and the Cosmological Principle of Irreversibility. Following these principles, and using some of our current physical theories as a proxy to implement them, we consider a new assessment of each of these challenges, and show how they may be either explained away, hinting towards new physics, or summarized in a new philosophical principle. Essay written for the 2019 Essay Prize in Philosophy of Cosmology1. arXiv:1910.00481v1 [physics.hist-ph] 1 Oct 2019 1http://www.rotman.uwo.ca/2019-essay-prize-in-philosophy-of-cosmology/ 1 Contents 1 The Cosmic Pnyka 3 2 The Copernican Principle for Scales 5 3 The Cosmological Heterarchical Principle 8 4 The landscape of scales 10 5 The Very Early Universe 12 5.1 T-duality . 12 6 Λ-theory: GR’s unknown heir in the deep IR 15 6.1 Inspirations from MOND .
    [Show full text]
  • I. ASYMMETRY of ECLIPSES. CALENDAR CYCLES Igor Taganov & Ville-V.E
    I. ASYMMETRY OF ECLIPSES. CALENDAR CYCLES Igor Taganov & Ville-V.E. Saari 1.1 Metaphysics of solar eclipses p. 12 1.2 Calendar cycles of solar eclipses p. 20 Literature p. 26 To describe the two main types of solar eclipses in modern astronomy the old Latin terms – umbra, antumbra and penumbra are still used (Fig. 1.1). A “partial eclipse” (c. 35 %) occurs when the Sun and Moon are not exactly in line and the Moon only partially obscures the Sun. The term “central eclipse” (c. 65 %) is often used as a generic term for eclipses when the Sun and Moon are exactly in line. The strict definition of a central eclipse is an eclipse, during which the central line of the Moon’s umbra touches the Earth’s surface. However, extremely rare the part of the Moon’s umbra intersects with Earth, producing an annular or total eclipse, but not its central line. Such event is called a “non-central” total or annular eclipse [2]. Fig. 1.1. Main types of solar eclipses The central solar eclipses are subdivided into three main groups: a “total eclipse” (c. 27 %) occurs when the dark silhouette of the Moon completely obscures the Sun; an “annular eclipse” (c. 33 %) occurs when the Sun and Moon are exactly in line, but the apparent size of the Moon is smaller than that of the Sun; a “hybrid eclipse” or annular/total eclipse (c. 5 %) at certain sites on the Earth’s surface appears as a total eclipse, whereas at other sites it looks as annular.
    [Show full text]
  • Living in a Void: Testing the Copernican Principle with Distant Supernovae
    Living in a Void: Testing the Copernican Principle with Distant Supernovae Timothy Clifton,∗ Pedro G. Ferreira, and Kate Land Oxford Astrophysics, Physics, DWB, Keble Road, Oxford, OX1 3RH, UK A fundamental presupposition of modern cosmology is the Copernican Principle; that we are not in a central, or otherwise special region of the Universe. Studies of Type Ia supernovae, together with the Copernican Principle, have led to the inference that the Universe is accelerating in its expansion. The usual explanation for this is that there must exist a ‘Dark Energy’, to drive the acceleration. Alternatively, it could be the case that the Copernican Principle is invalid, and that the data has been interpreted within an inappropriate theoretical frame-work. If we were to live in a special place in the Universe, near the centre of a void where the local matter density is low, then the supernovae observations could be accounted for without the addition of dark energy. We show that the local redshift dependence of the luminosity distance can be used as a clear discriminant between these two paradigms. Future surveys of Type Ia supernovae that focus on a redshift range of ∼ 0.1 − 0.4 will be ideally suited to test this hypothesis, and hence to observationally determine the validity of the Copernican Principle on new scales, as well as probing the degree to which dark energy must be considered a necessary ingredient in the Universe. The concordance model of the Universe combines two An alternative to admitting the existence of dark en- fundamental assumptions. The first is that space-time ergy is to review the postulates that necessitate its intro- is dynamical, obeying Einstein’s Equations.
    [Show full text]
  • Nicolaus Copernicus: the Loss of Centrality
    I Nicolaus Copernicus: The Loss of Centrality The mathematician who studies the motions of the stars is surely like a blind man who, with only a staff to guide him, must make a great, endless, hazardous journey that winds through innumerable desolate places. [Rheticus, Narratio Prima (1540), 163] 1 Ptolemy and Copernicus The German playwright Bertold Brecht wrote his play Life of Galileo in exile in 1938–9. It was first performed in Zurich in 1943. In Brecht’s play two worldviews collide. There is the geocentric worldview, which holds that the Earth is at the center of a closed universe. Among its many proponents were Aristotle (384–322 BC), Ptolemy (AD 85–165), and Martin Luther (1483–1546). Opposed to geocentrism is the heliocentric worldview. Heliocentrism teaches that the sun occupies the center of an open universe. Among its many proponents were Copernicus (1473–1543), Kepler (1571–1630), Galileo (1564–1642), and Newton (1643–1727). In Act One the Italian mathematician and physicist Galileo Galilei shows his assistant Andrea a model of the Ptolemaic system. In the middle sits the Earth, sur- rounded by eight rings. The rings represent the crystal spheres, which carry the planets and the fixed stars. Galileo scowls at this model. “Yes, walls and spheres and immobility,” he complains. “For two thousand years people have believed that the sun and all the stars of heaven rotate around mankind.” And everybody believed that “they were sitting motionless inside this crystal sphere.” The Earth was motionless, everything else rotated around it. “But now we are breaking out of it,” Galileo assures his assistant.
    [Show full text]
  • The Copernican Revolution: Observational Tests
    The Copernican Revolution: Observational Tests The Trigonometric (Geometric) Parallax Aristotle’s missing Stellar Parallax: The Earth has moved! Parallactic ellipse has (angular) semi major axis p = a/d (radians) ... where a is the Earth’s orbital “radius” and d is the distance to the star. For d in parsecs (pc), and p in arc-seconds (“): (pc) = 1/p(“) aEarth = 1 au = 1.50 x 108 km and 1 pc = 206,265 au First Measurement of a Stellar Parallax by Bessel (1838) ... 61 Cygni, also know as “Piazzi’s Flying Star”, with p = 0.287”, d = 3.48 pc (The largest stellar parallax is that of α Centauri with p = 0.75”) There are 206,265 arc-seconds (“) in a radian: 180°= π radians; 1°= 60’= 3,600” One astronomical unit is 23,455 Earth radii. The Aberration of Starlight The Earth is moving! The Earth’s orbital speed is v = 30 km s-1 The speed of light is c = 3 x 105 km s-1 Therefore, the maximum aberration angle is v/c = 10-4 radian = 21” (Note that the semi major axes of all annual aberration ellipses are 21”) History Roemer (1675) measures the velocity of light Observations of eclipses of the satellites of Jupiter. (Io, P = 1.76d) (His value for the speed of light was about 75% of the true value.) Note: Light travels 1 astronomical unit in about 500 seconds. Picard (1680) observes “puzzling parallax” of Polaris (~20”) d (parsecs) = 1/p(“) .... but the motion was in the wrong direction for parallactic motion! ... and was seen with the same amplitude in all directions on the sky! Bradley (1728) explains the phemomenon (and provides observations of γ Draconis) Note that this was over a century before Bessel successfully measured the trigonometric parallax of 61 Cygni in 1838.
    [Show full text]
  • The Moon and Eclipses
    The Moon and Eclipses ASTR 101 September 14, 2018 • Phases of the moon • Lunar month • Solar eclipses • Lunar eclipses • Eclipse seasons 1 Moon in the Sky An image of the Earth and the Moon taken from 1 million miles away. Diameter of Moon is about ¼ of the Earth. www.nasa.gov/feature/goddard/from-a-million-miles-away-nasa-camera-shows-moon-crossing-face-of-earth • Moonlight is reflected sunlight from the lunar surface. Moon reflects about 12% of the sunlight falling on it (ie. Moon’s albedo is 12%). • Dark features visible on the Moon are plains of old lava flows, formed by ancient volcanic eruptions – When Galileo looked at the Moon through his telescope, he thought those were Oceans, so he named them as Marias. – There is no water (or atmosphere) on the Moon, but still they are known as Maria – Through a telescope large number of craters, mountains and other geological features visible. 2 Moon Phases Sunlight Sunlight full moon New moon Sunlight Sunlight Quarter moon Crescent moon • Depending on relative positions of the Earth, the Sun and the Moon we see different amount of the illuminated surface of Moon. 3 Moon Phases first quarter waxing waxing gibbous crescent Orbit of the Moon Sunlight full moon new moon position on the orbit View from the Earth waning waning gibbous last crescent quarter 4 Sun Earthshine Moon light reflected from the Earth Earth in lunar sky is about 50 times brighter than the moon from Earth. “old moon" in the new moon's arms • Night (shadowed) side of the Moon is not completely dark.
    [Show full text]
  • Copernicus and His Revolutions
    Copernicus and his Revolutions Produced for the Cosmology and Cultures Project of the OBU Planetarium by Kerry Magruder August, 2005 2 Credits Written & Produced by: Kerry Magruder Narrator: Candace Magruder Copernicus: Kerry Magruder Cardinal Schönberg: Phil Kemp Andreas Osiander: J Harvey C. S. Lewis: Phil Kemp Johann Kepler: J Harvey Book Images courtesy: History of Science Collections, University of Oklahoma Libraries Photographs and travel slides courtesy: Duane H.D. Roller Archive, History of Science Collections, University of Oklahoma Libraries Digital photography by: Hannah Magruder Soundtrack composed and produced by: Eric Barfield Special thanks to... Peter Barker, Bernie Goldstein, Katherine Tredwell, Dennis Danielson, Mike Keas, JoAnn Palmeri, Hannah Magruder, Rachel Magruder, Susanna Magruder, Candace Magruder Produced with a grant from the American Council of Learned Societies 3 1. Contents 1. Contents________________________________________________3 2. Introduction _____________________________________________4 A. Summary ____________________________________________4 B. Synopsis ____________________________________________5 C. Instructor Notes_______________________________________7 3. Before the Show _________________________________________9 A. Vocabulary and Definitions _____________________________9 B. Pre-Test ____________________________________________10 4. Production Script________________________________________11 A. Production Notes_____________________________________11 B. Theater Preparation___________________________________13
    [Show full text]
  • Born During a Solar Eclipse Season
    ECLIPSES July 2 Solar Eclipse @ 10 Cancer & July 16 Lunar Eclipse @ 25 Capricorn stepping back and looking at the geometry of Brady suggests interpreting the natal Born During a how eclipses occur, not on the individual level chart or life of someone born in an Eclipse but rather on the larger cyclic playing field Season, assuming that this particular indi- of life. For each seemingly isolated eclipse vidual connects more deeply to that Saros Solar Eclipse belongs to a larger pattern, each eclipse is a Series and its meaning. member of a family and each family has par- She gives us in her book Predictive ticular characteristics” (Brady, B: 2005:1) Astrology: The Eagle and the Lark, a detailed Season: The larger pattern mentioned above is list of Solar Saros series between 1900 and what we call a Saros Series. A Saros Series 2050, with the commencement date of that Salvador Allende alludes to a recurrence in which the Sun series and the planetary positions at that and the Moon return to approximately the moment, the tightest aspects also between by Alice Thomas same position in their orbits where eclipses planets and midpoints and offers a tenta- can happen. tive delineation. ny Eclipse occurs Saros, a name coined by Suidas, (10th Everyone born 18 and a half days before at times of syzygy century AD) means something to be a Solar Eclipse and 18 and a half days later during a plane- repeated. This recurring pattern or repeti- is born during Eclipse Season, and theo- A tion occurs approximately every 18 years retically could be connected to this Saros tary alignment between the Sun, the Moon, and and 11 days (or 223 lunations), but the Series pattern.
    [Show full text]
  • 22. Big-Bang Cosmology
    1 22. Big-Bang Cosmology 22. Big-Bang Cosmology Revised August 2019 by K.A. Olive (Minnesota U.) and J.A. Peacock (Edinburgh U.). 22.1 Introduction to Standard Big-Bang Model The observed expansion of the Universe [1–3] is a natural (almost inevitable) result of any homogeneous and isotropic cosmological model based on general relativity. However, by itself, the Hubble expansion does not provide sufficient evidence for what we generally refer to as the Big-Bang model of cosmology. While general relativity is in principle capable of describing the cosmology of any given distribution of matter, it is extremely fortunate that our Universe appears to be homogeneous and isotropic on large scales. Together, homogeneity and isotropy allow us to extend the Copernican Principle to the Cosmological Principle, stating that all spatial positions in the Universe are essentially equivalent. The formulation of the Big-Bang model began in the 1940s with the work of George Gamow and his collaborators, Ralph Alpher and Robert Herman. In order to account for the possibility that the abundances of the elements had a cosmological origin, they proposed that the early Universe was once very hot and dense (enough so as to allow for the nucleosynthetic processing of hydrogen), and has subsequently expanded and cooled to its present state [4,5]. In 1948, Alpher and Herman predicted that a direct consequence of this model is the presence of a relic background radiation with a temperature of order a few K [6,7]. Of course this radiation was observed 16 years later as the Cosmic Microwave Background (CMB) [8].
    [Show full text]
  • The Scientific Revolution
    13/01/2017 the Scientific Revolution: the Cosmos Mechanized • 1543 Nicolaus Copernicus ‐ publishes heliocentric universe in De Revolutionibus Orbium Coelestium ‐ implicit introduction Copernican principle: Earth/Sun is not special • 1609‐1632 Galileo Galilei ‐ by means of (telescopic) observations, proves the validity of the heliocentric Universe. • 1609/1619 Johannes Kepler ‐ the 3 Kepler laws, describing the elliptical orbits of the planets around the Sun • 1687 Isaac Newton ‐ discovers Gravitational Force as agent behind cosmic motions ‐ publishes his Principia (Philosophiae Naturalis Principia Mathematica), which establishes the natural laws of motion and gravity (the latter only to be replaced by Einstein’s theory of GR) • 1755 Immanuel Kant ‐ asserts that nebulae are really galaxies separate from and outside from the Milky Way, ‐ calling these Island Universes • 1785 William Herschel ‐ proposes theory that our Sun is at or near the center of ou Galaxy (Milky Way) 1 13/01/2017 Birthhouse Copernicus, Nicolaus Copernicus Torun 1473 –born in Torun (Poland) 1491‐1495 ‐ study Univ. Krakow 1496‐1501 ‐ 3 years Univ. Bologna ‐ canon law 1503‐‐Warmia 1514 ‐ Frombork Languages: Latin , German 1514 ‐ Commentariolus Nicolai Copernici de hypothesibus motuum coelestium a se constitutis commentariolus + theoretical treatise on heliocentric mechanism + 40 pages, 7 basic assumptions Tower (living) Copernicus, Frombork Frombork Cathedral 2 13/01/2017 1. There is no one center of all the celestial circles or spheres. 2. The center of the earth is not the center of the universe, but only of gravity and of the lunar sphere. 3. All the spheres revolve about the sun as their midpoint, and therefore the sun is the center of the universe.
    [Show full text]