Detection and Identification of the Coconut Lethal Yellowing Phytoplasma in Weeds Growing in Coconut Farms in Côte D’Ivoire
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nuytsia the Journal of the Western Australian Herbarium 26: 149–166 Published Online 3 November 2015
R.L. Barrett & I.R.H. Telford, Two new species of Phyllanthus (Phyllanthaceae) 149 Nuytsia The journal of the Western Australian Herbarium 26: 149–166 Published online 3 November 2015 Two new species of Phyllanthus from northern Australia and notes on Phyllanthus, Sauropus and Synostemon (Phyllanthaceae) in Western Australia Russell L. Barrett1,2,3,5,6 and Ian R.H. Telford4 1Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, Western Australia 6005 2Western Australian Herbarium, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 3School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, Western Australia 6009 4Botany, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351 5Current address: Australian National Herbarium, Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, GPO Box 1600, Canberra, Australian Capital Territory 2601 6Corresponding author, email: [email protected] Abstract Barrett, R.L. & Telford, I.R.H. Two new species of Phyllanthus from northern Australia and notes on Phyllanthus, Sauropus and Synostemon (Phyllanthaceae) in Western Australia. Nuytsia 26: 149–166 (2015). Two new species of Phyllanthus L. are described, both included within P. subgen. Lysiandra F.Muell.; P. eremicus R.L.Barrett & I.Telford occurring in the Pilbara, Great Sandy Desert and southern Dampierland bioregions of Western Australia and the Tanami region of the Northern Territory, and P. hamelinii I.Telford & R.L.Barrett restricted to the Carnarvon bioregion, Western Australia. Both species have reasonably restricted or poorly known distributions and P. eremicus is of some conservation concern. -
'Candidatus Phytoplasma Solani' (Quaglino Et Al., 2013)
‘Candidatus Phytoplasma solani’ (Quaglino et al., 2013) Synonyms Phytoplasma solani Common Name(s) Disease: Bois noir, blackwood disease of grapevine, maize redness, stolbur Phytoplasma: CaPsol, maize redness phytoplasma, potato stolbur phytoplasma, stolbur phytoplasma, tomato stolbur phytoplasma Figure 1: A ‘dornfelder’ grape cultivar Type of Pest infected with ‘Candidatus Phytoplasma Phytoplasma solani’. Courtesy of Dr. Michael Maixner, Julius Kühn-Institut (JKI). Taxonomic Position Class: Mollicutes, Order: Acholeplasmatales, Family: Acholeplasmataceae Genus: ‘Candidatus Phytoplasma’ Reason for Inclusion in Manual OPIS A pest list, CAPS community suggestion, known host range and distribution have both expanded; 2016 AHP listing. Background Information Phytoplasmas, formerly known as mycoplasma-like organisms (MLOs), are pleomorphic, cell wall-less bacteria with small genomes (530 to 1350 kbp) of low G + C content (23-29%). They belong to the class Mollicutes and are the putative causal agents of yellows diseases that affect at least 1,000 plant species worldwide (McCoy et al., 1989; Seemüller et al., 2002). These minute, endocellular prokaryotes colonize the phloem of their infected plant hosts as well as various tissues and organs of their respective insect vectors. Phytoplasmas are transmitted to plants during feeding activity by their vectors, primarily leafhoppers, planthoppers, and psyllids (IRPCM, 2004; Weintraub and Beanland, 2006). Although phytoplasmas cannot be routinely grown by laboratory culture in cell free media, they may be observed in infected plant or insect tissues by use of electron microscopy or detected by molecular assays incorporating antibodies or nucleic acids. Since biological and phenotypic properties in pure culture are unavailable as aids in their identification, analysis of 16S rRNA genes has been adopted instead as the major basis for phytoplasma taxonomy. -
Pl Path 502 Phytoplasma
Phytoplasmas Pl. Path. 502 Dr. PN SHARMA Department of Plant Pathology CSK HP Agricultural University Palampur-176 062 (HP State) INDIA What are Phytoplasmas ? Phytoplasmas have diverged from gram-positive eubacteria, and belong to the Genus Phytoplasma within the Class Mollicutes. Mycoplasmas dramatically differ phenotypically from other bacteria by their minute size (0.3 - 0.5 and lack of cell wall. The lack of cell wall was used to separate mycoplasmas from other bacteria in a class named Mollicutes. Due to degenerative or reductive evolution, accompanied by significant losses of genomic sequences, the genomes of mollicutes have shrunk and are relatively small compared to other bacteria, ranging from 580 kb. to 2,200 kb. Phytoplasma •Phytoplasma are wall-less prokaryotic organisms •Seen with electron microscope in the phloem of infected plant •Unable to grow on culture media •Pleomorphic shaped and spiral Phytoplasma •Most phytoplasma transmitted from plant to plant by • leafhoppers, • but some are transmitted by Psyllids and planthoppers •Caused Yellowing, Big bud, Stuntting, Witchbroom •Sensitive to antibiotics, especially Tetracycline group Mycoplasma (Phytoplsma): Doi et al. (1970) are submicroscopic, measuring 150- 300 nm in diameter having ribosomes and DNA strands enclosed by a bilayer membrane but not the cell wall, replicate by binary fission, can be cultured artificially in vitro on specific medium and are sensitive to certain antibiotics (tetracycline not to penicillin). E.g. Little leaf of brinjal, Peach yellow Spiroplasm citri (Fudt Allh et al. 1571) Citrus stubbesh. Classification Class : Mollicutes Order: Mycoplasmatales. Three families, each with one genus: Mycoplasmataceae, genus Mycoplasma, Acholeplasmataceae, . genus Acholeplasma, Spiroplasmataceae . genus Spiroplasma. -
Characterization of the Wild Trees and Shrubs in the Egyptian Flora
10 Egypt. J. Bot. Vol. 60, No. 1, pp. 147-168 (2020) Egyptian Journal of Botany http://ejbo.journals.ekb.eg/ Characterization of the Wild Trees and Shrubs in the Egyptian Flora Heba Bedair#, Kamal Shaltout, Dalia Ahmed, Ahmed Sharaf El-Din, Ragab El- Fahhar Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt. HE present study aims to study the floristic characteristics of the native trees and shrubs T(with height ≥50cm) in the Egyptian flora. The floristic characteristics include taxonomic diversity, life and sex forms, flowering activity, dispersal types,economic potential, threats and national and global floristic distributions. Nine field visits were conducted to many locations all over Egypt for collecting trees and shrubs. From each location, plant and seed specimens were collected from different habitats. In present study 228 taxa belonged to 126 genera and 45 families were recorded, including 2 endemics (Rosa arabica and Origanum syriacum subsp. sinaicum) and 5 near-endemics. They inhabit 14 habitats (8 natural and 6 anthropogenic). Phanerophytes (120 plants) are the most represented life form, followed by chamaephytes (100 plants). Bisexuals are the most represented. Sarcochores (74 taxa) are the most represented dispersal type, followed by ballochores (40 taxa). April (151 taxa) and March (149 taxa) have the maximum flowering plants. Small geographic range - narrow habitat - non abundant plants are the most represented rarity form (180 plants). Deserts are the most rich regions with trees and shrubs (127 taxa), while Sudano-Zambezian (107 taxa) and Saharo-Arabian (98 taxa) was the most. Medicinal plants (154 taxa) are the most represented good, while salinity tolerance (105 taxa) was the most represented service and over-collecting and over-cutting was the most represented threat. -
New Records and Rediscoveries of Plants in Singapore
Gardens' Bulletin Singapore 70 (1): 67–90. 2018 67 doi: 10.26492/gbs70(1).2018-08 New records and rediscoveries of plants in Singapore R.C.J. Lim1, S. Lindsay1, D.J. Middleton2, B.C. Ho2, P.K.F. Leong2, M.A. Niissalo2, P.C. van Welzen3, H.-J. Esser4, S.K. Ganesan2, H.K. Lua5, D.M. Johnson6, N.A. Murray6, J. Leong-Škorničková2, D.C. Thomas2 & Ali Ibrahim2 1Native Plant Centre, Horticulture and Community Gardening Division, National Parks Board, 100K Pasir Panjang Road, 118526, Singapore [email protected] 2Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569, Singapore 3Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden 4Botanische Staatssammlung München, Menzinger Straße 67, München D-80638, Germany 5National Biodiversity Centre, National Parks Board, 1 Cluny Road, 259569, Singapore 6Department of Botany & Microbiology, Ohio Wesleyan University, Delaware, OH 43015, U.S.A. ABSTRACT. The city-state of Singapore continues to provide many new records and rediscoveries of plant species in its nature reserves, offshore islands and secondary forests. Eleven new records for Singapore and eight rediscoveries of species previously presumed nationally extinct are reported here along with national conservation assessments. The new records are Albertisia crassa Forman, Arcangelisia flava (L.) Merr., Chaetocarpus castanocarpus (Roxb.) Thwaites, Dendrokingstonia nervosa (Hook.f. & Thomson) Rauschert, Dipterocarpus chartaceus Symington, Haplopteris sessilifrons (Miyam. & H.Ohba) S.Linds., Hewittia malabarica (L.) Suresh, Phyllanthus reticulatus Poir., Spermacoce parviceps (Ridl.) I.M.Turner, Sphaeropteris trichodesma (Scort.) R.M.Tryon and Uvaria micrantha (A.DC.) Hook.f. & Thomson. The rediscoveries are Callerya dasyphylla (Miq.) Schot, Cocculus orbiculatus (L.) DC., Lecananthus erubescens Jack, Loeseneriella macrantha (Korth.) A.C.Sm., Mapania squamata (Kurz) C.B.Clarke, Plagiostachys lateralis (Ridl.) Ridl., Scolopia macrophylla (Wight & Arn.) Clos and Spatholobus maingayi Prain ex King. -
Magnoliophyta, Arly National Park, Tapoa, Burkina Faso Pecies S 1 2, 3, 4* 1 3, 4 1
ISSN 1809-127X (online edition) © 2011 Check List and Authors Chec List Open Access | Freely available at www.checklist.org.br Journal of species lists and distribution Magnoliophyta, Arly National Park, Tapoa, Burkina Faso PECIES S 1 2, 3, 4* 1 3, 4 1 OF Oumarou Ouédraogo , Marco Schmidt , Adjima Thiombiano , Sita Guinko and Georg Zizka 2, 3, 4 ISTS L , Karen Hahn 1 Université de Ouagadougou, Laboratoire de Biologie et Ecologie Végétales, UFR/SVT. 03 09 B.P. 848 Ouagadougou 09, Burkina Faso. 2 Senckenberg Research Institute, Department of Botany and molecular Evolution. Senckenberganlage 25, 60325. Frankfurt am Main, Germany 3 J.W. Goethe-University, Institute for Ecology, Evolution & Diversity. Siesmayerstr. 70, 60054. Frankfurt am Main, Germany * Corresponding author. E-mail: [email protected] 4 Biodiversity and Climate Research Institute (BiK-F), Senckenberganlage 25, 60325. Frankfurt am Main, Germany. Abstract: The Arly National Park of southeastern Burkina Faso is in the center of the WAP complex, the largest continuous unexplored until recently. The plant species composition is typical for sudanian savanna areas with a high share of grasses andsystem legumes of protected and similar areas toin otherWest Africa.protected Although areas wellof the known complex, for its the large neighbouring mammal populations, Pama reserve its andflora W has National largely Park.been Sahel reserve. The 490 species belong to 280 genera and 83 families. The most important life forms are phanerophytes and therophytes.It has more species in common with the classified forest of Kou in SW Burkina Faso than with the geographically closer Introduction vegetation than the surrounding areas, where agriculture For Burkina Faso, only very few comprehensive has encroached on savannas and forests and tall perennial e.g., grasses almost disappeared, so that its borders are even Guinko and Thiombiano 2005; Ouoba et al. -
A New Phytoplasma Taxon Associated with Japanese Hydrangea Phyllody
international Journal of Systematic Bacteriology (1 999), 49, 1275-1 285 Printed in Great Britain 'Candidatus Phytoplasma japonicum', a new phytoplasma taxon associated with Japanese Hydrangea phyllody Toshimi Sawayanagi,' Norio Horikoshi12Tsutomu Kanehira12 Masayuki Shinohara,2 Assunta Berta~cini,~M.-T. C~usin,~Chuji Hiruki5 and Shigetou Nambal Author for correspondence: Shigetou Namba. Tel: +81 424 69 3125. Fax: + 81 424 69 8786. e-mail : snamba(3ims.u-tokyo.ac.jp Laboratory of Bioresource A phytoplasma was discovered in diseased specimens of f ield-grown hortensia Technology, The University (Hydrangea spp.) exhibiting typical phyllody symptoms. PCR amplification of of Tokyo, 1-1-1 Yayoi, Bunkyo-ku 113-8657, DNA using phytoplasma specific primers detected phytoplasma DNA in all of Japan the diseased plants examined. No phytoplasma DNA was found in healthy College of Bioresource hortensia seedlings. RFLP patterns of amplified 165 rDNA differed from the Sciences, Nihon University, patterns previously described for other phytoplasmas including six isolates of Fujisawa, Kanagawa 252- foreign hortensia phytoplasmas. Based on the RFLP, the Japanese Hydrangea 0813, Japan phyllody (JHP) phytoplasma was classified as a representative of a new sub- 3 lstituto di Patologia group in the phytoplasma 165 rRNA group I (aster yellows, onion yellows, all vegetale, U niversita degli Studi, Bologna 40126, Italy of the previously reported hortensia phytoplasmas, and related phytoplasmas). A phylogenetic analysis of 16s rRNA gene sequences from this 4 Unite de Pathologie Vegetale, Centre de and other group Iphytoplasmas identified the JHP phytoplasma as a member Versa iI les, Inst it ut Nat iona I of a distinct sub-group (sub-group Id) in the phytoplasma clade of the class de la Recherche Mollicutes. -
Ability of Euscelidius Variegatus to Transmit Flavescence Dorée Phytoplasma with a Short Latency Period
insects Article Ability of Euscelidius variegatus to Transmit Flavescence Dorée Phytoplasma with a Short Latency Period Luca Picciau 1, Bianca Orrù 1, Mauro Mandrioli 2 , Elena Gonella 1,* and Alberto Alma 1,* 1 Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, I-10095 Grugliasco (TO), Italy; [email protected] (L.P.); [email protected] (B.O.) 2 Dipartimento di Scienze della Vita (DSV), University of Modena e Reggio Emilia, I-41125 Modena, Italy; [email protected] * Correspondence: [email protected] (E.G.); [email protected] (A.A.) Received: 5 August 2020; Accepted: 1 September 2020; Published: 5 September 2020 Simple Summary: Phytoplasmas are a group of phloem-restricted phytopathogens that attack a huge number of wild and cultivated plants, causing heavy economic losses. They are transmitted by phloem-feeding insects of the order Hemiptera; the transmission process requires the vector to orally acquire the phytoplasma by feeding on an infected plant, becoming infective once it reaches the salivary glands after quite a long latency period. Since infection is retained for all of the insect’s life, acquisition at the nymphal stage is considered to be most effective because of the long time needed before pathogen inoculation. This work provides evidence for the reduced latency period needed by adults of the phytoplasma vector Euscelidius variegatus from flavescence dorée phytoplasma acquisition to transmission. Indeed, we demonstrate that adults can become infective as soon as 9 days from the beginning of phytoplasma acquisition. Our results support a reconsideration of the role of adults in phytoplasma epidemiology, by indicating their extended potential ability to complete the full transmission process. -
Insect Vectors of Phytoplasmas - R
TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Insect Vectors of Phytoplasmas - R. I. Rojas- Martínez INSECT VECTORS OF PHYTOPLASMAS R. I. Rojas-Martínez Department of Plant Pathology, Colegio de Postgraduado- Campus Montecillo, México Keywords: Specificity of phytoplasmas, species diversity, host Contents 1. Introduction 2. Factors involved in the transmission of phytoplasmas by the insect vector 3. Acquisition and transmission of phytoplasmas 4. Families reported to contain species that act as vectors of phytoplasmas 5. Bactericera cockerelli Glossary Bibliography Biographical Sketch Summary The principal means of dissemination of phytoplasmas is by insect vectors. The interactions between phytoplasmas and their insect vectors are, in some cases, very specific, as is suggested by the complex sequence of events that has to take place and the complex form of recognition that this entails between the two species. The commonest vectors, or at least those best known, are members of the order Homoptera of the families Cicadellidae, Cixiidae, Psyllidae, Cercopidae, Delphacidae, Derbidae, Menoplidae and Flatidae. The family with the most known species is, without doubt, the Cicadellidae (15,000 species described, perhaps 25,000 altogether), in which 88 species are known to be able to transmit phytoplasmas. In the majority of cases, the transmission is of a trans-stage form, and only in a few species has transovarial transmission been demonstrated. Thus, two forms of transmission by insects generally are known for phytoplasmas: trans-stage transmission occurs for most phytoplasmas in their interactions with their insect vectors, and transovarial transmission is known for only a few phytoplasmas. UNESCO – EOLSS 1. Introduction The phytoplasmas are non culturable parasitic prokaryotes, the mechanisms of dissemination isSAMPLE mainly by the vector insects. -
154 Detection of Phytoplasmas Associated with Kalimantan Wilt Disease of Coconut by the Polymerase Chain Reaction
Jurnal Littri 12(4), Desember 2006. Hlm. 154 –JURNAL 160 LITTRI VOL. 12 NO 4, DESEMBER 2006 : 154 - 160 ISSN 0853 - 8212 DETECTION OF PHYTOPLASMAS ASSOCIATED WITH KALIMANTAN WILT DISEASE OF COCONUT BY THE POLYMERASE CHAIN REACTION J.S. WAROKKA1, P. JONES2, and M.J. DICKINSON3 1 Indonesian Coconut and Other Palms Research Institute. PO Box 1004 Manado 95001, Indonesia. 2 Bio-Imaging unit, Rothamsted Research. Harpenden Herts AL5 2JQ, UK. 3 School of Biosciences, University of Nottingham, Loughborough Leicestershire LE12 5RD, UK. ABSTRACT penyebab penyakit layu Kalimantan adalah phytoplasma. Teknik ini juga secara efektif dapat mendeteksi phytoplasma dalam jaringan tanaman Coconut is the second Indonesia’s most important social commodity kelapa yang sudah terinfeksi maupun yang belum menunjukkan gejala after rice. There are more than 3.6 million hectares of coconut plantations penyakit. DNA phytoplasma dapat dideteksi pada 95 sampel dari 116 in Indonesia equivalent to one third of the total world coconut area. sampel (81.9%) yang dianalisis. Berdasarkan jenis sample yang diperiksa However, the production and productivity of the coconut are very low and ternyata phytoplasma dapat dideteksi pada sample yang terinfeksi maupun unstable for various reasons, including pests and diseases. Kalimantan wilt yang belum menunjukkan gejala penyakit masing-masing 95.1% dan (KW) disease causes extensive damage to coconut plantation. In previous 67.3%. Hasil penelitian ini mengkonfirmasi bahwa penyakit layu investigations, bacteria, fungi, viruses, viroids and soil-borne pathogens Kalimantan disebabkan oleh phytoplasma. such as nematodes were tested, but none of them were consistently associated with the disease. The objective of this research was to detect Kata kunci: Kelapa, Cocos nucifera L., penyakit tanaman, penyakit layu and diagnose the phytoplasma associating with KW. -
Angiospermic Flora of Gafargaon Upazila of Mymensingh District Focusing on Medicinally Important Species
Bangladesh J. Plant Taxon. 26(2): 269‒283, 2019 (December) © 2019 Bangladesh Association of Plant Taxonomists ANGIOSPERMIC FLORA OF GAFARGAON UPAZILA OF MYMENSINGH DISTRICT FOCUSING ON MEDICINALLY IMPORTANT SPECIES 1 M. OLIUR RAHMAN , NUSRAT JAHAN SAYMA AND MOMTAZ BEGUM Department of Botany, University of Dhaka, Dhaka 1000, Bangladesh Keywords: Angiosperm; Taxonomy; Vegetation analysis; Medicinal Plants; Distribution; Conservation. Abstract Gafargaon upazila has been floristically explored to identify and assess the angiospermic flora that resulted in occurrence of 203 taxa under 174 genera and 75 families. Magnoliopsida is represented by 167 taxa under 140 genera and 62 families, while Liliopsida is constituted by 36 taxa belonging to 34 genera and 13 families. Vegetation analysis shows that herbs are represented by 106 taxa, shrubs 35, trees 54, and climbers by 8 species. In Magnoliopsida, Solanaceae is the largest family possessing 10 species, whereas in Liliopsida, Poaceae is the largest family with 12 species. The study has identified 45 medicinal plants which are used for treatment of over 40 diseases including diabetes, ulcer, diarrhoea, dysentery, fever, cold and cough, menstrual problems, blood pressure and urinary disorders by the local people. Some noticeable medicinal plants used in primary healthcare are Abroma augusta (L.) L.f., Coccinia grandis (L.) Voigt., Commelina benghalensis L., Cynodon dactylon (L.) Pers., Holarrhena antidysenterica Flem., Glycosmis pentaphylla (Retz.) A. DC., Mikania cordata (Burm. f.) Robinson, Ocimum tenuiflorum L. and Rauvolfia serpentina (L.) Benth. A few number of species are also employed in cultural festivals in the study area. Cardamine flexuosa With., Oxystelma secamone (L.) Karst., Phaulopsis imbricata (Forssk.) Sweet, Piper sylvaticum Roxb., Stephania japonica (Thunb.) Miers and Trema orientalis L. -
Evaluation of Antioxidant, Anti-Microbial and Cytotoxic Activity of Methanolic Extract of Phyllanthus Acidus Leaves
Evaluation of Antioxidant, Anti-microbial and Cytotoxic activity of Methanolic Extract of Phyllanthus acidus leaves A Dissertation Submitted to the Department of Pharmacy, East West University in the Partial Fulfillment of the Requirements for the Degree of Bachelor of Pharmacy Submitted by Md. Nasib Rahman Arafat ID: 2013-3-70-010 Department of Pharmacy East West University Declaration by the Author I, Md. Nasib Rahman Arafat, hereby declare that the dissertation entitled "Evaluation of Antioxidant, Anti-microbial and Cytotoxic Activity of Methanolic Extract of Phyllanthus acidus Leaves" submitted by me to the Department of Pharmacy, East West University, Dhaka, in the partial fulfillment of the requirement for the award of the degree of Bachelor of Pharmacy, under the supervision and guidance of Abdullah-Al-Faysal, Senior Lecturer, Department of Pharmacy, East West University. The thesis paper has not formed the basis for the award of any other degree/diploma/fellowship or other similar title to any candidate of any university. ____________________________ Md. Nasib Rahman Arafat ID: 2013-3-70-010 Department of Pharmacy East West University i Evaluation of Antioxidant, Anti-microbial and Cytotoxic Activity of Methanolic Extract of Phyllanthus acidus Leaves Certificate by the Supervisor This is to certify that the dissertation entitled "Evaluation of Antioxidant, Anti- microbial and Cytotoxic Activity of Methanolic Extract of Phyllanthus acidus Leaves" submitted to the Department of Pharmacy, East West University, Dhaka, in partial fulfillment of the requirements for the Degree of Bachelor of Pharmacy, was carried out by Md. Nasib Rahman Arafat (Student ID: 2013-3-70-010) under my supervision and no part of this dissertation has been or is being submitted elsewhere for the award of any Degree/ Diploma.