Pseudorandom Ramsey Graphs

Total Page:16

File Type:pdf, Size:1020Kb

Pseudorandom Ramsey Graphs Pseudorandom Ramsey Graphs Jacques Verstraete, UCSD [email protected] Abstract We outline background to a recent theorem [47] connecting optimal pseu- dorandom graphs to the classical off-diagonal Ramsey numbers r(s; t) and graph Ramsey numbers r(F; t). A selection of exercises is provided. Contents 1 Linear Algebra 1 1.1 (n; d; λ)-graphs . 2 1.2 Alon-Boppana Theorem . 2 1.3 Expander Mixing Lemma . 2 2 Extremal (n; d; λ)-graphs 3 2.1 Triangle-free (n; d; λ)-graphs . 3 2.2 Clique-free (n; d; λ)-graphs . 3 2.3 Quadrilateral-free graphs . 4 3 Pseudorandom Ramsey graphs 4 3.1 Independent sets . 4 3.2 Counting independent sets . 5 3.3 Main Theorem . 5 4 Constructing Ramsey graphs 5 4.1 Subdivisions and random blocks . 6 4.2 Explicit Off-Diagonal Ramsey graphs . 7 5 Multicolor Ramsey 7 5.1 Blowups . 8 1. Linear Algebra X. Since trace is independent of basis, for k ≥ 1: n If A is a square symmetric matrix, then the eigenvalues X tr(Ak) = tr(X−kAkXk) = tr(Λk) = λk: (2) of A are real. When A is an n by n matrix, we denote i i=1 them λ1 ≥ λ2 ≥ · · · ≥ λn. If the corresponding eigen- k vectors forming an orthonormal basis are e1; e2; : : : ; en, The combinatorial interpretation of tr(A ) as the num- n P then for any x 2 R , we may write x = xiei and ber of closed walks of length k in the graph G will be used frequently. When A is the adjacency matrix of a n n X 2 X graph G, we write λi(G) for the ith largest eigenvalue hAx; xi = λixi and hAx; yi = λixiyi: (1) i=1 i=1 of A and For any i 2 [n], note xi = hx; eii. Furthermore, A is di- λ(G) = maxfjλi(G)j : 2 ≤ i ≤ ng (3) −1 agonalizable: A = X ΛX where Λ has λ1; λ2; : : : ; λn on the diagonal and e1; e2; : : : ; en are the columns of and we refer to the eigenvalues of the graph rather than the eigenvalues of A. For X; Y ⊆ V (G), the number e(X; Y ) of ordered pairs (x; y) such that x 2 X, y 2 Y and fx; yg 2 E(G) is given by the inner product hAx; yi 1 1 Linear Algebra 2 in (1) where x and y are the characteristic vectors of Many more examples of (n; d; λ)-graphs are given in X and Y respectively { thus xv = 1 if v 2 X and the survey of Krivelevich and Sudakov [41]. For our xv = 0 otherwise. References on spectral graph theory purposes, we occasionally consider induced subgraphs include [15, 19, 33, 53]. of (n; d; λ)-graphs which are almost regular and whose eigenvalues are controlled by interlacing. 1.1. (n; d; λ)-graphs 1.2. Alon-Boppana Theorem If A is doubly stochastic, then e1 is the constant unit vector with eigenvalue equal to the common row sum. The infinite d-regular tree Td is the universal cover of In particular, if A is the adjacency matrix of a d-regular d-regular graphs, so for any d-regular graph G with n graph G, then λ1(G) = d and if λ(G) = λ, then the vertices, the number of closed walks of length 2k from graph is referred to as an (n; d; λ)-graph. The complete x to x is at least the number of closed walks of length graphs Kn are (n; n − 1; 1)-graphs and the complete 2k from the root of Td to the root of Td. This in turn 1 bipartite graphs Kn;n are (2n; n; n)-graphs. is at least 1 2k − 2 Moore graphs. A Moore graph of girth five is a d-regular d(d − 1)k−1: (7) k k − 1 graph with d2 +1 vertices and no cycles of length three or four. The diameter of such graphs is two, and if A The total number of walks of length 2k in G is at most is an adjacency matrix for such a graph, then d2k + (n − 1)λ2k by the trace formula, so A2 = J − A + (d − 1)I: (4) n2k − 2 d2k + (n − 1)λ2k ≥ d(d − 1)k−1: (8) k k − 1 Here J is the all 1 matrix and I is the identity matrix, 2 both with the same dimensions as A. Then λi + λi = Using this inequality, one can obtain a lower bound on d − 1 for all i ≥ 2 and so every eigenvalue other than λ. For fixed d, by selecting k to depend appropriately p 1 on n in (8), we obtain the Alon-Boppana Theorem [49]: the largest is 2 (1 ± 4d − 3). The Petersen graph is an example with d = 3 and the spectrum is 3115(−2)4. Theorem 1.1. Let d ≥ 1. If G is a d-regular n-vertex The non-existence of d-regular Moore graphs when d 62 n graph then f2; 3; 7; 57g was proved by Hoffman and Singleton [36] by considering integrality of the spectrum of the graph. p lim inf λ(Gn) ≥ 2 d − 1: (9) A brief survey of Moore graphs is found in [59]. n!1 A very short proof of the Alon-Boppana Theorem was Cayley graphs. Let Γ be a group and S ⊆ Γ closed found by Alon [49,50]. Ramanujan graphs are d-regular under inverse. A Cayley graph (Γ;S) has vertex set p graphs with λ ≤ 2 d − 1, and were constructed by Γ where fx; yg is an edge if xs = y for some s 2 S. Lubotzky, Philips and Sarnak [43] and Margulis [46] Let χ : γ 2 Γ denote the characters of Γ, then the γ as Cayley graphs, and more recently using polynomial eigenvalues of the Cayley graph interlacing by Marcus, Spielman and Srivastava [45]. X It turns out that random d-regular graphs [60] are also λγ = χγ (s): (5) s2S Ramanujan graphs with high probability, as proved in a major work by Friedman [27]. For example, if χ is the quadratic character of Fq, then the Paley graphs Pq have vertex set Fq where q = 1 1.3. Expander Mixing Lemma mod 4 and where fx; yg is an edge if χ(x − y) = 1 { this is a Cayley graph with generating set S equal to Let G be an (n; d; λ)-graph. If X; Y ⊂ V (G) are dis- joint and x and y are their characteristic vectors, then the set of non-zero quadratic residues of Fq, namely S = fx : χ(x) = 1g. Then the trivial character gives n 1 X λ1 = 2 (q − 1) as an eigenvalue, and the rest are given e(X; Y ) = hAx; yi = λixiyi: (10) by exponential sums. In particular i=1 1 This is the number of closed walks which return for the first X 2πijx λ(Pq) = max e q : (6) time to the root at time 2k. 1≤j≤q−1 x2S In particular, it was proved by Gauss [31] that λ(Pq) = 1 1 2 2 (q − 1). More generally, Weil's character sum in- equality [31] can be used to give an upper bound on λ(G) when G is a Cayley graph. 2 Extremal (n; d; λ)-graphs 3 If G is d-regular then λ1 = d and so by Cauchy- 2. Extremal (n; d; λ)-graphs Schwarz: 2.1. Triangle-free (n; d; λ)-graphs n X je(X; Y ) − dx1y1j ≤ λixiyi (11) Mantel's Theorem [44] states that a triangle-free graph i=2 with 2n vertices has at most n2 edges, with equal- 1 n 1 X 2 X 2 ity only for complete n by n bipartite graphs, which ≤ λ x2 y2 :(12) i i are triangle-free (2n; n; n)-graphs. In general, one may i=2 i=2 ask for triangle-free (n; d; λ)-graphs, where d; n and λ − 1 1 Since x1 = hx; e1i = n 2 jXj we get the expander mix- must satisfy (8), and in particular, λ = Ω(d 2 ). This 1 ing lemma of Alon [2]: leads to an extremal problem: when λ = cd 2 , what is the largest d for which there is a triangle-free (n; d; λ)- Theorem 1.2. Let G be an (n; d; λ)-graph and let X; Y ⊆ graph? If G is any triangle-free (n; d; λ)-graph with V (G). Then adjacency matrix A, then jXj 2e(X) − d jXj2 ≤ λjXj(1 − ) (13) 3 3 3 n n 0 = tr(A ) ≥ d − λ (n − 1) (18) 1 1 and if jXj = αn and jY j = βn then and so d ≤ λ(n − 1) 3 . If λ = O(d 2 ), then this gives 2 d = O(n 3 ). Alon [3] gave an ingenious construction of d p 2 e(X; Y ) − jXjjY j ≤ λ jXjjY j(1−α)(1−β): (14) 3 n a triangle-free Cayley (n; d; λ)-graph with d = Ω(n ) 1 and λ = O(n 3 ), showing the the above bounds are For a real α ≥ 0, a graph G with e(G) edges and tight. Other constructions were given by Kopparty [39] n density p = e(G)= 2 is α-pseudorandom if for every and Conlon [17], which are triangle-free (n; d; λ)-graphs 1 X ⊆ V (G), and shown to have λ = O(n 3 log n). jXj Theorem 2.1. There exist triangle-free (n; d; λ)-graphs e(X) − p ≤ αjXj: (15) 1 2 2 with λ = O(n 3 ) and d = Ω(n 3 ) as n ! 1.
Recommended publications
  • Pseudorandom Graphs
    Pseudorandom graphs David Conlon What is a pseudorandom graph? A pseudorandom graph is a graph that behaves like a random graph of the same edge density. For example, it might be the case that the graph has roughly the same edge density between any two large sets or that it contains roughly the same number of copies of every small graph H as one would expect to find in a random graph. The purpose of this course will be to explore certain notions of pseudorandomness and to see what properties the resulting graphs have. For much of the course, our basic object of study will be (p; β)-jumbled graphs, a concept introduced (in a very slightly different form) by Andrew Thomason in the 1980s. These are defined as follows. Definition 1 A graph G on vertex set V is (p; β)-jumbled if, for all vertex subsets X; Y ⊆ V (G), je(X; Y ) − pjXjjY jj ≤ βpjXjjY j: That is, the edge density between any two sets X and Y is roughly p, with the allowed discrepancy measured in terms of β. The normalisation may be explained by considering what happens in a random graph. In this case, the expected number of edges between X and Y will be pjXjjY j and the standard deviation will be pp(1 − p)jXjjY j. So β is measuring how many multiples of the standard deviation our edge density is allowed to deviate by. Of course, random graphs should themselves be pseudorandom. Recall that the binomial random graph G(n; p) is a graph on n vertices formed by choosing each edge independently with probability p.
    [Show full text]
  • On the Resilience of Hamiltonicity and Optimal Packing of Hamilton Cycles in Random Graphs*
    SIAM J. DISCRETE MATH. © 2011 Society for Industrial and Applied Mathematics Vol. 25, No. 3, pp. 1176–1193 ON THE RESILIENCE OF HAMILTONICITY AND OPTIMAL PACKING OF HAMILTON CYCLES IN RANDOM GRAPHS* † ‡ § SONNY BEN-SHIMON , MICHAEL KRIVELEVICH , AND BENNY SUDAKOV Abstract. Let k ¼ðk1; :::;knÞ be a sequence of n integers. For an increasing monotone graph property P we say that a base graph G ¼ð½n;EÞ is k-resilient with respect to P if for every subgraph H ⊆ G such that dH ðiÞ ≤ ki for every 1 ≤ i ≤ n the graph G − H possesses P. This notion naturally extends the idea of the local resilienceofgraphsrecentlyinitiatedbySudakovandVu.Inthispaperwestudythek-resilienceofatypicalgraph from Gðn; pÞ with respect to the Hamiltonicity property, where we let p range over all values for which the base graph is expected to be Hamiltonian. Considering this generalized approach to the notion of resilience our main result implies several corollaries which improve on the best known bounds of Hamiltonicity related questions. For ε K ln n one, it implies that for every positive > 0 and large enough values of K,ifp> n , then with high probability the local resilience of Gðn; pÞ with respect to being Hamiltonian is at least ð1 − εÞnp∕ 3, improving on the previous bound for this range of p. Another implication is a result on optimal packing of edge-disjoint Hamilton cycles in a ≤ 1.02 ln n G random graph. We prove that if p n , then with high probability a graph G sampled from ðn; pÞ contains δðGÞ b 2 c edge-disjoint Hamilton cycles, extending the previous range of p for which this was known to hold.
    [Show full text]
  • Finding Any Given 2‐Factor in Sparse Pseudorandom Graphs Efficiently
    Received: 16 February 2019 | Revised: 7 April 2020 | Accepted: 18 April 2020 DOI: 10.1002/jgt.22576 ARTICLE Finding any given 2‐factor in sparse pseudorandom graphs efficiently Jie Han1 | Yoshiharu Kohayakawa2 | Patrick Morris3,4 | Yury Person5 1Department of Mathematics, University of Rhode Island, Kingston, Rhode Island Abstract 2Instituto de Matemáticae Estatística, Given an n‐vertex pseudorandom graph G and an Universidade de São Paulo, São Paulo, n‐vertex graph H with maximum degree at most two, Brazil we wish to find a copy of H in G, that is, an em- 3Institut für Mathematik, Freie Universität Berlin, Berlin, Germany bedding φ :()VH→ VG () so that φ()u φ ()vEG∈ ( ) 4Berlin Mathematical School, Berlin, for all uv∈ E() H . Particular instances of this pro- Germany blem include finding a triangle‐factor and finding a 5 Institut für Mathematik, Technische Hamilton cycle in G. Here, we provide a deterministic Universität, Ilmenau, Germany polynomial time algorithm that finds a given H in Correspondence any suitably pseudorandom graph G. The pseudor- Jie Han, Department of Mathematics, andom graphs we consider are (p,)λ ‐bijumbled University of Rhode Island, 5 Lippitt Road, Kingston, RI 02881. graphs of minimum degree which is a constant pro- Email: [email protected] portion of the average degree, that is, Ω()pn .A(p,)λ ‐ bijumbled graph is characterised through the dis- Funding information Fundação de Amparo à Pesquisa do Estado crepancy property: |eAB(, )− pA|||||< B λ ||||AB de São Paulo, Grant/Award Numbers: for any two sets of vertices A and B. Our condition 2013/03447‐6, 2014/18641‐5; Conselho λ =(Opn2 /log n) on bijumbledness is within a log Nacional de Desenvolvimento Científico e Tecnológico, Grant/Award Numbers: factor from being tight and provides a positive answer 310974/2013‐5, 311412/2018‐1, 423833/ to a recent question of Nenadov.
    [Show full text]
  • MITOCW | 11. Pseudorandom Graphs I: Quasirandomness
    MITOCW | 11. Pseudorandom graphs I: quasirandomness PROFESSOR: So we spent the last few lectures discussing Szemerédi's regularity lemma. So we saw that this is an important tool with important applications, allowing you to do things like a proof of Roth's theorem via graph theory. One of the concepts that came up when we were discussing the statement of Szemerédi's regularity lemma is that of pseudorandomness. So the statement of Szemerédi's graph regularity lemma is that you can partition an arbitrary graph into a bounded number of pieces so that the graph looks random-like, as we called it, between most pairs of parts. So what does random-like mean? So that's something that I want to discuss for the next couple of lectures. And this is the idea of pseudorandomness, which is a concept that is really prevalent in combinatorics, in theoretical computer science, and in many different areas. And what pseudorandomness tries to capture is, in what ways can a non-random object look random? So before diving into some specific mathematics, I want to offer some philosophical remarks. So you might know that, on a computer, you want to generate a random number. Well, you type in a "rand," and it gives you a random number. But of course, that's not necessarily true randomness. It came from some pseudorandom generator. Probably there's some seed and some complex-looking function and outputs something that you couldn't distinguish from random. But it might not actually be random but just something that looks, in many different ways, like random.
    [Show full text]
  • Arxiv:2004.10180V2 [Math.CO]
    THE REGULARITY METHOD FOR GRAPHS WITH FEW 4-CYCLES DAVID CONLON, JACOB FOX, BENNY SUDAKOV, AND YUFEI ZHAO Abstract. We develop a sparse graph regularity method that applies to graphs with few 4-cycles, including new counting and removal lemmas for 5-cycles in such graphs. Some applications include: Every n-vertex graph with no 5-cycle can be made triangle-free by deleting o(n3/2) edges. • For r 3, every n-vertex r-graph with girth greater than 5 has o(n3/2) edges. • ≥ Every subset of [n] without a nontrivial solution to the equation x1 + x2 + 2x3 = x4 + 3x5 has • size o(√n). 1. Introduction Szemerédi’s regularity lemma [52] is a rough structure theorem that applies to all graphs. The lemma originated in Szemerédi’s proof of his celebrated theorem that dense sets of integers contain arbitrarily long arithmetic progressions [51] and is now considered one of the most useful and important results in combinatorics. Among its many applications, one of the earliest was the influential triangle removal lemma of Ruzsa and Szemerédi [40], which says that any n-vertex graph with o(n3) triangles can be made triangle-free by removing o(n2) edges. Surprisingly, this simple sounding statement is already sufficient to imply Roth’s theorem, the special case of Szemerédi’s theorem for 3-term arithmetic progressions, and a generalization known as the corners theorem. Most applications of the regularity lemma, including the triangle removal lemma, rely on also having an associated counting lemma. Such a lemma roughly says that the number of embeddings of a fixed graph H into a pseudorandom graph G can be estimated by pretending that G is a random graph.
    [Show full text]
  • Arxiv:1402.0984V2
    POWERS OF HAMILTON CYCLES IN PSEUDORANDOM GRAPHS PETER ALLEN, JULIA BOTTCHER,¨ HIEˆ. P HAN,` YOSHIHARU KOHAYAKAWA, AND YURY PERSON Abstract. We study the appearance of powers of Hamilton cycles in pseudo- random graphs, using the following comparatively weak pseudorandomness no- tion. A graph G is (ε,p,k,ℓ)-pseudorandom if for all disjoint X and Y ⊆ V (G) with |X|≥ εpkn and |Y |≥ εpℓn we have e(X,Y ) = (1 ± ε)p|X||Y |. We prove that for all β > 0 there is an ε> 0 such that an (ε,p, 1, 2)-pseudorandom graph on n vertices with minimum degree at least βpn contains the square of a Hamil- ton cycle. In particular, this implies that (n, d, λ)-graphs with λ ≪ d5/2n−3/2 contain the square of a Hamilton cycle, and thus a triangle factor if n is a multiple of 3. This improves on a result of Krivelevich, Sudakov and Szab´o [Triangle factors in sparse pseudo-random graphs, Combinatorica 24 (2004), no. 3, 403–426]. We also extend our result to higher powers of Hamilton cycles and establish corresponding counting versions. 1. Introduction and results The appearance of certain graphs H as subgraphs is a dominant topic in the study of random graphs. In the random graph model G(n,p) this question turned out to be comparatively easy for graphs H of constant size, but much harder for graphs H on n vertices, i.e., spanning subgraphs. Early results were however obtained in the case when H is a Hamilton cycle, for which this question is by now very well understood [8, 19, 20, 21, 27].
    [Show full text]
  • Szemerédi's Regularity Lemma for Sparse Graphs
    Szemer´edi'sRegularity Lemma for Sparse Graphs Y. Kohayakawa? Instituto de Matem´aticae Estat´ıstica,Universidade de S~aoPaulo Rua do Mat~ao1010, 05508{900 S~aoPaulo, SP Brazil Abstract. A remarkable lemma of Szemer´ediasserts that, very roughly speaking, any dense graph can be decomposed into a bounded number of pseudorandom bipartite graphs. This far-reaching result has proved to play a central r^olein many areas of combinatorics, both `pure' and `algorithmic.' The quest for an equally powerful variant of this lemma for sparse graphs has not yet been successful, but some progress has been achieved recently. The aim of this note is to report on the successes so far. 1 Introduction Szemer´edi'scelebrated proof [39] of the conjecture of Erd}osand Tur´an[10] on arithmetic progressions in dense subsets of integers is certainly a masterpiece of modern combinatorics. An auxiliary lemma in that work, which has become known in its full generality [40] as Szemer´edi'sregularity lemma, has turned out to be a powerful and widely applicable combinatorial tool. For an authoritative survey on this subject, the reader is referred to the recent paper of Koml´osand Simonovits [29]. For the algorithmic aspects of this lemma, the reader is referred to the papers of Alon, Duke, Lefmann, R¨odl,and Yuster [1] and Duke, Lefmann, and R¨odl[8]. Very roughly speaking, the lemma of Szemer´edisays that any graph can be decomposed into a bounded number of pseudorandom bipartite graphs. Since pseudorandom graphs have a predictable structure, the regularity lemma is a powerful tool for introducing `order' where none is visible at first.
    [Show full text]
  • Graph Theory and Additive Combinatorics, a Graduate-Level Course Taught by Prof
    GRAPHTHEORY AND ADDITIVECOMBINATORICS notes for mit 18.217 (fall 2019) lecturer: yufei zhao http://yufeizhao.com/gtac/ About this document This document contains the course notes for Graph Theory and Additive Combinatorics, a graduate-level course taught by Prof. Yufei Zhao at MIT in Fall 2019. The notes were written by the students of the class based on the lectures, and edited with the help of the professor. The notes have not been thoroughly checked for accuracy, espe- cially attributions of results. They are intended to serve as study resources and not as a substitute for professionally prepared publica- tions. We apologize for any inadvertent inaccuracies or misrepresen- tations. More information about the course, including problem sets and lecture videos (to appear), can be found on the course website: http://yufeizhao.com/gtac/ Contents A guide to editing this document 7 1 Introduction 13 1.1 Schur’s theorem........................ 13 1.2 Highlights from additive combinatorics.......... 15 1.3 What’s next?.......................... 18 I Graph theory 21 2 Forbidding a subgraph 23 2.1 Mantel’s theorem: forbidding a triangle.......... 23 2.2 Turán’s theorem: forbidding a clique............ 24 2.3 Hypergraph Turán problem................. 26 2.4 Erd˝os–Stone–Simonovits theorem (statement): forbidding a general subgraph...................... 27 2.5 K˝ovári–Sós–Turán theorem: forbidding a complete bipar- tite graph............................ 28 2.6 Lower bounds: randomized constructions......... 31 2.7 Lower bounds: algebraic constructions.......... 34 2.8 Lower bounds: randomized algebraic constructions... 37 2.9 Forbidding a sparse bipartite graph............ 40 3 Szemerédi’s regularity lemma 49 3.1 Statement and proof....................
    [Show full text]
  • 18.217 F2019 Chapter 4: Pseudorandom Graphs
    Graph Theory and Additive Combinatorics Lecturer: Prof. Yufei Zhao 4 Pseudorandom graphs The term “pseudorandom” refers to a wide range of ideas and phe- nomenon where non-random objects behave in certain ways like genuinely random objects. For example, while the prime numbers are not random, their distribution among the integers have many prop- erties that resemble random sets. The famous Riemann Hypothesis is a notable conjecture about the pseudorandomness of the primes in a certain sense. When used more precisely, we can ask whether some given objects behaves in some specific way similar to a typical random object? In this chapter, we examine such questions for graphs, and study ways that a non-random graph can have properties that resemble a typical random graph. 4.1 Quasirandom graphs The next theorem is a foundational result in the subject. It lists sev- eral seemingly different pseudorandomness properties that a graph can have (with some seemingly easier to verify than others), and as- serts, somewhat surprisingly, that these properties turn out to be all equivalent to each other. Theorem 4.1. Let fGng be a sequence of graphs with Gn having n ver- Chung, Graham, and Wilson (1989) n Theorem 4.1 should be understood as a tices and (p + o(1))(2) edges, for fixed 0 < p < 1. Denote Gn by G. The theorem about dense graphs, i.e., graphs following properties are equivalent: with constant order edge density. Sparser graphs can have very different 2 1. DISC (“discrepancy”): je(X, Y) − pjXjjYjj = o(n ) for all X, Y ⊂ behavior and will be discussed in later V(G).
    [Show full text]
  • Spectral Graph Theory Péter Csikvári
    Spectral graph theory Péter Csikvári In this note I use some terminologies about graphs without defining them. You can look them up at wikipedia: graph, vertex, edge, multiple edge, loop, bipartite graph, tree, degree, regular graph, adjacency matrix, walk, closed walk. In this note we never consider directed graphs and so the adjacency matrix will always be symmetric for us. 1. Just linear algebra Many of the things described in this section is just the Frobenius–Perron theory spe- cialized for our case. On the other hand, we will cheat. Our cheating is based on the fact that we will only work with symmetric matrices, and so we can do some shortcuts in the arguments. We will use the fact many times that if A is a n × n real symmetric matrix then there exists a basis of Rn consisting of eigenvectors which we can choose1 to be orthonormal. ≥ · · · ≥ Let u1; : : : ; un be the orthonormal eigenvectors belonging to λ1 λn: we have Aui = λiui, and (ui; uj) = δij. Let us start with some elementary observations. PropositionP 1.1. If GPis a simple graph then the eigenvalues of its adjacency matrix A 2 satisfies Pi λi = 0 and λi = 2e(G), where e(G) denotes the number of edges of G. In ` general, λi counts the number of closed walks of length `. Proof. Since G has no loop we have X λi = T rA = 0: i Since G has no multiple edges, the diagonal of A2 consists of the degrees of G. Hence X X 2 2 λi = T rA = di = 2e(G): i The third statement also follows from the fact T rA` is nothing else than the number of closed walks of length `.
    [Show full text]
  • Low-Complexity Decompositions of Combinatorial Objects
    IMPA Master's Thesis Low-Complexity Decompositions of Combinatorial Objects Author: Supervisor: Davi Castro-Silva Roberto Imbuzeiro Oliveira A thesis submitted in fulfillment of the requirements for the degree of Master in Mathematics at Instituto de Matem´aticaPura e Aplicada April 15, 2018 iii Contents 1 Introduction 1 1.1 High-level overview of the framework.........................1 1.2 Remarks on notation and terminology........................2 1.3 Examples and structure of the thesis.........................3 2 Abstract decomposition theorems7 2.1 Probabilistic setting..................................7 2.2 Structure and pseudorandomness...........................8 2.3 Weak decompositions..................................9 2.3.1 Weak Regularity Lemma........................... 10 2.4 Strong decompositions................................. 10 2.4.1 Szemer´ediRegularity Lemma......................... 11 3 Counting subgraphs and the Graph Removal Lemma 15 3.1 Counting subgraphs globally.............................. 15 3.2 Counting subgraphs locally and the Removal Lemma................ 17 3.3 Application to property testing............................ 19 4 Extensions of graph regularity 21 4.1 Regular approximation................................. 21 4.2 Relative regularity................................... 23 5 Hypergraph regularity 27 5.1 Intuition and definitions................................ 27 5.2 Regularity at a single level............................... 28 5.3 Regularizing all levels simultaneously........................
    [Show full text]
  • Extremal Results in Sparse Pseudorandom Graphs
    Extremal results in sparse pseudorandom graphs David Conlon∗ Jacob Foxy Yufei Zhao z Abstract Szemer´edi'sregularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and R¨odlproved an analogue of Szemer´edi'sregularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemer´edi'sregularity lemma use an associated counting lemma. In order to prove extensions of these results which also apply to sparse graphs, it remained a well-known open problem to prove a counting lemma in sparse graphs. The main advance of this paper lies in a new counting lemma, proved following the functional approach of Gowers, which complements the sparse regularity lemma of Kohayakawa and R¨odl, allowing us to count small graphs in regular subgraphs of a sufficiently pseudorandom graph. We use this to prove sparse extensions of several well-known combinatorial theorems, including the removal lemmas for graphs and groups, the Erd}os-Stone-Simonovits theorem and Ramsey's theorem. These results extend and improve upon a substantial body of previous work. Contents 1 Introduction 2 1.1 Pseudorandom graphs . .3 1.2 Extremal results in pseudorandom graphs . .4 1.3 Regularity and counting lemmas . .8 2 Counting strategy 13 2.1 Two-sided counting . 13 2.2 One-sided counting . 16 3 Counting in Γ 18 3.1 Example: counting triangles in Γ . 18 3.2 Notation . 19 3.3 Counting graphs in Γ .
    [Show full text]